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Goals for this talk

Give an overview of Base-extension Semantics for Intuitionistic
Propositional Logic.

Introduce Intuitionistic Modal Logics a la Simpson.
Discuss how to adapt the semantics for IPL to IMLs.
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What is the idea of Base-extension Semantics?

Use bases of “atomic rules” to justify inference of atomic formulae
(atoms).

Define a satisfaction relation of formulae in bases to give meaning
via an inductive definition of validity of formulae.

Showing soundness of the semantics amounts to showing that
every inference figure of NJ corresponds to a proof in terms of the
definitions of the formulae.

Showing completeness of the semantics amounts to building a
special base that simulates proofs in NJ.
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The system NJ
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What might a general inference figure look like?

[F4] [Fn]
Y . Yn
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Derivability in NJ

If we suppose a formula ¢ € I', then it is clear that I -y ¢.
Consider the general inference figure

[M4] [T]

Y1 e Yn

¢
If A, F,- |—NJ Yi for all i then A |—NJ ¢
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Atomic rules

[P1] [Pr]
P e Pn

Linearly we write this as:

(P1:>p17--'7Pn:>pn):>q
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Example of atomic rules
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Example of atomic rules

Tableaux 2025 is happening in Reykjavik
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Example of atomic rules

Freyja is a cat Freyja is female
Freyja is a laeda

Freyja is a leeda
Freyja is a cat

Freyja is a laeda
Freyja is female
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Example of a hypothesis discharging rule

[Var1 has value 0] [Var1 has value 255]
Vari is a byte 0] e [0
¢
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Atomic derivability in a base %4

A base % is a set of atomic rules.
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Atomic derivability in a base %4

A base % is a set of atomic rules.

(Ref) Sty pifpe S
(App) Ifthereisarule ((Py = p1,...,Pn= pn) = q) € A such that
S, Pi b» Pi then S Fz q.
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Example derivations using atomic rules

Let Z = {(= a).((= a),(= b) = ¢)}

b b e By a

btz c

= a
(=a),(=b)=c
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Let Z={(=c),((= a),(b=rc)=d),((= a),(=d)=e),((a=

e)=f)}

Ref ————=¢
Ref 228 abrec 4 b=e)=d
aty a atz d
(=a),(=d)=e
atyp e
(a=e)=f
bp f
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BeS for IPL: Summary
(AY) Ik piff bz p.
(A) kg ¢ AN iff Ik ¢ and Iy 1.
(V) kg ¢ vV opiffforall € O A, p, if ¢ ke pand ¢ Iks p then ks p.
(O) Ikz ¢ D iff ¢ Iz 9.
(L) kg L iff Iz p forall p.
(T) Ik T iff always.
(Inf) T Iy ¢ iffforall € D # and v € T if Iky v then Iky ¢.

(Val) T IFoiff T Iy ¢ for all 2.
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Soundness and Completeness

Theorem (Soundness)

IfT Fxg ¢ thenT IF¢

- I N3 ¢ means we have an NJ derivation of ¢ from I'.
If € T then clearly I IF¢.
We thus argue by the inductive definition of an NJ derivation.

Assume by IH the hypothesis of each rule of NJ is valid. Show the
conclusion holds.
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Theorem (Completeness)

IfT 1 thenT by &

- To prove completeness we construct a special base .4 whose rules
simulate NJ.

- To simulate, we mean assign a unique atom to each subformula of
the sequent (I" : ¢).

- Since bases do not contain schemas, every rule must be simulated
for every subformula in every position of every rule.
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Completeness continued
We let (-)’ represent this assignment and (-)* be it’s right inverse.

- Llkg pifandonly if L4 p.
- Forany Z D .V, Iky ¢ if and only if Ik ¢°.
- If Ly pthen L% Fyy PP

1
2
8
4

Start by noting that I' I ¢ implies that " I ¢.
By the second point above: I I, ¢’.
By the first point above I - ¢’.

Finally, we have by the third point above that (”)? Fxy (¢°)%, that s,
Ny O

Py
—_ — ~— ~—

O
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Introduction to Intuitionistic Modal Logics

Modal formulae are defined by the grammar
g i=pEA|PAY]OVY[PDY[DP|CH| LT,

We consider a new class of object called labelled formulae. We
write these as ¢*. The label is interpreted as the “locale” the
formula holds at. The set of all such “locales” is written as W.

We allow for a binary relation on labels called a relational
assumption. If the labels x and y are related, we write this as xRy.
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An atomic formula is now either a labelled propositional atom or a
relational assumption.

A modal sequent is an object (I : ¢*) where I is a set of labelled
formulae and relational assumptions and ¢* is a labelled formula.

An extended sequent is either a modal sequent or an ordered pair
(0, xRy).
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Frame conditions

Axiom Schema Label Name Relational property

OT vp Seriality vx.3dy. xRy

O¢ D ¢ ~vr Reflexivity Vx.xRx

¢ DO vg Symmetry Vx.Vy.xRy = yRx

O¢ D 00O¢ ~v4 Transitivity Vx.Vy.Vz.xRy & yRz = xRz

Cp D OdP ~vs Euclidean Vx.Vy.Vz. xRy & xRz = yRz

Qoo D O ~vo Directed Vx.Vy.Vz. xRy & yRz = Jw. yRw & zRw

YIl Buzoku David Pym (UCL & Uol) B-eS for IMLs September 27, 2025 20|39



Frame conditions

Axiom Schema Label Name Relational property

OT vp Seriality vx.3dy. xRy

O¢ D ¢ ~vr Reflexivity Vx.xRx

¢ DO vg Symmetry Vx.Vy.xRy = yRx

O¢ D 00O¢ ~v4 Transitivity Vx.Vy.Vz.xRy & yRz = xRz

Cp D OdP ~vs Euclidean Vx.Vy.Vz. xRy & xRz = yRz

Qoo D O ~vo Directed Vx.Vy.Vz. xRy & yRz = Jw. yRw & zRw

In what follows we fix an arbitrary set of frame conditions

v € {0 VT, VBs V4, V5, V2 }

Doing so amounts to fixing a particular modal logic, as we shall see.
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The system N (7)

