Number theory combination: natural density and SMT

Guilherme Vicentin de Toledo^{1,2}, Yoni Zohar²

¹University of Campinas, UNICAMP

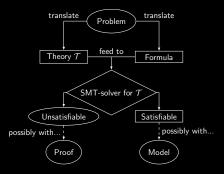
²Bar Ilan University, BIU

FroCoS 2025

SMT

Satisfiability modulo theories

SMT is an area in automated deduction which seeks to answer whether a formula is satisfied in a (first-order, with equality) theory.



Combination methods

Combining theories is highly non-trivial: methods include Nelson–Oppen, politeness, strong politeness, convexity, flexibility, gentleness (and gentleness), gentleness and computable finite spectra, shininess, etc. and etc.

Combination methods

Combining theories is highly non-trivial: methods include Nelson-Oppen, politeness, strong politeness, convexity, flexibility, gentleness (and gentleness), gentleness and computable finite spectra, shininess, etc. and etc.

A combination method is a theorem that claims more or less the following.

- If \mathcal{T}_1 is decidable, and has **property 1**,
- ² and \mathcal{T}_2 is decidable, and has **property 2**,
- and their signatures are disjoint,

then: $\mathcal{T}_1 \oplus \mathcal{T}_2$ is decidable, and the theorem gives a recipe for its algorithm by combining those of \mathcal{T}_1 and \mathcal{T}_2 .

Natural density and spectra

Definitions

The natural density of a set X of natural numbers is

$$\mu(X) = \lim_{n \to +\infty} \frac{|X \cap \{1, \dots, n\}|}{n}.$$

Definitions

The natural density of a set X of natural numbers is

$$\mu(X) = \lim_{n \to +\infty} \frac{|X \cap \{1, \ldots, n\}|}{n}.$$

The spectrum of a theory ${\mathcal T}$ with respect to a formula ϕ is the set

$$Spec(\mathcal{T},\phi) = \{|\mathcal{A}|: \mathcal{A} \text{ is a model of } \mathcal{T} \text{ with } \mathcal{A} \vDash \phi\} \cap (\mathbb{N} \cup \{\aleph_0\}).$$

We then make $\mu(\mathcal{T}, \phi) = \mu(Spec(\mathcal{T}, \phi))$ and $\mu(\mathcal{T}) = \mu(\mathcal{T}, x = x)$.

Definitions

The natural density of a set X of natural numbers is

$$\mu(X) = \lim_{n \to +\infty} \frac{|X \cap \{1, \ldots, n\}|}{n}.$$

The spectrum of a theory ${\mathcal T}$ with respect to a formula ϕ is the set

$$Spec(\mathcal{T},\phi) = \{|\mathcal{A}| : \mathcal{A} \text{ is a model of } \mathcal{T} \text{ with } \mathcal{A} \vDash \phi\} \cap (\mathbb{N} \cup \{\aleph_0\}).$$

We then make $\mu(\mathcal{T}, \phi) = \mu(Spec(\mathcal{T}, \phi))$ and $\mu(\mathcal{T}) = \mu(\mathcal{T}, x = x)$.

A number is computable when there is an algorithm outputting fractions that converge to it.

Examples

 ${\mathcal A}$ is a model of the theory ${\mathcal T}^\infty_{\text{\it even}}$ iff $|{\mathcal A}|$ is even or infinite.

Then $\mu(\mathcal{T}_{even}^{\infty}) = 1/2$.

Examples

 ${\mathcal A}$ is a model of the theory ${\mathcal T}^\infty_{\operatorname{even}}$ iff $|{\mathcal A}|$ is even or infinite.

Then $\mu(\mathcal{T}_{even}^{\infty}) = 1/2$.

Let Ω = 0.57824 ... be the Chaitin constant associated with the Busy Beaver numbers, and ${\cal T}$ the theory with models of size:

- 1 through 5 (5/10);
- ² 11 through 52 = 57 5 (5/10 and 57/100);
- 3 101 through 521 = 578 57 (57/100 and 578/1000)...

