Shininess, strong politeness, and unicorns

Benjamin Przybocki¹ Guilherme V. Toledo² Yoni Zohar²

Carnegie Mellon University¹, Bar-Ilan University²

October 1, 2025

• Satisfiability modulo theories (SMT) is the problem of determining whether a formula is satisfiable with respect to a given theory.

- Satisfiability modulo theories (SMT) is the problem of determining whether a formula is satisfiable with respect to a given theory.
- There are plenty of decidable theories used in SMT.

- Satisfiability modulo theories (SMT) is the problem of determining whether a formula is satisfiable with respect to a given theory.
- There are plenty of decidable theories used in SMT.
- But in practice, we often need to reason about multiple theories at once.

- Satisfiability modulo theories (SMT) is the problem of determining whether a formula is satisfiable with respect to a given theory.
- There are plenty of decidable theories used in SMT.
- But in practice, we often need to reason about multiple theories at once.
- Given decision procedures for theories \mathcal{T}_1 and \mathcal{T}_2 , when can we construct a decision procedure for $\mathcal{T}_1 \oplus \mathcal{T}_2$?

Example

 Suppose we want to check the satisfiability of a statement like the following:

$$f(\mathbf{u}[i]) \leq \mathbf{u}[0] \wedge f(\mathbf{u}[0]) = i + 1,$$

where i is an integer, \mathbf{u} is an array, and f is an uninterpreted function.

Example

 Suppose we want to check the satisfiability of a statement like the following:

$$f(\mathbf{u}[i]) \leq \mathbf{u}[0] \wedge f(\mathbf{u}[0]) = i + 1,$$

where i is an integer, \mathbf{u} is an array, and f is an uninterpreted function.

• We're combining three theories here: arrays, linear arithmetic, and uninterpreted functions.

Nelson-Oppen method

Nelson and Oppen initiated the study of theory combination by showing that theory combination is possible when \mathcal{T}_1 and \mathcal{T}_2 are stably infinite.

Definition

A theory \mathcal{T} is *stably infinite* if for every \mathcal{T} -satisfiable quantifier-free formula φ , there is a \mathcal{T} -interpretation \mathcal{A} satisfying φ with $|\mathcal{A}|$ infinite.

Nelson-Oppen method

Nelson and Oppen initiated the study of theory combination by showing that theory combination is possible when \mathcal{T}_1 and \mathcal{T}_2 are stably infinite.

Definition

A theory \mathcal{T} is *stably infinite* if for every \mathcal{T} -satisfiable quantifier-free formula φ , there is a \mathcal{T} -interpretation \mathcal{A} satisfying φ with $|\mathcal{A}|$ infinite.

Theorem (Nelson & Oppen 1979, Oppen 1980)

Let \mathcal{T}_1 and \mathcal{T}_2 be decidable theories over disjoint signatures. If \mathcal{T}_1 and \mathcal{T}_2 are stably infinite, then $\mathcal{T}_1 \oplus \mathcal{T}_2$ is decidable.

The theory combination zoo

Several other properties relevant to theory combination:

stably infinite y witnessab decidable mooth mooth

Combining combination properties

In 2023, Toledo, Zohar, and Barrett began an effort to systematically classify the possible Boolean combinations of theory combination properties:

