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Satisfiability modulo theories

SMT is an area in automated deduction which seeks to answer whether a

formula is satisfied in a (first-order, with equality) theory.

Problem

Theory T

SMT-solver for T

feed to

translate

Formula

translate

Unsatisfiable Satisfiable

ModelProof

possibly with...possibly with...

3 / 24



Combination methods

Combining theories is highly non-trivial: methods include Nelson–Oppen,

politeness, strong politeness, convexity, flexibility, gentleness (and

gentleness), gentleness and computable finite spectra, shininess, etc. and

etc.

A combination method is a theorem that claims more or less the

following.

1 If T1 is decidable, and has property 1,

2 and T2 is decidable, and has property 2,

3 and their signatures are disjoint,

then: T1 ⊕ T2 is decidable, and the theorem gives a recipe for its

algorithm by combining those of T1 and T2.
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Definitions

The natural density of a set X of natural numbers is

µ(X ) = lim
n→+∞

∣X ∩ {1, . . . ,n}∣

n
.

The spectrum of a theory T with respect to a formula ϕ is the set

Spec(T , ϕ) = {∣A∣ ∶ A is a model of T with A ⊧ ϕ} ∩ (N ∪ {ℵ0}).

We then make µ(T , ϕ) = µ(Spec(T , ϕ)) and µ(T ) = µ(T , x = x).

A number is computable when there is an algorithm outputting fractions

that converge to it.
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Examples

A is a model of the theory T ∞even iff ∣A∣ is even or infinite.

Then µ(T ∞even) = 1/2.

Let Ω = 0.57824 . . . be the Chaitin constant associated with the Busy

Beaver numbers, and T the theory with models of size:

1 1 through 5 (5/10);

2 11 through 52 = 57 − 5 (5/10 and 57/100);

3 101 through 521 = 578 − 57 (57/100 and 578/1000)...

Then µ(T ) = Ω.
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Why?

Why do we bother mixing theory combination in SMT with probabilities

over finite models?

Well, first of all, it is interesting.

More importantly, we get more tools to study the viability (or not) of

theory combination.

Indeed, these developments summarize many of the ideas involved in our

recent studies on theory combination, including ”Being polite is not

enough (and other limits of theory combination)” and ”Shininess, Strong

Politeness, and Unicorns”.

8 / 24



Why?

Why do we bother mixing theory combination in SMT with probabilities

over finite models?

Well, first of all, it is interesting.

More importantly, we get more tools to study the viability (or not) of

theory combination.

Indeed, these developments summarize many of the ideas involved in our

recent studies on theory combination, including ”Being polite is not

enough (and other limits of theory combination)” and ”Shininess, Strong

Politeness, and Unicorns”.

8 / 24



Why?

Why do we bother mixing theory combination in SMT with probabilities

over finite models?

Well, first of all, it is interesting.

More importantly, we get more tools to study the viability (or not) of

theory combination.

Indeed, these developments summarize many of the ideas involved in our

recent studies on theory combination, including ”Being polite is not

enough (and other limits of theory combination)” and ”Shininess, Strong

Politeness, and Unicorns”.

8 / 24



Why?

Why do we bother mixing theory combination in SMT with probabilities

over finite models?

Well, first of all, it is interesting.

More importantly, we get more tools to study the viability (or not) of

theory combination.

Indeed, these developments summarize many of the ideas involved in our

recent studies on theory combination, including ”Being polite is not

enough (and other limits of theory combination)” and ”Shininess, Strong

Politeness, and Unicorns”.
8 / 24



Combination methods

9 / 24



Combination methods

Combining theories is highly non-trivial: methods include Nelson–Oppen,

politeness, strong politeness, convexity, flexibility, gentleness (and

gentleness), gentleness and computable finite spectra, shininess, etc. and

etc.

A combination method (one sort, empty signature) is a theorem that

claims more or less the following.