T T ;7; 1e
[ii] (¢ DY) o
CEXD i BT
X X 1
Gvar ! Gy v e il
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The system N () continued

[xRy]
4 0¢)* xR

¢ o (B9) ; Y o

(0¢) ¢
[¢*] [xRy]
y Sd)¥ z
® x:‘?y<>I (©9) _ Y o
(©o) (G
* The label y is different to x and x* The label y is different to x and z
the labels of any open assumptions. and the labels of any open assumptions.
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The system N () continued

[xRy] [xRx]
¢* ¢’
¢z (RD) ngy (RT)
yRx] [xRz]
xRy  ¢* xRy yRz "
qﬁz (RB) ¢W (H4)
[yRe] LyRw] [2Fw]
xRy xRz ¢ xRy xRz 10) o
o (Rs) o (Rz)
* The label y is different to x and xx The label w is differentto v, x, y, z
the labels of any open assumptions. and the labels of any open assumptions.
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What might a general inference figure look like now?

[91] [en]
04 . On
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What might a general inference figure look like now?

[61] [@n]
04 . On

Note that ©; are now allowed to contain relational assumptions as well.
If any ©; is empty, then the corresponding 0; is allowed to be a relational
assumption. If the rule has no premises, then ¢ is allowed to be a
relational assumption.
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Derivability in Noo(7)

Need a graph G = (X, %) where X C W and R is a set of relational
assumptions on X.

~’s relational properties are a set of conditions imposed on
elements of ‘A.

If we suppose a formula ¢* € ©, then © -/ ¢*.
Similarly, if we assume xRy € ©, then © -} xRy.
Consider the general inference figure of N ()
[©1] [©n]
01 . 0n

¢
If A, ©; l—g g; for all i then A }—(} b.
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Derivability in Ny () continued

We consider a special graph, the trivial graph 7 defined as

T = (x,0).

A labelled formula ¢* is called a theorem of N () if F7 ¢* holds.
We write this as -7 ¢*.

In what follows, we restrict our attention to derivations over the
trivial graph only as that suffices for our result. However, what
follows readily generalises to the case of non-trivial graphs too.
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Atomic rules, Reloaded

As before, atomic rules take the following shape:

[P1] [Pr]
P s Pn

Linearly we write this as:

(P1=pi,....,Phn=pn) = q
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Atomic derivability in base %

(Ref) S,pt, p

(App) If ((Py = p1,...,Pn=pn) = q) € Band S, P; -, p; for each i,
then S+, q
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Atomic derivability in base %

(Ref) S,pt, p

(App) If ((Py = p1,...,Pn=pn) = q) € Band S, P; -, p; for each i,
then S+, q

(D) Ifyp € v and there exists a y such that S, xRy I, p?, then S+, p*
(T) Ifyr €yand S,xRx I, p¥, then S+, p”

(B) Ifyge€~, S, xRy and S, yRx ), p?, then S+, p*

(4) If~vs €, S, xRy, St, yRz, and S, xRz I, p*, then S+, p”
(5) lfys €, SE, xRy, S, xRz, and S,yRz -, p”, then S+, p*
(2) Ifv2 €, Sty xRy, St xRz, and there exists a w such that

S, yRw, zRw -, p¥, then S+, p".
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BeS for IMLs: Non-modal cases

(At) I, p*ift ), p*.

(Rel) I}, xRy iff I, xRy.
(A) 1, (¢ A )X iff I, ¢* and I, o~

(V Hﬂ (¢ VvV )*iffforall € O B, p?, if * Hﬂ%,) p? and y* ”_?g p? then
H—;Lp

) 12, (¢ D )X iff ¢ I, .
(L) 5, LXiff IE, p” for all p?.
(T) I, T~ iff always.
(Inf) T I, iff forall ¢ D 2 and € T if I}, v then I, ¢,
(Val) T I g iff T I, ¢ for all 2.

t)
)
)
(V)
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BeS for IMLs: Modal cases

(0) I, (Og)* iff xRy I, ¢¥, for all y.

(©) I, (Co)Xiff for all € D B, p?, it xRy, ¢¥ I p? then . p?.
% ¢ ¢
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Soundness and Completeness

Theorem (Soundness)

IFT 7 ¢ then T I ¢

- The proof follows exactly as before.

- Now must show explicitly also each modal rule is also sound if the
corresponding frame condition is in ~.

- Care must be taken with showing the soundness of the rules O,
<>E: RD and Ro.
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Why must care be taken?

Consider the rule 0. It says that
[xRy]
Y
(O¢)*

with the caveat y is different to x and the labels of any open assumption
in a derivation. We have to make sure this side condition is adhered to.

O

Thus, in this case of the soundness proof, we suppose that I', xRy I ¢/
where y is a label different to x and the labels of any element of I', and
try to show ' IF (0¢)*.
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Theorem (Completeness)

IFT 1 ¢ thenT 7 ¢

- We again argue as before, constructing a simulation base ..

- Similar care must be taken when constructing .#” to ensure that the
instances of the rules 00, ¢g, Rp and Ry in .4 satisfy the correct
conditions.

- Furthermore, we have to make sure that if an atomic derivation
holds due to a modal case of the derivability relation, that this
correctly maps to an application of the corresponding rule in
Ngo (7).
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Thank you!

Thank you for listening!
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