						npty		1-empty	
SI	SM	FW	SW			Many-sorted		Many-sorted	N^{1}
	Т	Т	T	T	T>n	$(T_{\geq n})^2$	$(T_{\geq n})_s$	$((\mathcal{T}_{\geq n})^2)_s$	1
				F	The	rem 5	(T≥n) _∨	$((T_{\geq n})^2)_{\vee}$	2
			F	T	Theorem 3	$T_{2,3}$	T_f	$(T_f)_s$	3
				F		Theorem S	T_f^s	$(T_{2,3})_{\vee}$	4
		F	T	T	Theorem 2				5
				F					6
			F	T	T_{∞}	$(T_{\infty})^2$	$(T_{\infty})_s$	$((T_\infty)^2)_s$	7
T				F	The	orem 3	$(T_{\infty})_{\vee}$	$((T_\infty)^2)_{\vee}$	8
	F	Т	T	T	Theorem 7	Unicorn	Theorem 7	Unicom	9
				F		Theorem 5			10
			F	T	T_{even}^{∞}	$(T_{even}^{\infty})^2$	$(T_{coen}^{\infty})_s$	$((T_{even}^{\infty})^2)_s$	11
				F	The	orem 5	$(T_{even}^{\infty})_{\vee}$	$((T_{coes}^{\infty})^2)_{\vee}$	12
		F	T	T	Theorem 2				
				F					14
			F	T	$T_{n,\infty}$	$(T_{n,\infty})^2$	$(T_{n,\infty})_s$	$((T_{n,\infty})^2)_s$	15
				F	The	rem 🖔	$(T_{n,\infty})_{\vee}$	$((T_{n,\infty})^2)_{\vee}$	16
	Т	Т	T F	T	Theorem []				17
				F					18
				T					19
		F	-	T	Theorems [] and [2]				20
			T	F					22
F			_	T					23
			F	F	Theorem 1				24
				T	T<1	$(T_{\leq 1})^2$	$(T_{\leq 1})_s$	$((T_{\leq 1})^2)_s$	25
	F	Т	T	F	$T_{\leq n}$	$(T \le 1)^2$ $(T \le n)^2$	$(T_{\leq n})_s$	$((\mathcal{T}_{\leq n})^2)_s$	26
			F	T	7≤n Theorem 8	T_1^{odd}	(1≤n)s	$(T_1^{odd})_a$	27
				F	T _{m,n}	$(T_{m,n})^2$	T_{odd}^{\neq} $(T_{m,n})_s$	$((T_{m,n})^2)_s$	28
		F	T	T	/m,n			((/m,n)*)x	25
				F	Theorem 2				30
			F	T		T_1^{∞}	$T_{1,\infty}^{\neq}$	$(T_1^{\infty})_4$	31
					Theorem 6				

Combining combination properties

In 2023, Toledo, Zohar, and Barrett began an effort to systematically classify the possible Boolean combinations of theory combination properties:

					Empty		Non-empty		
SI	SM	FW	SW			Many-sorted		Many-sorted	N^{g}
	Т	Т	T	T	T>n	$(T_{\geq n})^2$	$(T_{\geq n})_s$	$((T_{\geq n})^2)_s$	1
				F	Theorem 5		(T≥n) _V	$((T_{\geq n})^2)_{\vee}$	2
			F	T	Theorem 3	$T_{2,3}$	T_f	$(T_f)_s$	3
				F		Theorem 5	T_f^s	$(T_{2,3})_{\vee}$	4
		F	T	T	Theorem 2				5
				F					6
			F	T	T_{∞}	$(T_{\infty})^2$	$(T_{\infty})_s$	$((T_\infty)^2)_s$	7
T				F	The	orem 3	$(T_{\infty})_{\vee}$	$((T_{\infty})^2)_{\vee}$	8
		Т	T	T	, Theorem 7	Unicorn	Theorem 7	Unicorn	9
				F					10
			F	T	T_{even}^{∞}	$(T_{even}^{\infty})^2$	$(T_{cocn}^{\infty})_s$	$((T_{even}^{\infty})^2)_s$	11
	F			F	The	orem 5	$(T_{even}^{\infty})_{\vee}$	$((T_{coes}^{\infty})^2)_{\vee}$	12
		F	T F	T	Theorem 2				13
				F					14
				T	$T_{n,\infty}$	$(T_{n,\infty})^2$	$(T_{n,\infty})_s$	$((T_{n,\infty})^2)_s$	15
				F	Theorem $(T_{n,\infty})_{\vee}$ $((T_{n,\infty})^2)_{\vee}$			16	
F	Т	Т	T F	F	Theorem []				
				T					18
				F					20
		F	T F	T					20
				F	Theorems [] and [2]			22	
				T					23
				F	Theorem 1				24
	F	Т		T	$T_{\leq 1}$	$(T_{<1})^2$	(T<1).	$((T_{<1})^2)_s$	25
			T	F	$T_{\leq n}$	$(T_{co})^2$	$(\mathcal{T}_{\leq n})_s$	((Tc-)2).	26
			F	T	Theorem 8	$(T_{\leq n})^2$ T_1^{odd}	Todd	$((\mathcal{T}_{\leq n})^2)_s$ $(\mathcal{T}_1^{\text{odd}})_s$	27
				F	Tm n	$(T_{m,n})^2$	$(\mathcal{T}_{m,n})_s$	$((T_{m,n})^2)_s$	28
		F	\vdash	T	710,8			(Crimina) /s	29
			T	F	Theorem 2			30	
			F	T		\mathcal{T}_1^{∞}	$T_{1,\infty}^{\neq}$	$(T_1^{\infty})_s$	31
				E	Theorem 6	T ₀ ⁽⁰⁾	71,00 72,00	$(T_2^{\infty})_s$	32