1 If T1 is decidable, and has property 1,

2 and T2 is decidable, and has property 2,

3 and their signatures are disjoint,

then: T1 ⊕ T2 is decidable, and the theorem gives a recipe for its

algorithm by combining those of T1 and T2.
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Nelson-Oppen

Property 1 and property 2 in Nelson-Oppen are stable infiniteness,

which requires that for every (quantifier-free, satisfiable formula) ϕ,

Spec(T , ϕ) contains ℵ0.

0 1 2 3 4 5 6 7 8 9 10
. . .

ℵ0

0 1 2 3 4 5 6 7 8 9 10
. . .

ℵ0

Theorem

By compactness, if µ(T1), µ(T2) > 0, then T1 and T2 can be combined

using Nelson-Oppen.
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Shininess

Property 1 in shiny theory combination is shininess, and property 2 is

not needed. Shininess means the least element minmod(ϕ) of

Spec(T , ϕ) is computable and finite, and

Spec(T , ϕ) = [minmod(ϕ),ℵ0].

0 1 2 3 4 5 6 7 8 9 10
. . .

ℵ0

Theorem

If T is shiny, then µ(T ) = 1.
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Gentleness

For gentle theory combination, property 1 and property 2 are

gentleness, where Spec(T , ϕ) is finite and computable, or co-finite and

its complement is computable.

0 1 2 3 4 5 6 7 8 9 10
. . .

ℵ0

0 1 2 3 4 5 6 7 8 9 10
. . .

ℵ0

Theorem (a 0 − 1 law)

If T is gentle, then µ(T ) = 0 or µ(T ) = 1.
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Exceptional cases
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Computablity of the minimal model function

A theory has a computable minimal model function when the least

element minmod(ϕ) of Spec(T , ϕ) is computable (shininess).

Theorem

T has a computable minimal model function iff Spec(T ) is computable.

Theorem

It follows that if T has a computable minimal model function, then µ(T )

is a computable number. In addition, every computable number is the

density of a theory with a computable minimal model function.
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Construction

0 5 10 15 20
0
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a0/b0 = 4/6

a1/b1 = 3/4

a2/b2 = 7/10

⋮

Density = limit of

mediants (Farey

sums)

a

b
+
c

d
=
a + c

b + d
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Examples

A is a model of the theory T ∞even iff ∣A∣ is even or infinite.

Then µ(T ∞even) = 1/2.

Let Ω = 0.57824 . . . be the Chaitin constant associated with the Busy

Beaver numbers, and T the theory with models of size:

1 1 through 5 (5/10);

2 11 through 52 = 57 − 5 (5/10 and 57/100);

3 101 through 521 = 578 − 57 (57/100 and 578/1000)...

Then µ(T ) = Ω.
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Finite witnessability

There is a computable function wit ∶ QF → QF such that, for every

(quantifier-free formula) ϕ:

(I) ϕ and ∃Ð→x .wit(ϕ) are T -equivalent, where

Ð→x = vars(wit(ϕ)) ∖ vars(ϕ);

(II) if ϕ is T -satisfiable, there is a model A of T with A ⊧ ϕ where every

element is the interpretation of a variable in wit(ϕ).

”Being polite is not enough (and other limits of theory combination)”
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Every 0 ≤ r ≤ 1 is the density of a finitely witnessable theory
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⋮

a0/b0 = 1/2

a1/b1 = 2/3

a2/b2 = 3/5

⋮

19 / 24



Szemerédi’s theorem

Szemerédi proved the conjecture, by Erdös and Turán, that every set of

positive density contains arbitrarily long finite sequences of numbers in

arithmetic progression.

A similar result is false if we change our focus to computability: there are

sets of density 1 with no computable subsequences (called immune).

Theorem

We have, however, that for every set {⋯ < an < an+1 < ⋯} of positive

density there is a computable sequence {bn}n∈N such that an ≤ bn. So, if

µ(T ) > 0, T is finitely witnessable.
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Conclusion and future work
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General picture
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Further directions

Other combination properties

Alternative densities:

Dirichlet’s, involving Riemann’s Γ-function

logarithmic, and relative weights

Schnirelmann’s (where T being gentle implies µ(T ) ∈ Q)

Many-sorted theories: even more densities in Nn
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Thank you!
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