
Polite Combination
in Parametric Array Theories

Rodrigo Raya and Christophe Ringeissen

EPFL and Inria & Loria Nancy

October 1, 2025

Work supported by the SNSF Postdoctoral Mobility Programme

1 / 20

Motivation

▶ First-order reasoning techniques have difficulty in dealing
with array-like verification conditions.

▶ Instead, abstract away certain quantification patterns.

▶ Example:
b = write(a, i , e) ↔ (b[i] = e ∧ ∀j ̸= i .a[j] = b[j]).

▶ Develop specific theorem proving procedures to deal with
these abstractions.

▶ Here: focus in parametric array theories.

2 / 20

Arrays as Functions
▶ Power structures

▶ ⟨M I ,R⟩
▶ R(a1, . . . , an) ↔ ∀i .R(a1(i), . . . , an(i))

▶ Does not have quantifier elimination.
▶ Generalised power structures

▶ Enrich the language.
▶ S = {i ∈ I | φ(a1(i), . . . , an(i))}
▶ Boolean algebra on sets, cardinalities of sets, automata

(through the logic automata connection), aggregation.
▶ . . .

▶ How do we automatically reason about these?
▶ Today: how to combine data structure decision

procedures with decision procedures for different element
and index theories.

3 / 20

Combination Methods
▶ What happens if we restrict to specific domains?

e ∈ B := B[e] = 1
B1 ⊆ B2 := map→(B1,B2)

B1 ∪ B2 := map∨(B1,B2)

B1 ∩ B2 := map∧(B1,B2)

B1 \ B2 := map·∧(¬·)(B1,B2)

∅ := K (0)
{e} := write(K (0), e, 1)

▶ Can we derive a decision procedure for sets from a
decision procedure for combinatory array logic?

▶ Not with Nelson-Oppen, which requires stably infinite
element theory.

4 / 20

▶ Idea: use polite theory combination.

▶ Caveat: disjointness condition does not allow element
theories with symbols that occur in map terms.

▶ Still there are interesting questions:
1. Politeness of sets with cardinalities open in Bansal et

alii’s work.
2. How far can we push the method in the disjoint case?

▶ Alternative: rewrite into polite theory (not in paper).

5 / 20

Politeness

If T1 and T2 are two signature-disjoint theories such that T1 is
strongly polite w.r.t the set of sorts shared by T1 and T2,
then the existence of a Ti -satisfiability procedure for i = 1, 2
implies the existence of a T1 ∪ T2-satisfiability procedure.

Sufficient condition:

Smoothness: possibility to increase arbitrarily the cardinality of
the model with respect to given sorts.

Finite witnessability: existence of a model over the variables of
an equivalent formula w(ϕ).

Additivity: w preserves models and variables when the input is
already a witness plus some “arrangement”.

6 / 20

Sets with Cardinalities (I)
Sets with a bridging function returning their cardinality.

TZ’s syntax:

F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F
A ::= i1 = i2 | i ∈ B |B1 = B2 |B1 ⊆ B2 |T1 = T2 |T1 < T2

B ::= x | ∅ |B1 ∪ B2 |B1 ∩ B2 |B1 \ B2

T ::= k |K |T1 + T2 |K · T | |B|
K ::= . . . | − 2 | − 1 | 0 | 1 | 2 | . . .

Example:
Post-condition after insertion of an element in a data structure

a′ = a ∪ E ∧ |E | = 1∧
(E ⊆ a → |a′| = |a|)∧
(E ∩ a = ∅ → |a′| = |a|+ 1)

7 / 20

Sets with Cardinalities: Smoothness

Smoothness: easy to prove

Proposition: let A be a TZ -interpretation satisfying a
conjunction Γ of flat ΣZ -literals. Then there exists a
TZ -interpretation B satisfying Γ such that |Bindex| = κ, for
each κ > |Aindex|.

Proof: define B as A. Add new indices to the complement of
the union of sets, which is unconstrained.

8 / 20

Sets with Cardinalities: Finite Witnessability

witnessZ (Γ):
▶ introduction of Venn regions
▶ set up a linear integer programming problem, to get the

cardinalities of Venn regions minimizing the cardinality of
the whole set

▶ inhabit Venn regions according the computed cardinalities
(yields a set of possible configurations)

▶ output conjunction of input and disjunction over all
configurations

9 / 20

Sets with Cardinalities: Additivity

f (ϕ):
1. if ϕ not arranged then output

∨
arr∈χ f (arr ∧ ϕ)

(χ is set of arrangements of index variables in ϕ)
2. if ϕ = ϕ′ ∧ φ is TZ -satisfiable, where

▶ ϕ′ is a witness of some arranged input and
▶ φ a conjunction of literals between index variables in ϕ′,

then f (ϕ) := ϕ;
3. if ϕ = ϕ′ ∧ φ′ is TZ -satisfiable, where

▶ φ′ a conjunction of literals between index variables i , j
such that i or j does not occur in ϕ′,

then f (ϕ) := f (ϕ′) ∧ φ′;
4. otherwise, f (ϕ) := witnessZ (ϕ).

