

1 | 39

Base-extension Semantics for Intuitionistic Modal Logics

YII Buzoku David Pym

Department of Computer Science University College London Institute of Philosophy University of London

y.buzoku@ucl.ac.uk

david.pym@sas.ac.uk

September 27, 2025

YII Buzoku David Pym (UCL & UoL) B-eS for IMLs September 27, 2025

Goals for this talk

Give an overview of Base-extension Semantics for Intuitionistic Propositional Logic.

Introduce Intuitionistic Modal Logics à la Simpson.

Discuss how to adapt the semantics for IPL to IMLs.

What is the idea of Base-extension Semantics?

Use bases of "atomic rules" to justify inference of atomic formulae (atoms).

Define a satisfaction relation of formulae in bases to give meaning via an inductive definition of validity of formulae.

Showing soundness of the semantics amounts to showing that every inference figure of $\rm NJ$ corresponds to a proof in terms of the definitions of the formulae.

Showing completeness of the semantics amounts to building a special base that simulates proofs in ${\rm NJ}.$

The system NJ

What might a general inference figure look like?

$$\frac{\Gamma_1}{\gamma_1} \qquad \qquad \frac{\Gamma_n}{\gamma_n} \\
\frac{\gamma_1}{\phi} \qquad \cdots \qquad \frac{\gamma_n}{\gamma_n}$$

Derivability in NJ

If we suppose a formula $\phi \in \Gamma$, then it is clear that $\Gamma \vdash_{\mathrm{NJ}} \phi$. Consider the general inference figure

$$\begin{array}{ccc}
[\Gamma_1] & & [\Gamma_n] \\
\underline{\gamma_1} & \cdots & \underline{\gamma_n} \\
\hline
\phi
\end{array}$$

If Δ , $\Gamma_i \vdash_{NJ} \gamma_i$ for all i then $\Delta \vdash_{NJ} \phi$.

Atomic rules

$$\begin{array}{ccc}
[P_1] & & [P_n] \\
p_1 & \dots & p_n \\
\hline
q
\end{array}$$

Linearly we write this as:

$$(P_1 \Rightarrow p_1, \ldots, P_n \Rightarrow p_n) \Rightarrow q$$

Example of atomic rules

Example of atomic rules

Tableaux 2025 is happening in Reykjavik

Example of atomic rules

Freyja is a cat Freyja is female

Freyja is a læða

Freyja is a læða

Freyja is a cat

Freyja is a læða

Freyja is a læða

Freyja is female

Example of a hypothesis discharging rule

	[Var1 has value 0]	[Var1 has value 255]	
Var1 is a byte	ϕ		ϕ
	ϕ		

Atomic derivability in a base \mathscr{B}

A base \mathcal{B} is a set of atomic rules.

Atomic derivability in a base \mathscr{B}

A base \mathcal{B} is a set of atomic rules.

(Ref)
$$S \vdash_{\mathscr{B}} p \text{ if } p \in S$$

(App) If there is a rule $((P_1 \Rightarrow p_1, \dots, P_n \Rightarrow p_n) \Rightarrow q) \in \mathcal{B}$ such that $S, P_i \vdash_{\mathcal{B}} p_i$ then $S \vdash_{\mathcal{B}} q$.

Example derivations using atomic rules

Example

Let
$$\mathscr{B} = \{(\Rightarrow a), ((\Rightarrow a), (\Rightarrow b) \Rightarrow c)\}$$

$$\frac{\overline{b \vdash_{\mathscr{B}} b} \operatorname{Ref} \quad \overline{b \vdash_{\mathscr{B}} a} \Rightarrow a}{b \vdash_{\mathscr{B}} c} (\Rightarrow a), (\Rightarrow b) \Rightarrow c$$