This paper is a continuation of that effort.

Combining combination properties (cont.)

- Combining Combination Properties: An Analysis of Stable Infiniteness, Convexity, and Politeness
 G. V. Toledo, Y. Zohar, and C. Barrett. CADE 2023.
- ② Combining Finite Combination Properties: Finite Models and Busy Beavers
 - G. V. Toledo, Y. Zohar, and C. Barrett. FroCoS 2023.
- The nonexistence of unicorns and many-sorted Löwenheim–Skolem theorems
 - B. Przybocki, G. V. Toledo, Y. Zohar, and C. Barrett. FM 2024.
- Combining Combination Properties: Minimal Models
 G. V. Toledo and Y. Zohar. LPAR 2024.
- Shininess, strong politeness, and unicorns
 B. Przybocki, G. V. Toledo, Y. Zohar. FroCoS 2025.

 We complete the classification of which Boolean combinations of eight properties relevant to theory combination are possible.

- We complete the classification of which Boolean combinations of eight properties relevant to theory combination are possible.
- We prove a new decidability result for so-called *shiny* theories.

- We complete the classification of which Boolean combinations of eight properties relevant to theory combination are possible.
- We prove a new decidability result for so-called *shiny* theories.
- We refine a result due to Casal and Rasga regarding the equivalence of shiny and strongly polite theories.

- We complete the classification of which Boolean combinations of eight properties relevant to theory combination are possible.
- We prove a new decidability result for so-called *shiny* theories.
- We refine a result due to Casal and Rasga regarding the equivalence of shiny and strongly polite theories.
- We study conditions under which strong politeness is equivalent to additive politeness.

- We complete the classification of which Boolean combinations of eight properties relevant to theory combination are possible.
- We prove a new decidability result for so-called *shiny* theories.
- We refine a result due to Casal and Rasga regarding the equivalence of shiny and strongly polite theories.
- We study conditions under which strong politeness is equivalent to additive politeness.
- Finally, we resolve an open problem about the relation between finite smoothness and smoothness.

Shininess

Tinelli and Zarba proved a combination theorem that only imposes a requirement on one of the component theories.

Theorem (Tinelli & Zarba 2003)

Let \mathcal{T}_1 and \mathcal{T}_2 be decidable theories over disjoint signatures. If \mathcal{T}_1 is shiny, then $\mathcal{T}_1 \oplus \mathcal{T}_2$ is decidable.

Definition

• The spectrum of a formula φ in a theory \mathcal{T} , denoted $Spec_{\mathcal{T}}(\varphi)$, is the set of $\kappa \in \mathbb{N} \cup \{\aleph_0\}$ for which there is a \mathcal{T} -interpretation \mathcal{A} satisfying φ with $|\mathcal{A}| = \kappa$.

Definition

- The spectrum of a formula φ in a theory \mathcal{T} , denoted $Spec_{\mathcal{T}}(\varphi)$, is the set of $\kappa \in \mathbb{N} \cup \{\aleph_0\}$ for which there is a \mathcal{T} -interpretation \mathcal{A} satisfying φ with $|\mathcal{A}| = \kappa$.
- A theory $\mathcal T$ is *shiny* if each $Spec_{\mathcal T}(\varphi)$ is of the form

$$\{\kappa: n \leq \kappa \leq \aleph_0\},\$$

where $n \in \mathbb{N}$ and can be computed given φ .