10 / 20

Sets with Cardinalities: Politeness

Theorem: TZ is additively finitely witnessable with respect to
the sort index.

Theorem: TZ is strongly polite with respect to the sort index.

11 / 20

Combinatory Array Logic (II)
Theory of arrays + map function to define arrays by extension

TCAL’s syntax:

F ::= F1 ∧ F2 | F1 ∨ F2 | ¬F | mapR(A) |A[i] = e

A ::= a | write(A, i ,E) |K (e) | mapf (A)

E ::= A[i] | e

Example:
a[0] = s0 ∧mapvalid(a) → a[l] = sf

Satisfying assignments describe systems with a given start/end
state and consisting only of valid components.

With theory combination we can support element theory
specifications constraining the valid states.

12 / 20

Combinatory Array Logic: Smoothness

Show that given a model A one can find a model B with
larger cardinality for both index and element sorts.

Index’s cardinality: |Belem| = |Aelem|, κ = |Bindex| > |Aindex|.

Let i0 ∈ Aindex, define B over the array-variables as

aB(i) =

{
aA(i), if i ∈ Aindex

aA(i0), otherwise

Increasing element sort’s cardinality is trivial.

13 / 20

Combinatory Array Logic: Finite Witnessability

witnessCAL(Γ):
1. Replace each literal of the form ¬R(a1, . . . , an) in Γ with

a literal of the form ¬R(a1[i], . . . , an[i]), where i is a fresh
index-variable.

2. For each array index i and each array variable a used in
the formula, add formulas a[i] = ei where ei is a fresh
element variable.

3. Substitute other occurrences of the terms a[i] by the
element variable ei introduced in Step 2 (to simplify the
proof of finite witnessability).

14 / 20

Combinatory Array Logic: Additivity and Politeness

Additivity is simple: we do not include any index or element
theory specifications in the signature of the theory.

Additivity condition → witness function behaves as
idempotence for equivalence and variable preservation.

Theorem:
TCAL is strongly polite with respect to {elem, index}.

15 / 20

Theories with Set Interpretations (III)

Set membership constrained by formula over array elements.

TF’s syntax:

F ::= A |F1 ∧ F2 |F1 ∨ F2 | ¬F
A ::= a[i] = e | i1 = i2 | i ∈ B |B1 = B2 |B1 ⊆ B2 |T1 = T2 |T1 < T2

B ::= x | ∅ |B1 ∪ B2 |B1 ∩ B2 |B1 \ B2 | {i | φ(a[i], e)}
T ::= k |K |T1 + T2 |K · T | |B|
K ::= . . . | − 2 | − 1 | 0 | 1 | 2 | . . .

Example: invariants in consensus protocols, e.g.

∀i . ¬decided(i) ∨ ∃v . |{ i | x(i) = v }| > 2n
3 ∧

∀i . decided(i) → decision(i) = v

16 / 20

Theories with Set Interpretations: Smoothness

Technical condition for smoothness w.r.t the index sort:

Let φ1, . . . , φn be the formulas under set interpretations in the
TF -formula φ, cl(φ1, . . . , φn) is the sentence ∃v .

∧n
i=1 ¬φi(v).

Assume that cl(φ1, . . . , φn) is TF -satisfiable.

The theory TF (φ1, . . . , φn) is the set of ΣF -sentences φ such
that TF ∪ {cl(φ1, . . . , φn)} |= φ.

Corollary:
▶ TF is smooth w.r.t. elem.
▶ TF (φ1, . . . , φn) is smooth w.r.t. {elem, index}.

17 / 20

Theories with Set Interpretations: Finite
Witnessability

Proposition:
TF is finitely witnessable w.r.t. {elem, index}.

▶ introduction of Venn regions
▶ associate a formula to each Venn region
▶ set up a linear integer programming problem removing

those regions that are empty because their
corresponding formulas are unsatisfiable

▶ use the formula associated to each Venn region to build
an appropriate witness

18 / 20

Theories with Set Interpretations: Additivity and
Politeness

Additivity as in sets with cardinalities.

Theorem:
▶ TF is strongly polite with respect to elem.
▶ TF (φ1, . . . , φn) is strongly polite w.r.t. {elem, index}.

19 / 20

Contributions

▶ We showed how to modularly derive decision procedures
for expressive parametric array theories using the polite
theory combination method.

▶ We extended the method used in the original paper by
Ranise, Ringeissen and Zarba incorporating recent
techniques such as the additivity of witnesses.

▶ Our results enable the use of combination algorithms for
addressing rich classes of constraints over arrays including
properties that hold componentwise and which are
formulated over arbitrary datatypes.

20 / 20