Example

Let
$$\mathscr{B} = \{(\Rightarrow c), ((\Rightarrow a), (b \Rightarrow c) \Rightarrow d), ((\Rightarrow a), (\Rightarrow d) \Rightarrow e), ((a \Rightarrow e) \Rightarrow f)\}$$

$$\frac{\overline{a \vdash_{\mathscr{B}} a} \operatorname{Ref} \quad \overline{a \vdash_{\mathscr{B}} a} \quad \overline{A} \vdash_{\mathscr{B}} c}{a \vdash_{\mathscr{B}} d} \Rightarrow c \\ (\Rightarrow a), (b \Rightarrow c) \Rightarrow d$$

$$\frac{a \vdash_{\mathscr{B}} e}{\vdash_{\mathscr{B}} f} (a \Rightarrow e) \Rightarrow f$$

BeS for IPL: Summary

- (At) $\Vdash_{\mathscr{B}} p$ iff $\vdash_{\mathscr{B}} p$.
- (\wedge) $\Vdash_{\mathscr{B}} \phi \wedge \psi$ iff $\Vdash_{\mathscr{B}} \phi$ and $\Vdash_{\mathscr{B}} \psi$.
- $(\vee) \Vdash_{\mathscr{B}} \phi \vee \psi \text{ iff for all } \mathscr{C} \supseteq \mathscr{B}, \, p, \text{ if } \phi \Vdash_{\mathscr{C}} p \text{ and } \psi \Vdash_{\mathscr{C}} p \text{ then } \Vdash_{\mathscr{C}} p.$
- $(\supset) \Vdash_{\mathscr{B}} \phi \supset \psi \text{ iff } \phi \Vdash_{\mathscr{B}} \psi.$
- $(\bot) \Vdash_{\mathscr{B}} \bot \text{ iff } \Vdash_{\mathscr{B}} p \text{ for all } p.$
- $(\top) \Vdash_{\mathscr{B}} \top \text{ iff always.}$
- (Inf) $\Gamma \Vdash_{\mathscr{B}} \phi$ iff for all $\mathscr{C} \supseteq \mathscr{B}$ and $\gamma \in \Gamma$ if $\Vdash_{\mathscr{C}} \gamma$ then $\Vdash_{\mathscr{C}} \phi$.
- (Val) $\Gamma \Vdash \phi$ iff $\Gamma \Vdash_{\mathscr{B}} \phi$ for all \mathscr{B} .

Soundness and Completeness

Theorem (Soundness)

If $\Gamma \vdash_{\mathrm{NJ}} \phi$ *then* $\Gamma \Vdash \phi$

- $\Gamma \vdash_{\mathrm{NJ}} \phi$ means we have an NJ derivation of ϕ from Γ .
- If $\phi \in \Gamma$ then clearly $\Gamma \Vdash \phi$.
- We thus argue by the inductive definition of an ${\rm NJ}$ derivation.
- Assume by IH the hypothesis of each rule of ${\rm NJ}$ is valid. Show the conclusion holds.

Theorem (Completeness)

If
$$\Gamma \Vdash \phi$$
 then $\Gamma \vdash_{\mathrm{NJ}} \phi$

- To prove completeness we construct a special base $\ensuremath{\mathcal{N}}$ whose rules simulate NJ.
- To simulate, we mean assign a unique atom to each subformula of the sequent $(\Gamma:\phi)$.
- Since bases do not contain schemas, every rule must be simulated for every subformula in every position of every rule.

Completeness continued

We let $(\cdot)^{\flat}$ represent this assignment and $(\cdot)^{\sharp}$ be it's right inverse.

- $L \Vdash_{\mathscr{B}} p$ if and only if $L \vdash_{\mathscr{B}} p$.
- For any $\mathscr{B}\supseteq\mathscr{N}$, $\Vdash_{\mathscr{B}}\phi$ if and only if $\Vdash_{\mathscr{B}}\phi^{\flat}$.
- If $L \vdash_{\mathcal{N}} p$ then $L^{\natural} \vdash_{\mathrm{NJ}} p^{\natural}$.