Then $\mu(\mathcal{T}) = \Omega$.

Why do we bother mixing theory combination in SMT with probabilities over finite models?

Why do we bother mixing theory combination in SMT with probabilities over finite models?

Well, first of all, it is interesting.

Why do we bother mixing theory combination in SMT with probabilities over finite models?

Well, first of all, it is interesting.

More importantly, we get more tools to study the viability (or not) of theory combination.

Why do we bother mixing theory combination in SMT with probabilities over finite models?

Well, first of all, it is interesting.

More importantly, we get more tools to study the viability (or not) of theory combination.

Indeed, these developments summarize many of the ideas involved in our recent studies on theory combination, including "Being polite is not enough (and other limits of theory combination)" and "Shininess, Strong Politeness, and Unicorns".

Combination methods

Combination methods

Combining theories is highly non-trivial: methods include Nelson–Oppen, politeness, strong politeness, convexity, flexibility, gentleness (and gentleness), gentleness and computable finite spectra, shininess, etc. and etc.

A combination method (one sort, empty signature) is a theorem that claims more or less the following.

- If \mathcal{T}_1 is decidable, and has **property 1**,
- ² and \mathcal{T}_2 is decidable, and has **property 2**,
- and their signatures are disjoint,

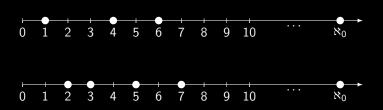
then: $\mathcal{T}_1 \oplus \mathcal{T}_2$ is decidable, and the theorem gives a recipe for its algorithm by combining those of \mathcal{T}_1 and \mathcal{T}_2 .

Nelson-Oppen

Property 1 and **property 2** in Nelson-Oppen are stable infiniteness, which requires that for every (quantifier-free, satisfiable formula) ϕ , $Spec(\mathcal{T}, \phi)$ contains \aleph_0 .

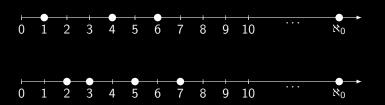
Nelson-Oppen

Property 1 and **property 2** in Nelson-Oppen are stable infiniteness, which requires that for every (quantifier-free, satisfiable formula) ϕ , $Spec(\mathcal{T}, \phi)$ contains \aleph_0 .



Nelson-Oppen

Property 1 and **property 2** in Nelson-Oppen are stable infiniteness, which requires that for every (quantifier-free, satisfiable formula) ϕ , $Spec(\mathcal{T}, \phi)$ contains \aleph_0 .



Theorem

By compactness, if $\mu(\mathcal{T}_1), \mu(\mathcal{T}_2) > 0$, then \mathcal{T}_1 and \mathcal{T}_2 can be combined using Nelson-Oppen.

Shininess

Property 1 in shiny theory combination is shininess, and **property 2** is not needed. Shininess means the least element $\mathbf{minmod}(\phi)$ of $Spec(\mathcal{T},\phi)$ is computable and finite, and $Spec(\mathcal{T},\phi) = [\mathbf{minmod}(\phi),\aleph_0].$

Shininess

Property 1 in shiny theory combination is shininess, and **property 2** is not needed. Shininess means the least element $\mathbf{minmod}(\phi)$ of $Spec(\mathcal{T},\phi)$ is computable and finite, and $Spec(\mathcal{T},\phi) = [\mathbf{minmod}(\phi),\aleph_0].$

Shininess

Property 1 in shiny theory combination is shininess, and **property 2** is not needed. Shininess means the least element $\mathbf{minmod}(\phi)$ of $Spec(\mathcal{T},\phi)$ is computable and finite, and $Spec(\mathcal{T},\phi) = [\mathbf{minmod}(\phi),\aleph_0].$

Theorem

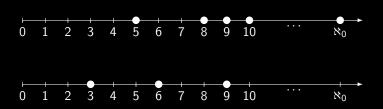
If \mathcal{T} is shiny, then $\mu(\mathcal{T}) = 1$.

