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SMT



Satisfiability modulo theories

SMT is an area in automated deduction which seeks to answer whether a

formula is satisfied in a (first-order, with equality) theory.
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Combination methods

Combining theories is highly non-trivial: methods include Nelson—Oppen,
politeness, strong politeness, convexity, flexibility, gentleness (and
gentleness), gentleness and computable finite spectra, shininess, etc. and

etc.
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Combination methods

Combining theories is highly non-trivial: methods include Nelson—Oppen,
politeness, strong politeness, convexity, flexibility, gentleness (and
gentleness), gentleness and computable finite spectra, shininess, etc. and

etc.

A combination method is a theorem that claims more or less the
following.

® |If 71 is decidable, and has property 1,

® and 73 is decidable, and has property 2,

® and their signatures are disjoint,
then: 71 @ 75 is decidable, and the theorem gives a recipe for its

algorithm by combining those of 71 and 7>.
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Natural density and spectra



Definitions

The natural density of a set X of natural numbers is

w(X) = lim

n—+oo

IXn{L,...,n}]
L
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The spectrum of a theory 7 with respect to a formula ¢ is the set
Spec(T,¢) = {]A|: Ais a model of T with A& ¢} n(Nu{Ro}).

We then make p(T, ) = u(Spec(T,¢)) and p(T) = u(T,x = x).
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Definitions

The natural density of a set X of natural numbers is

w(X) = lim

n—+oo

IXn{L,...,n}]
L

The spectrum of a theory 7 with respect to a formula ¢ is the set
Spec(T,¢) = {]A|: Ais a model of T with A& ¢} n(Nu{Ro}).

We then make p(T, ) = u(Spec(T,¢)) and p(T) = u(T,x = x).

A number is computable when there is an algorithm outputting fractions

that converge to it.
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Examples

A is a model of the theory 722, iff |A] is even or infinite.

Then u(Toe,) =1/2.
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Examples

A is a model of the theory 722, iff |A] is even or infinite.

Then u(Toe,) =1/2.

Let Q=0.57824... be the Chaitin constant associated with the Busy

Beaver numbers, and 7 the theory with models of size:

® 1 through 5 (5/10);

® 11 through 52 =57 -5 (5/10 and 57/100);

& 101 through 521 = 578 - 57 (57/100 and 578/1000)...
Then u(7T) = Q.
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Why do we bother mixing theory combination in SMT with probabilities

over finite models?
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Why do we bother mixing theory combination in SMT with probabilities

over finite models?

Well, first of all, it is interesting.

More importantly, we get more tools to study the viability (or not) of

theory combination.

Indeed, these developments summarize many of the ideas involved in our
recent studies on theory combination, including " Being polite is not
enough (and other limits of theory combination)” and " Shininess, Strong

Politeness, and Unicorns”.
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Combination methods

Combining theories is highly non-trivial: methods include Nelson—Oppen,
politeness, strong politeness, convexity, flexibility, gentleness (and
gentleness), gentleness and computable finite spectra, shininess, etc. and

etc.

A combination method (one sort, empty signature) is a theorem that
claims more or less the following.

® If 71 is decidable, and has property 1,

® and 75 is decidable, and has property 2,

® and their signatures are disjoint,
then: 71 @ 75 is decidable, and the theorem gives a recipe for its

algorithm by combining those of 71 and 7>.
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Nelson-Oppen

Property 1 and property 2 in Nelson-Oppen are stable infiniteness,
which requires that for every (quantifier-free, satisfiable formula) ¢,

Spec(T, ¢) contains Rg.
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Nelson-Oppen

Property 1 and property 2 in Nelson-Oppen are stable infiniteness,

which requires that for every (quantifier-free, satisfiable formula) ¢,

Spec(T, ¢) contains Rg.
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By compactness, if (T1), 1u(72) >0, then Ty and T, can be combined

using Nelson-Oppen.
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Shininess