Proof.

- (1) Start by noting that $\Gamma \Vdash \phi$ implies that $\Gamma \Vdash_{\mathscr{N}} \phi$.
- (2) By the second point above: $\Gamma^{\flat} \Vdash_{\mathscr{N}} \phi^{\flat}$.
- (3) By the first point above $\Gamma^{\flat} \vdash_{\mathscr{N}} \phi^{\flat}$.
- (4) Finally, we have by the third point above that $(\Gamma^{\flat})^{\natural} \vdash_{\mathrm{NJ}} (\phi^{\flat})^{\natural}$, that is, $\Gamma \vdash_{\mathrm{NJ}} \phi$.

Introduction to Intuitionistic Modal Logics

Modal formulae are defined by the grammar $\phi, \psi ::= p \in \mathbb{A} \mid \phi \land \psi \mid \phi \lor \psi \mid \phi \supset \psi \mid \Box \phi \mid \Diamond \phi \mid \bot \mid \top$.

We consider a new class of object called labelled formulae. We write these as ϕ^x . The label is interpreted as the "locale" the formula holds at. The set of all such "locales" is written as \mathbb{W} .

We allow for a binary relation on labels called a relational assumption. If the labels x and y are related, we write this as xRy.

An atomic formula is now either a labelled propositional atom or a relational assumption.

A modal sequent is an object $(\Gamma : \phi^x)$ where Γ is a set of labelled formulae and relational assumptions and ϕ^x is a labelled formula.

An extended sequent is either a modal sequent or an ordered pair (\emptyset, xRy) .

Frame conditions

Axiom Schema	Label	Name	Relational property
$\Diamond \top$	γ_D	Seriality	$\forall x. \exists y. xRy$
$\Box \phi \supset \phi$, –	Reflexivity	
$\phi \supset \Box \Diamond \phi$	$\gamma_{\mathcal{B}}$	Symmetry	$\forall x. \forall y. xRy \Rightarrow yRx$
$\Box \phi \supset \Box \Box \phi$	γ_4	Transitivity	$\forall x. \forall y. \forall z. xRy \& yRz \Rightarrow xRz$
$\Diamond \phi \supset \Box \Diamond \phi$	γ_5	Euclidean	$\forall x. \forall y. \forall z. xRy \& xRz \Rightarrow yRz$
$\Diamond \Box \phi \supset \Box \Diamond \phi$	γ_2	Directed	$\forall x. \forall y. \forall z. xRy \& yRz \Rightarrow \exists w. yRw \& zRw$

Frame conditions

Axiom Schema	Label	Name	Relational property
♦ ⊤	, –	•	$\forall x. \exists y. xRy$
$\Box \phi \supset \phi$	γ_T	Reflexivity	$\forall x. x R x$
$\phi \supset \Box \Diamond \phi$, –		$\forall x. \forall y. xRy \Rightarrow yRx$
$\Box \phi \supset \Box \Box \phi$,	•	$\forall x. \forall y. \forall z. xRy \& yRz \Rightarrow xRz$
$\Diamond \phi \supset \Box \Diamond \phi$	γ_5	Euclidean	$\forall x. \forall y. \forall z. xRy \& xRz \Rightarrow yRz$
$\Diamond \Box \phi \supset \Box \Diamond \phi$	γ_2	Directed	$\forall x. \forall y. \forall z. xRy \& yRz \Rightarrow \exists w. yRw \& zRw$

In what follows we fix an arbitrary set of frame conditions

$$\gamma \subseteq \{\gamma_{D}, \gamma_{T}, \gamma_{B}, \gamma_{4}, \gamma_{5}, \gamma_{2}\}$$

Doing so amounts to fixing a particular modal logic, as we shall see.