Gentleness

For gentle theory combination, **property 1** and **property 2** are gentleness, where $Spec(\mathcal{T}, \phi)$ is finite and computable, or co-finite and its complement is computable.

Gentleness

For gentle theory combination, **property 1** and **property 2** are gentleness, where $Spec(\mathcal{T}, \phi)$ is finite and computable, or co-finite and its complement is computable.



Gentleness

For gentle theory combination, **property 1** and **property 2** are gentleness, where $Spec(\mathcal{T}, \phi)$ is finite and computable, or co-finite and its complement is computable.

Theorem (a 0-1 law)

If \mathcal{T} is gentle, then $\mu(\mathcal{T}) = 0$ or $\mu(\mathcal{T}) = 1$.

Exceptional cases

Computablity of the minimal model function

A theory has a computable minimal model function when the least element $\mathbf{minmod}(\phi)$ of $Spec(\mathcal{T}, \phi)$ is computable (shininess).

Computablity of the minimal model function

A theory has a computable minimal model function when the least element $\mathbf{minmod}(\phi)$ of $Spec(\mathcal{T}, \phi)$ is computable (shininess).

Theorem

 ${\mathcal T}$ has a computable minimal model function iff ${\sf Spec}({\mathcal T})$ is computable.

Computablity of the minimal model function

A theory has a computable minimal model function when the least element $\mathbf{minmod}(\phi)$ of $Spec(\mathcal{T}, \phi)$ is computable (shininess).

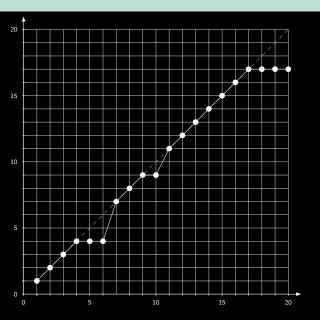
Theorem

 ${\mathcal T}$ has a computable minimal model function iff ${\sf Spec}({\mathcal T})$ is computable.

Theorem

It follows that if \mathcal{T} has a computable minimal model function, then $\mu(\mathcal{T})$ is a computable number. In addition, every computable number is the density of a theory with a computable minimal model function.

Construction



$$a_0/b_0 = 4/6$$

$$a_1/b_1 = 3/4$$

$$a_2/b_2 = 7/10$$

:

Density = limit of mediants (Farey sums)

$$\frac{a}{b} + \frac{c}{d} = \frac{a+c}{b+d}$$

Examples

 \mathcal{A} is a model of the theory $\mathcal{T}_{even}^{\infty}$ iff $|\mathcal{A}|$ is even or infinite.

Then $\mu(\mathcal{T}_{even}^{\infty}) = 1/2$.

Let Ω = 0.57824 ... be the Chaitin constant associated with the Busy Beaver numbers, and ${\cal T}$ the theory with models of size:

- 1 through 5 (5/10);
- ² 11 through 52 = 57 5 (5/10 and 57/100);
- 3 101 through 521 = 578 57 (57/100 and 578/1000)...

Then $\mu(\mathcal{T}) = \Omega$.

There is a computable function $wit: QF \rightarrow QF$ such that, for every (quantifier-free formula) ϕ :

There is a computable function $wit: QF \to QF$ such that, for every (quantifier-free formula) ϕ :

(I)
$$\phi$$
 and $\exists \overrightarrow{x}$. $wit(\phi)$ are \mathcal{T} -equivalent, where $\overrightarrow{x} = vars(wit(\phi)) \setminus vars(\phi)$;

There is a computable function $wit: QF \rightarrow QF$ such that, for every (quantifier-free formula) ϕ :

(I)
$$\phi$$
 and $\exists \overrightarrow{x}$. $wit(\phi)$ are \mathcal{T} -equivalent, where $\overrightarrow{x} = vars(wit(\phi)) \setminus vars(\phi)$;

(II) if ϕ is \mathcal{T} -satisfiable, there is a model \mathcal{A} of \mathcal{T} with $\mathcal{A} \models \phi$ where every element is the interpretation of a variable in $wit(\phi)$.