Property 1 in shiny theory combination is shininess, and property 2 is
not needed. Shininess means the least element minmod(¢) of
Spec(T,¢) is computable and finite, and

Spec(T,¢) = [minmod(¢), Ro].
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Shininess

Property 1 in shiny theory combination is shininess, and property 2 is
not needed. Shininess means the least element minmod(¢) of
Spec(T, @) is computable and finite, and

Spec(T,¢) = [minmod(¢), Ro].
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If T is shiny, then u(T) = 1.
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Gentleness

For gentle theory combination, property 1 and property 2 are
gentleness, where Spec(T, ¢) is finite and computable, or co-finite and

its complement is computable.
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For gentle theory combination, property 1 and property 2 are
gentleness, where Spec(T, ¢) is finite and computable, or co-finite and

its complement is computable.
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Gentleness

For gentle theory combination, property 1 and property 2 are
gentleness, where Spec(T, ¢) is finite and computable, or co-finite and

its complement is computable.
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If T is gentle, then pu(T) =0 or u(T) = 1.
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Exceptional cases



Computablity of the minimal model function

A theory has a computable minimal model function when the least

element minmod(¢) of Spec(T, ¢) is computable (shininess).
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Computablity of the minimal model function

A theory has a computable minimal model function when the least

element minmod(¢) of Spec(T, ¢) is computable (shininess).

T has a computable minimal model function iff Spec(T) is computable.

It follows that if T has a computable minimal model function, then p(T)

is a computable number. In addition, every computable number is the

density of a theory with a computable minimal model function.
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Construction

A
20

» - 80/b0=4/6
al/bl =3/4
32/b2=7/10

10

Density = limit of

/ mediants (Farey
. )
i’ sums)
a ¢ a+c
— 4+ — =
b d b+d
0 >
0 5 10 15 20
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Examples

A is a model of the theory T, iff |A| is even or infinite.
Then u(722,) =1/2.

Let Q =0.57824... be the Chaitin constant associated with the Busy

Beaver numbers, and 7 the theory with models of size:

® 1 through 5 (5/10);

® 11 through 52 =57 -5 (5/10 and 57/100);

& 101 through 521 = 578 - 57 (57/100 and 578/1000)...
Then u(7) = Q.
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Finite witnessability

There is a computable function wit: QF — QF such that, for every

(quantifier-free formula) ¢:
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Finite witnessability

There is a computable function wit: QF — QF such that, for every

(quantifier-free formula) ¢:

() ¢ and 3X. wit(¢) are T-equivalent, where

X = vars(wit(¢)) ~ vars(¢);

() if ¢ is T-satisfiable, there is a model A of T with A E ¢ where every

element is the interpretation of a variable in wit(¢).

"Being polite is not enough (and other limits of theory combination)”
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Every 0 < r <1 is the density of a finitely witnessable theory

20
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g(l)=1

g(2)=1

g(3)=0

ao/b0:1/2

81/b1=2/3

az/b2 = 3/5
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Szemerédi's theorem

Szemerédi proved the conjecture, by Erdos and Turdn, that every set of
positive density contains arbitrarily long finite sequences of numbers in

arithmetic progression.
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Szemerédi's theorem

We have, however, that for every set {--- < a, < ap1 < ---} of positive
density there is a computable sequence {b,}nen such that a, < b,. So, if

w(T) >0, T is finitely witnessable.
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Conclusion and future work



General picture

Sl SM | FW | SW | FM | CF G Natural densities
T T 1
T
F F T F 0
T {0,1}
T T
T T F F RECN|[0,1]
F T F F [0,1]
T F F 0
F F
F T F 0
F T T 0
F F T
F T T T 0
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Further directions

» Other combination properties
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Further directions

» Other combination properties

» Alternative densities:

« Dirichlet’s, involving Riemann’s I'-function
« logarithmic, and relative weights

« Schnirelmann’s (where 7 being gentle implies (7)) € Q)

» Many-sorted theories: even more densities in N”
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Thank you!
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