The system $N_{\Box\Diamond}(\gamma)$

$$\frac{1}{\neg x} \neg T_{1} \qquad \frac{1}{\phi^{y}} \bot_{E}$$

$$\frac{[\phi^{x}]}{(\phi \supset \psi)^{x}} \supset_{I} \qquad \frac{(\phi \supset \psi)^{x} \quad \phi^{x}}{\psi^{x}} \supset_{E}$$

$$\frac{\phi^{x} \quad \psi^{x}}{(\phi \land \psi)^{x}} \land_{I} \qquad \frac{(\phi \land \psi)^{x}}{\phi^{x}} \land_{IE} \qquad \frac{(\phi \land \psi)^{x}}{\psi^{x}} \land_{2E}$$

$$\frac{\phi^{x}}{(\phi \lor \psi)^{x}} \lor_{II} \qquad \frac{\psi^{x}}{(\phi \lor \psi)^{x}} \lor_{2I} \qquad \frac{(\phi \lor \psi)^{x} \quad \chi^{y} \quad \chi^{y}}{\chi^{y}} \lor_{E}$$

The system $N_{\Box \diamondsuit}(\gamma)$ continued

$$\frac{[xRy]}{(\Box \phi)^x} \ \Box_1^*$$

$$\frac{\phi^y \quad xRy}{(\diamondsuit \phi)^x} \diamondsuit$$

* The label *y* is different to *x* and the labels of any open assumptions.

$$\frac{\left(\Box\phi\right)^{x} \quad xHy}{\phi^{y}} \quad \Box_{\mathsf{E}}$$

$$\left[\phi^{y}\right] \left[xRy\right]$$

$$\frac{\phi^{y}}{\phi^{y}} \quad \psi^{z} \quad \diamond_{\mathsf{E}}$$

** The label y is different to x and z and the labels of any open assumptions.

The system $N_{\Box\Diamond}(\gamma)$ continued

$$[xRy]$$

$$\frac{\phi^{z}}{\phi^{z}} (R_{D})^{*}$$

$$\frac{[yRx]}{\phi^{z}} (R_{B})$$

$$\frac{xRy}{\phi^{z}} \frac{\phi^{z}}{\phi^{z}} (R_{B})$$

$$\frac{[yRz]}{\phi^{w}} (R_{5})$$

* The label *y* is different to *x* and the labels of any open assumptions.

$$\begin{array}{c} [xRx] \\ \frac{\phi^y}{\phi^y} \left(R_T\right) \\ \\ \frac{xRy \quad yRz \quad \phi^w}{\phi^w} \left(R_4\right) \\ \\ \frac{[yRw] \left[zRw\right]}{xRy \quad xRz \quad \phi^v} \left(R_2\right)^{**} \end{array}$$

* * The label w is different to v, x, y, z and the labels of any open assumptions.

What might a general inference figure look like now?

$$\begin{array}{ccc}
[\Theta_1] & & [\Theta_n] \\
\underline{\theta_1} & \dots & \underline{\theta_n} \\
\hline
\phi & & & \\
\end{array}$$

What might a general inference figure look like now?

$$\begin{array}{ccc}
[\Theta_1] & & [\Theta_n] \\
\underline{\theta_1} & \dots & \underline{\theta_n}
\end{array}$$

Note that Θ_i are now allowed to contain relational assumptions as well. If any Θ_i is empty, then the corresponding θ_i is allowed to be a relational assumption. If the rule has no premises, then ϕ is allowed to be a relational assumption.

Derivability in $N_{\Box\Diamond}(\gamma)$

Need a graph $\mathcal{G}=(X,\mathfrak{R})$ where $X\subset\mathbb{W}$ and \mathfrak{R} is a set of relational assumptions on X.

 γ 's relational properties are a set of conditions imposed on elements of \Re .

If we suppose a formula $\phi^x \in \Theta$, then $\Theta \vdash_{\mathcal{G}}^{\gamma} \phi^x$.

Similarly, if we assume $xRy \in \Theta$, then $\Theta \vdash_{\mathcal{G}}^{\gamma} xRy$.