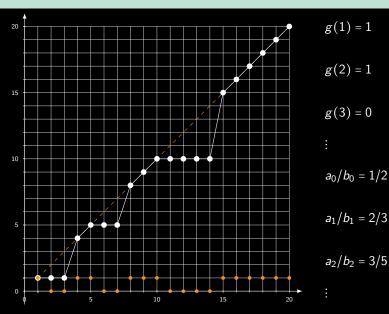
There is a computable function $wit: QF \rightarrow QF$ such that, for every (quantifier-free formula) ϕ :

(I)
$$\phi$$
 and $\exists \overrightarrow{x}$. $wit(\phi)$ are \mathcal{T} -equivalent, where $\overrightarrow{x} = vars(wit(\phi)) \setminus vars(\phi)$;

(II) if ϕ is \mathcal{T} -satisfiable, there is a model \mathcal{A} of \mathcal{T} with $\mathcal{A} \vDash \phi$ where every element is the interpretation of a variable in $wit(\phi)$.

"Being polite is not enough (and other limits of theory combination)"

Every $0 \le r \le 1$ is the density of a finitely witnessable theory



Szemerédi proved the conjecture, by Erdös and Turán, that every set of positive density contains arbitrarily long finite sequences of numbers in arithmetic progression.

Szemerédi proved the conjecture, by Erdös and Turán, that every set of positive density contains arbitrarily long finite sequences of numbers in arithmetic progression.

A similar result is false if we change our focus to computability: there are sets of density 1 with no computable subsequences (called **immune**).

Szemerédi proved the conjecture, by Erdös and Turán, that every set of positive density contains arbitrarily long finite sequences of numbers in arithmetic progression.

A similar result is false if we change our focus to computability: there are sets of density 1 with no computable subsequences (called **immune**).

Theorem

We have, however, that for every set $\{\cdots < a_n < a_{n+1} < \cdots\}$ of positive density there is a computable sequence $\{b_n\}_{n\in\mathbb{N}}$ such that $a_n \leq b_n$. So, if $\mu(\mathcal{T}) > 0$, \mathcal{T} is finitely witnessable.

Theorem

We have, however, that for every set $\{\cdots < a_n < a_{n+1} < \cdots\}$ of positive density there is a computable sequence $\{b_n\}_{n\in\mathbb{N}}$ such that $a_n \leq b_n$. So, if $\mu(\mathcal{T}) > 0$, \mathcal{T} is finitely witnessable.

Conclusion and future work

General picture

SI	SM	FW	SW	FM	CF	G	Natural densities
Т	Т	Т	Т	T	Т	Т	1
		F	F	F	Т	F	0
	F	Т	F	Т	Т	T	{0,1}
						F	$REC \cap [0,1]$
				T	F	F	[0,1]
		F	F	T	F	F	0
				F	Т	F	0
F	F	Т	T	F	Т	T	0
			F	T	Т	Т	0

Further directions

Other combination properties

Further directions

Other combination properties

- Alternative densities:
 - Dirichlet's, involving Riemann's Γ-function
 - · logarithmic, and relative weights
 - Schnirelmann's (where $\mathcal T$ being gentle implies $\mu(\mathcal T) \in \mathbb Q$)

Further directions

Other combination properties

- Alternative densities:
 - Dirichlet's, involving Riemann's Γ-function
 - logarithmic, and relative weights
 - Schnirelmann's (where $\mathcal T$ being gentle implies $\mu(\mathcal T) \in \mathbb Q$)

• Many-sorted theories: even more densities in \mathbb{N}^n

Thank you!