Definition

- The spectrum of a formula φ in a theory \mathcal{T} , denoted $Spec_{\mathcal{T}}(\varphi)$, is the set of $\kappa \in \mathbb{N} \cup \{\aleph_0\}$ for which there is a \mathcal{T} -interpretation \mathcal{A} satisfying φ with $|\mathcal{A}| = \kappa$.
- A theory $\mathcal T$ is *shiny* if each $Spec_{\mathcal T}(\varphi)$ is of the form

$$\{\kappa: n \leq \kappa \leq \aleph_0\},\$$

where $n \in \mathbb{N}$ and can be computed given φ .

• A theory \mathcal{T} is *smooth* if whenever $n \in Spec_{\mathcal{T}}(\varphi)$ and $m \geq n$, then $m \in Spec_{\mathcal{T}}(\varphi)$.

Definition

- The spectrum of a formula φ in a theory \mathcal{T} , denoted $Spec_{\mathcal{T}}(\varphi)$, is the set of $\kappa \in \mathbb{N} \cup \{\aleph_0\}$ for which there is a \mathcal{T} -interpretation \mathcal{A} satisfying φ with $|\mathcal{A}| = \kappa$.
- A theory $\mathcal T$ is *shiny* if each $Spec_{\mathcal T}(\varphi)$ is of the form

$$\{\kappa: n \leq \kappa \leq \aleph_0\},\$$

where $n \in \mathbb{N}$ and can be computed given φ .

- A theory \mathcal{T} is *smooth* if whenever $n \in Spec_{\mathcal{T}}(\varphi)$ and $m \geq n$, then $m \in Spec_{\mathcal{T}}(\varphi)$.
- A theory \mathcal{T} has the *finite model property* if $Spec_{\mathcal{T}}(\varphi) \cap \mathbb{N} \neq \emptyset$ whenever φ is \mathcal{T} -satisfiable.

Definition

- The spectrum of a formula φ in a theory \mathcal{T} , denoted $Spec_{\mathcal{T}}(\varphi)$, is the set of $\kappa \in \mathbb{N} \cup \{\aleph_0\}$ for which there is a \mathcal{T} -interpretation \mathcal{A} satisfying φ with $|\mathcal{A}| = \kappa$.
- A theory $\mathcal T$ is *shiny* if each $Spec_{\mathcal T}(\varphi)$ is of the form

$$\{\kappa: n \leq \kappa \leq \aleph_0\},\$$

where $n \in \mathbb{N}$ and can be computed given φ .

- A theory \mathcal{T} is *smooth* if whenever $n \in Spec_{\mathcal{T}}(\varphi)$ and $m \geq n$, then $m \in Spec_{\mathcal{T}}(\varphi)$.
- A theory \mathcal{T} has the *finite model property* if $Spec_{\mathcal{T}}(\varphi) \cap \mathbb{N} \neq \emptyset$ whenever φ is \mathcal{T} -satisfiable.
- The minimal model function of \mathcal{T} is the function minmod such that $\operatorname{minmod}(\varphi) = \min \operatorname{Spec}_{\mathcal{T}}(\varphi)$ whenever φ is \mathcal{T} -satisfiable.

Strong politeness

Ranise, Ringeissen, and Zarba proved a similar combination theorem:

Theorem (Ranise, Ringeissen, & Zarba 2005, Jovanović & Barrett 2010)

Let \mathcal{T}_1 and \mathcal{T}_2 be decidable theories over disjoint signatures. If \mathcal{T}_1 is strongly polite, then $\mathcal{T}_1 \oplus \mathcal{T}_2$ is decidable.

Definition of politeness

Definition

• Roughly, a theory $\mathcal T$ is *finitely witnessable* if given a $\mathcal T$ -satisfiable quantifier-free formula φ , we can compute an equivalent formula $wit(\varphi)$ satisfied by a $\mathcal T$ -interpretation in which every element is named by some variable in $wit(\varphi)$.