Consider the general inference figure of $N_{\Box \diamondsuit}(\gamma)$

$$\begin{array}{ccc}
[\Theta_1] & & [\Theta_n] \\
\underline{\theta_1} & \dots & \underline{\theta_n} \\
\hline
\phi & & & \\
\end{array}$$

If $\Delta, \Theta_i \vdash_{\mathcal{G}}^{\gamma} \theta_i$ for all i then $\Delta \vdash_{\mathcal{G}}^{\gamma} \phi$.

Derivability in $N_{\Box \diamondsuit}(\gamma)$ continued

We consider a special graph, the trivial graph τ defined as $\tau = (x, \emptyset)$.

A labelled formula ϕ^x is called a theorem of $N_{\Box \diamondsuit}(\gamma)$ if $\vdash_{\tau}^{\gamma} \phi^x$ holds. We write this as $\vdash^{\gamma} \phi^x$.

In what follows, we restrict our attention to derivations over the trivial graph only as that suffices for our result. However, what follows readily generalises to the case of non-trivial graphs too.

Atomic rules, Reloaded

As before, atomic rules take the following shape:

$$\begin{array}{ccc}
[P_1] & & [P_n] \\
p_1 & \dots & p_n \\
\hline
q
\end{array}$$

Linearly we write this as:

$$(P_1 \Rightarrow p_1, \dots, P_n \Rightarrow p_n) \Rightarrow q$$

Atomic derivability in base \mathscr{B}

(Ref)
$$S, p \vdash_{\mathscr{B}}^{\gamma} p$$

(App) If $((P_1 \Rightarrow p_1, \dots, P_n \Rightarrow p_n) \Rightarrow q) \in \mathscr{B}$ and $S, P_i \vdash_{\mathscr{B}}^{\gamma} p_i$ for each i , then $S \vdash_{\mathscr{B}}^{\gamma} q$

Atomic derivability in base \mathscr{B}

- (Ref) $S, p \vdash_{\mathscr{B}}^{\gamma} p$
- (App) If $((P_1 \Rightarrow p_1, \dots, P_n \Rightarrow p_n) \Rightarrow q) \in \mathscr{B}$ and $S, P_i \vdash_{\mathscr{B}}^{\gamma} p_i$ for each i, then $S \vdash_{\mathscr{B}}^{\gamma} q$
 - (D) If $\gamma_D \in \gamma$ and there exists a y such that $S, xRy \vdash_{\mathscr{B}}^{\gamma} p^z$, then $S \vdash_{\mathscr{B}}^{\gamma} p^z$
 - (T) If $\gamma_T \in \gamma$ and S, $xRx \vdash_{\mathscr{B}}^{\gamma} p^y$, then $S \vdash_{\mathscr{B}}^{\gamma} p^y$
 - $\text{(B)} \quad \text{If } \gamma_B \in \gamma, \, \mathcal{S} \vdash_{\mathscr{B}}^{\gamma} x Ry \text{ and } \mathcal{S}, y Rx \vdash_{\mathscr{B}}^{\gamma} \rho^z, \text{ then } \mathcal{S} \vdash_{\mathscr{B}}^{\gamma} \rho^z$
 - $(4) \quad \text{If } \gamma_4 \in \gamma, \, \mathcal{S} \vdash_{\mathscr{B}}^{\gamma} x R y, \, \mathcal{S} \vdash_{\mathscr{B}}^{\gamma} y R z, \, \text{and} \, \, \mathcal{S}, x R z \vdash_{\mathscr{B}}^{\gamma} \rho^w, \, \text{then} \, \, \mathcal{S} \vdash_{\mathscr{B}}^{\gamma} \rho^w$
 - (5) If $\gamma_5 \in \gamma$, $S \vdash_{\mathscr{B}}^{\gamma} xRy$, $S \vdash_{\mathscr{B}}^{\gamma} xRz$, and S, $yRz \vdash_{\mathscr{B}}^{\gamma} p^w$, then $S \vdash_{\mathscr{B}}^{\gamma} p^w$
 - (2) If $\gamma_2 \in \gamma$, $S \vdash_{\mathscr{B}}^{\gamma} xRy$, $S \vdash_{\mathscr{B}}^{\gamma} xRz$, and there exists a w such that S, yRw, $zRw \vdash_{\mathscr{B}}^{\gamma} p^v$, then $S \vdash_{\mathscr{B}}^{\gamma} p^v$.