Definition of politeness

Definition

- Roughly, a theory $\mathcal T$ is *finitely witnessable* if given a $\mathcal T$ -satisfiable quantifier-free formula φ , we can compute an equivalent formula $wit(\varphi)$ satisfied by a $\mathcal T$ -interpretation in which every element is named by some variable in $wit(\varphi)$.
- Roughly, a theory is *strongly finitely witnessable* if it satisfies a similar property where we additionally add (dis)equality constraints on the variables in $wit(\varphi)$.

Definition of politeness

Definition

- Roughly, a theory $\mathcal T$ is *finitely witnessable* if given a $\mathcal T$ -satisfiable quantifier-free formula φ , we can compute an equivalent formula $wit(\varphi)$ satisfied by a $\mathcal T$ -interpretation in which every element is named by some variable in $wit(\varphi)$.
- Roughly, a theory is *strongly finitely witnessable* if it satisfies a similar property where we additionally add (dis)equality constraints on the variables in $wit(\varphi)$.
- A theory is (strongly) polite if it is smooth and (strongly) finitely witnessable.

The Casal–Rasga equivalence

Theorem (Casal & Rasga 2018)

A decidable theory is shiny if and only if it is strongly polite.

The Casal–Rasga equivalence

Theorem (Casal & Rasga 2018)

A decidable theory is shiny if and only if it is strongly polite.

What about for undecidable theories?

The Casal-Rasga equivalence

Theorem (Casal & Rasga 2018)

A decidable theory is shiny if and only if it is strongly polite.

What about for undecidable theories?

Theorem (P., Toledo, & Zohar (2025))

Every shiny theory is decidable (and therefore strongly polite).

The Casal-Rasga equivalence

Theorem (Casal & Rasga 2018)

A decidable theory is shiny if and only if it is strongly polite.

What about for undecidable theories?

Theorem (P., Toledo, & Zohar (2025))

Every shiny theory is decidable (and therefore strongly polite).

Theorem (P., Toledo, & Zohar (2025))

Some strongly polite theories are undecidable (and therefore not shiny).

The Casal–Rasga equivalence (cont.)

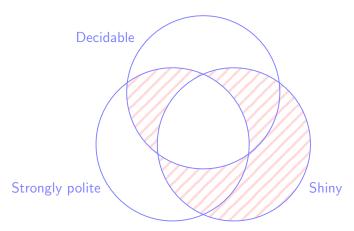


Figure: A Venn diagram summarizing the possible combinations of shininess, strong politeness, and decidability

Shiny theories are decidable

Theorem (P., Toledo, & Zohar (2025))

Every shiny theory is decidable (and therefore strongly polite).

Shiny theories are decidable

Theorem (P., Toledo, & Zohar (2025))

Every shiny theory is decidable (and therefore strongly polite).

• Is every theory with a computable minimal model function decidable?

Shiny theories are decidable

Theorem (P., Toledo, & Zohar (2025))

Every shiny theory is decidable (and therefore strongly polite).

- Is every theory with a computable minimal model function decidable?
- No. Peano arithmetic has a computable minimal model function (let $\operatorname{minmod}(\varphi) = \aleph_0$ for all φ), but it is not decidable.

Shiny theories are decidable

Theorem (P., Toledo, & Zohar (2025))

Every shiny theory is decidable (and therefore strongly polite).

- Is every theory with a computable minimal model function decidable?
- No. Peano arithmetic has a computable minimal model function (let $\operatorname{minmod}(\varphi) = \aleph_0$ for all φ), but it is not decidable.

Proof sketch.

Suppose \mathcal{T} is shiny. Given φ , let $k = \operatorname{minmod}_{\mathcal{T}}(\varphi)$. By the finite model property, $k < \aleph_0$. Let x_1, \ldots, x_{k+1} be fresh variables. Then, φ is \mathcal{T} -satisfiable if and only if

$$\operatorname{minmod}_{\mathcal{T}}\left(\varphi \vee \bigwedge_{1 \leq i < j \leq k+1} x_i \neq x_j\right) = k.$$

Theorem (P., Toledo, & Zohar (2025))

Some strongly polite theories are undecidable (and therefore not shiny).

Theorem (P., Toledo, & Zohar (2025))

Some strongly polite theories are undecidable (and therefore not shiny).

• Fix an undecidable set $S \subset \{n \in \mathbb{N} : n \geq 3\}$.

Theorem (P., Toledo, & Zohar (2025))

Some strongly polite theories are undecidable (and therefore not shiny).

- Fix an undecidable set $S \subset \{n \in \mathbb{N} : n \geq 3\}$.
- Let Σ be the signature with only a single unary function symbol f.

Theorem (P., Toledo, & Zohar (2025))

Some strongly polite theories are undecidable (and therefore not shiny).

- Fix an undecidable set $S \subset \{n \in \mathbb{N} : n \geq 3\}$.
- Let Σ be the signature with only a single unary function symbol f.
- Let

$$cycle_n(x) := f^n(x) = x \land \bigwedge_{1 \le m < n} f^m(x) \ne x.$$

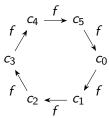
Theorem (P., Toledo, & Zohar (2025))

Some strongly polite theories are undecidable (and therefore not shiny).

- Fix an undecidable set $S \subset \{n \in \mathbb{N} : n \geq 3\}$.
- Let Σ be the signature with only a single unary function symbol f.
- Let

$$cycle_n(x) := f^n(x) = x \land \bigwedge_{1 \le m < n} f^m(x) \ne x.$$

• For example, $cycle_6(c_0)$ holds in this model:



Theorem (P., Toledo, & Zohar (2025))

Some strongly polite theories are undecidable (and therefore not shiny).

 \bullet Let ${\mathcal T}$ be the $\Sigma\text{-theory}$ axiomatized by

$$Ax(\mathcal{T}) = \{ (\exists x. \, cycle_n(x)) \rightarrow \forall x. \, f^2(x) \neq x \mid n \in S \}.$$

Theorem (P., Toledo, & Zohar (2025))

Some strongly polite theories are undecidable (and therefore not shiny).

ullet Let ${\mathcal T}$ be the Σ -theory axiomatized by

$$Ax(\mathcal{T}) = \{ (\exists x. \ cycle_n(x)) \rightarrow \forall x. \ f^2(x) \neq x \mid n \in S \}.$$

ullet ${\cal T}$ is strongly polite.

Theorem (P., Toledo, & Zohar (2025))

Some strongly polite theories are undecidable (and therefore not shiny).

ullet Let ${\mathcal T}$ be the Σ -theory axiomatized by

$$Ax(\mathcal{T}) = \{ (\exists x. \ cycle_n(x)) \rightarrow \forall x. \ f^2(x) \neq x \mid n \in S \}.$$

- ullet ${\cal T}$ is strongly polite.
- ullet But ${\mathcal T}$ is undecidable, since

$$cycle_n(x) \wedge f^2(y) = y$$

is \mathcal{T} -satisfiable if and only if $n \notin S$.

Unicorns?

In earlier work, Boolean combinations of properties whose possibility had not been determined were called *unicorn theories*:

Empty		Non-empty		
OS	MS	OS	MS	$N^{\underline{o}}$
$\mathcal{T}_{\geq n}$	$(\mathcal{T}_{\geq n})^2$	$(\mathcal{T}_{\geq n})_s$	$((\mathcal{T}_{\geq n})^2)_s$	1
Theorem 5		Unicorns 2.0		2
[24]		$(\mathcal{T}_{\geq n})_ee$	$((\mathcal{T}_{\geq n})^2)_ee$	3
		Unicorns 2.0		4
[25]		Unicorns 3.0		5
		\mathcal{T}_f	$(\mathcal{T}_f)^2$	6
[25]	$\mathcal{T}_{2,3}$	[25]	$(\mathcal{T}_{2,3})_s$	7
	Theorem 5		$\mathcal{T}_{ ext{XVII}}$	8
[24]		Unicorns 3.0		9
		\mathcal{T}_f^s	$(\mathcal{T}_f^s)^2$	10
		[25]	$(\mathcal{T}_{2,3})_ee$	11
			$\mathcal{T}_{ ext{XVIII}}$	12

Unicorns?