BeS for IMLs: Non-modal cases

- (At) $\Vdash_{\mathscr{B}}^{\gamma} p^{x}$ iff $\vdash_{\mathscr{B}}^{\gamma} p^{x}$.
- (Rel) $\Vdash^{\gamma}_{\mathscr{B}} xRy$ iff $\vdash^{\gamma}_{\mathscr{B}} xRy$.
 - $(\wedge) \ \Vdash_{\mathscr{B}}^{\gamma} (\phi \wedge \psi)^{x} \ \text{iff} \ \Vdash_{\mathscr{B}}^{\gamma} \phi^{x} \ \text{and} \ \Vdash_{\mathscr{B}}^{\gamma} \psi^{x}.$
 - $(\vee) \ \ \mathop{\Vdash}^{\gamma}_{\mathscr{B}} (\phi \vee \psi)^x \ \text{iff for all } \mathscr{C} \supseteq \mathscr{B}, \ p^z, \ \text{if} \ \phi^x \ \mathop{\Vdash}^{\gamma}_{\mathscr{C}} \ p^z \ \text{and} \ \psi^x \ \mathop{\Vdash}^{\gamma}_{\mathscr{C}} \ p^z \ \text{then} \\ \mathop{\Vdash}^{\gamma}_{\mathscr{C}} \ p^z.$
 - $(\supset) \Vdash_{\mathscr{B}}^{\gamma} (\phi \supset \psi)^{x} \text{ iff } \phi^{x} \Vdash_{\mathscr{B}}^{\gamma} \psi^{x}.$
 - $(\bot) \Vdash_{\mathscr{B}}^{\gamma} \bot^{x} \text{ iff } \Vdash_{\mathscr{B}}^{\gamma} p^{z} \text{ for all } p^{z}.$
 - $(\top) \Vdash_{\mathscr{B}}^{\gamma} \top^{x}$ iff always.
- (Val) $\Gamma \Vdash^{\gamma} \phi$ iff $\Gamma \Vdash^{\gamma}_{\mathscr{B}} \phi$ for all \mathscr{B} .

BeS for IMLs: Modal cases

- $(\Box) \ \Vdash_{\mathscr{B}}^{\gamma} (\Box \phi)^{x} \ \text{iff} \ xRy \Vdash_{\mathscr{B}}^{\gamma} \phi^{y}, \text{ for all } y.$
- $(\diamondsuit) \ \Vdash_{\mathscr{B}}^{\gamma} (\diamondsuit \phi)^x \text{ iff for all } \mathscr{C} \supseteq \mathscr{B}, \, p^z, \, \text{if } xRy, \phi^y \Vdash_{\mathscr{C}}^{\gamma} p^z \text{ then } \Vdash_{\mathscr{C}}^{\gamma} p^z.$

Soundness and Completeness

Theorem (Soundness)

If $\Gamma \vdash^{\gamma} \phi$ then $\Gamma \Vdash^{\gamma} \phi$

- The proof follows exactly as before.
- Now must show explicitly also each modal rule is also sound if the corresponding frame condition is in γ .
- Care must be taken with showing the soundness of the rules \Box_1 , \Diamond_E , R_D and R_2 .

Why must care be taken?

Consider the rule \square_I . It says that

$$\frac{[xRy]}{(\Box \phi)^x} \ \Box_{\mathsf{I}}$$

with the caveat y is different to x and the labels of any open assumption in a derivation. We have to make sure this side condition is adhered to.