In earlier work, Boolean combinations of properties whose possibility had not been determined were called *unicorn theories*:

Empty		Non-empty		
OS	MS	OS	MS	$N^{\underline{o}}$
$\mathcal{T}_{\geq n}$	$(\mathcal{T}_{\geq n})^2$	$(\mathcal{T}_{\geq n})_s$	$((\mathcal{T}_{\geq n})^2)_s$	1
Theorem 5		Unicorns 2.0		2
[24]		$(\mathcal{T}_{\geq n})_ee$	$((\mathcal{T}_{\geq n})^2)_ee$	3
		Unicorns 2.0		4
[25]		Unicorns 3.0		5
		\mathcal{T}_f	$(\mathcal{T}_f)^2$	6
[25]	$\mathcal{T}_{2,3}$	[25]	$(\mathcal{T}_{2,3})_s$	7
	Theorem 5		$\mathcal{T}_{ ext{XVII}}$	8
[24]		Unicorns 3.0		9
		\mathcal{T}_f^s	$(\mathcal{T}_f^s)^2$	10
		[25]	$(\mathcal{T}_{2,3})_ee$	11
			$\mathcal{T}_{ ext{XVIII}}$	12

As a consequence of the previous two results, we can answer all such questions about unicorn theories.

Recap

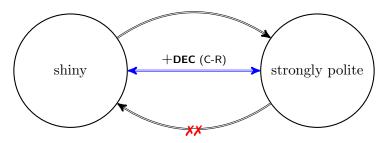


Figure: Summary of the results so far

Additive politeness

 Politeness is easier to show than strong politeness, but the latter is more useful.

Additive politeness

- Politeness is easier to show than strong politeness, but the latter is more useful.
- Additive politeness is a bridge from politeness to strong politeness:

Theorem (Sheng et al. (2020))

If a theory is additively polite, then it is strongly polite.

Additive politeness

- Politeness is easier to show than strong politeness, but the latter is more useful.
- Additive politeness is a bridge from politeness to strong politeness:

Theorem (Sheng et al. (2020))

If a theory is additively polite, then it is strongly polite.

• What about the converse?

Additive politeness (cont.)

Theorem (P., Toledo, & Zohar (2025))

Some strongly polite theories are not additively polite.

Additive politeness (cont.)

Theorem (P., Toledo, & Zohar (2025))

Some strongly polite theories are not additively polite.

A signature is *algebraic* if it contains no predicate symbols.

Additive politeness (cont.)

Theorem (P., Toledo, & Zohar (2025))

Some strongly polite theories are not additively polite.

A signature is *algebraic* if it contains no predicate symbols.

Theorem (P., Toledo, & Zohar (2025))

Every strongly polite theory over an algebraic signature is additively polite.

Summary

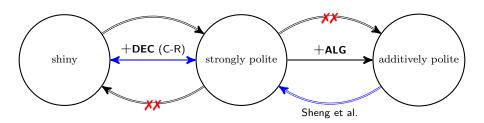


Figure: Summary of the results so far

 We refined the Casal–Rasga equivalence between shiny and strongly polite theories, showing that

$$shiny \Longrightarrow strongly polite$$

holds without assuming decidability.

 We refined the Casal–Rasga equivalence between shiny and strongly polite theories, showing that

$$shiny \Longrightarrow strongly polite$$

holds without assuming decidability.

 While doing so, we resolved all the remaining open problems from our previous papers regarding so-called unicorn theories.

 We refined the Casal–Rasga equivalence between shiny and strongly polite theories, showing that

$$shiny \Longrightarrow strongly polite$$

holds without assuming decidability.

- While doing so, we resolved all the remaining open problems from our previous papers regarding so-called unicorn theories.
- This completes the classification of which Boolean combinations of eight properties relevant to theory combination are possible.

 We refined the Casal–Rasga equivalence between shiny and strongly polite theories, showing that

$$shiny \Longrightarrow strongly polite$$

holds without assuming decidability.

- While doing so, we resolved all the remaining open problems from our previous papers regarding so-called unicorn theories.
- This completes the classification of which Boolean combinations of eight properties relevant to theory combination are possible.
- Several of the theories that we constructed for this project have been useful for a separate research program we have about impossibility results in theory combination.