Thus, in this case of the soundness proof, we suppose that Γ , $xRy \Vdash^{\gamma} \phi^y$ where y is a label different to x and the labels of any element of Γ , and try to show $\Gamma \Vdash^{\gamma} (\Box \phi)^x$.

Theorem (Completeness)

If $\Gamma \Vdash^{\gamma} \phi$ then $\Gamma \vdash^{\gamma} \phi$

- We again argue as before, constructing a simulation base ${\mathscr N}$.
- Similar care must be taken when constructing $\mathcal N$ to ensure that the instances of the rules $\square_1, \diamondsuit_E, R_D$ and R_2 in $\mathcal N$ satisfy the correct conditions.
- Furthermore, we have to make sure that if an atomic derivation holds due to a modal case of the derivability relation, that this correctly maps to an application of the corresponding rule in $N_{\Box \diamondsuit}(\gamma)$.

Thank you!

Thank you for listening!

References I

- G.M. Bierman, *On intuitionistic linear logic*, Tech. Report UCAM-CL-TR-346, University of Cambridge, Computer Laboratory, August 1994.
- YII Buzoku, A proof-theoretic semantics for intuitionistic linear logic, 2024.
- M. Dummett, *The logical basis of metaphysics*, The William James lectures delivered at Harvard University, Harvard University Press, 1991.
- Timo Eckhardt and David Pym, Base-extension semantics for s5 modal logic, 2024.
- Timo Eckhardt and David J. Pym, Base-extension semantics for modal logic, 2024.

References II

- Gerhard Gentzen, *Untersuchungen Über das logische schließen. i.*, Mathematische Zeitschrift **35** (1935), 176–210.
 - _____, *Investigations into logical deduction*, American Philosophical Quarterly **1** (1964), no. 4, 288–306.
- Alexander V. Gheorghiu, Tao Gu, and David J. Pym, *Proof-theoretic semantics for intuitionistic multiplicative linear logic*, Automated Reasoning with Analytic Tableaux and Related Methods (Cham) (Revantha Ramanayake and Josef Urban, eds.), Springer Nature Switzerland, 2023, pp. 367–385.
- Tao Gu, Alexander V. Gheorghiu, and David J. Pym, *Proof-theoretic semantics for the logic of bunched implications*, 2023.

References III

- J.-Y. Girard, *Linear logic: its syntax and semantics*, London Mathematical Society Lecture Note Series, p. 1–42, Cambridge University Press, 1995.
- Alexander V. Gheorghiu and David J. Pym, From proof-theoretic validity to base-extension semantics for intuitionistic propositional logic, 2022.
- Sara Negri, A normalizing system of natural deduction for intuitionistic linear logic, Archive for Mathematical Logic **41** (2002), no. 8, 789–810.
- D. Prawitz, *Natural deduction: A proof-theoretical study*, Dover Books on Mathematics, Dover Publications, 2006.

References IV

- Tor Sandqvist, *An inferentialist interpretation of classical logic*, Ph.D. thesis, Uppsala universitet, 2005.
- _____, Classical logic without bivalence, Analysis **69** (2009), no. 2, 211–218.
- Base-extension semantics for intuitionistic sentential logic, Log. J. IGPL **23** (2015), 719–731.
- Tor Sandqvist, *Hypothesis-discharging rules in atomic bases*, pp. 313–328, Springer International Publishing, Cham, 2015.
- Peter Schroeder-Heister, *Uniform proof-theoretic semantics for logical constants*, Journal of Symbolic Logic **56** (1991), 1142.

References V

Peter Schroeder-Heister, *Proof-Theoretic Semantics*, The Stanford Encyclopedia of Philosophy (Edward N. Zalta and Uri Nodelman, eds.), Metaphysics Research Lab, Stanford University, Fall 2023 ed., 2023.