Intuitionistic μ -calculus with the Lewis arrow

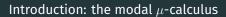
TABLEAUX 2025, Reykjavik University

Bahareh Afshari & <u>Lide Grotenhuis</u>

27 Sep 2025

University of Gothenburg & University of Amsterdam

Introduction



Fixpoint logics contain formulas ψ that satisfy

$$\psi \equiv \varphi(\psi).$$

for some formula φ .

Fixpoint logics contain formulas ψ that satisfy

$$\psi \equiv \varphi(\psi).$$

for some formula φ .

Example. "A until B" in temporal logic: A U $B \equiv B \lor (A \land X(A \cup B))$.

Fixpoint logics contain formulas ψ that satisfy

$$\psi \equiv \varphi(\psi).$$

for some formula φ .

Example. "A until B" in temporal logic: A U $B \equiv B \lor (A \land X(A \cup B))$.

The modal μ -calculus extends basic modal logic by explicit fixpoint operators μ and ν :

- $\blacktriangleright \mu X. \varphi(X)$ denotes the least fixpoint of $\varphi(X)$,
- $\triangleright \nu X.\varphi(X)$ denotes the greatest fixpoint of $\varphi(X)$.

Fixpoint logics contain formulas ψ that satisfy

$$\psi \equiv \varphi(\psi).$$

for some formula φ .

Example. "A until B" in temporal logic: A U $B \equiv B \lor (A \land X(A \cup B))$.

The modal μ -calculus extends basic modal logic by explicit fixpoint operators μ and ν :

- $\blacktriangleright \mu X. \varphi(X)$ denotes the least fixpoint of $\varphi(X)$,
- $\triangleright \nu X.\varphi(X)$ denotes the greatest fixpoint of $\varphi(X)$.

The resulting logic is very expressive yet well-behaved: decidable, small model property, finitary axiomatization, uniform interpolation...

Fixpoint logics contain formulas ψ that satisfy

$$\psi \equiv \varphi(\psi).$$

for some formula φ .

Example. "A until B" in temporal logic: A U $B \equiv B \lor (A \land X(A \cup B))$.

The modal μ -calculus extends basic modal logic by explicit fixpoint operators μ and ν :

- $\blacktriangleright \mu X. \varphi(X)$ denotes the least fixpoint of $\varphi(X)$,
- $\triangleright \nu X.\varphi(X)$ denotes the greatest fixpoint of $\varphi(X)$.

The resulting logic is very expressive yet well-behaved: decidable, small model property, finitary axiomatization, uniform interpolation...

Non-wellfounded and cyclic proof systems provide natural syntactic characterisations of the modal μ -calculus and its fragments.

Modal fixpoint logics over an intuitionistic propositional base are gaining attention:

➤ Intuitionistic linear-time temporal logic (Balbiani, Boudou, Diégues & Fernández-Duque, 2019, 2022);

- ➤ Intuitionistic linear-time temporal logic (Balbiani, Boudou, Diégues & Fernández-Duque, 2019, 2022);
- ➤ Intuitionistic common-knowledge logic (Jäger & Marti, 2016);

- ➤ Intuitionistic linear-time temporal logic (Balbiani, Boudou, Diégues & Fernández-Duque, 2019, 2022);
- ➤ Intuitionistic common-knowledge logic (Jäger & Marti, 2016);
- ➤ Intuitionistic Gödel-Löb logic (Das, van der Giessen, Marin, 2023).

- ➤ Intuitionistic linear-time temporal logic (Balbiani, Boudou, Diégues & Fernández-Duque, 2019, 2022);
- ➤ Intuitionistic common-knowledge logic (Jäger & Marti, 2016);
- ➤ Intuitionistic Gödel-Löb logic (Das, van der Giessen, Marin, 2023).

Modal fixpoint logics over an intuitionistic propositional base are gaining attention:

- ➤ Intuitionistic linear-time temporal logic (Balbiani, Boudou, Diégues & Fernández-Duque, 2019, 2022);
- ➤ Intuitionistic common-knowledge logic (Jäger & Marti, 2016);
- ➤ Intuitionistic Gödel-Löb logic (Das, van der Giessen, Marin, 2023).

Our aim. Develop a general framework and proof-theoretic techniques for studying intuitionistic modal fixpoint logics.

Modal fixpoint logics over an intuitionistic propositional base are gaining attention:

- ➤ Intuitionistic linear-time temporal logic (Balbiani, Boudou, Diégues & Fernández-Duque, 2019, 2022);
- ➤ Intuitionistic common-knowledge logic (Jäger & Marti, 2016);
- ➤ Intuitionistic Gödel-Löb logic (Das, van der Giessen, Marin, 2023).

Our aim. Develop a general framework and proof-theoretic techniques for studying intuitionistic modal fixpoint logics.

In earlier work, we (Afshari, G., Leigh & Zenger) provided proof systems for:

- 1. intuitionistic linear-time temporal logic (2023);
- 2. intuitionistic modal logic with the master modality (2024).

Modal fixpoint logics over an intuitionistic propositional base are gaining attention:

- ➤ Intuitionistic linear-time temporal logic (Balbiani, Boudou, Diégues & Fernández-Duque, 2019, 2022);
- ➤ Intuitionistic common-knowledge logic (Jäger & Marti, 2016);
- ➤ Intuitionistic Gödel-Löb logic (Das, van der Giessen, Marin, 2023).

Our aim. Develop a general framework and proof-theoretic techniques for studying intuitionistic modal fixpoint logics.

In earlier work, we (Afshari, G., Leigh & Zenger) provided proof systems for:

- 1. intuitionistic linear-time temporal logic (2023);
- 2. intuitionistic modal logic with the master modality (2024).

Current work. We study an intuitionistic version of the modal μ -calculus with the Lewis arrow (a generalisation of the modal \square). We provide game semantics and a non-wellfounded analytic proof system.

Dissatisfied with material implication, Lewis (1914,1932) introduced several axiom systems (S1-S5) meant to formalize strict implication:

 $\varphi \rightarrow \psi$ " ψ can be inferred from φ ."

Dissatisfied with material implication, Lewis (1914,1932) introduced several axiom systems (S1-S5) meant to formalize strict implication:

$$\varphi \rightarrow \psi$$
 " ψ can be inferred from φ ."

For the modern modal logician:

$$\varphi \dashv \psi := \Box(\varphi \rightarrow \psi).$$

So
$$\Box \varphi \equiv \top \dashv \varphi$$
.

Dissatisfied with material implication, Lewis (1914,1932) introduced several axiom systems (S1-S5) meant to formalize strict implication:

$$\varphi \rightarrow \psi$$
 " ψ can be inferred from φ ."

For the modern modal logician:

$$\varphi \dashv \psi := \Box(\varphi \rightarrow \psi).$$

So
$$\Box \varphi \equiv \top \rightarrow \varphi$$
.

In an intuitionistic setting, ¬3 is not interdefinable with □, as was observed in the study of intuitionistic provability logic (lemhof 2003, Litak & Visser 2017).

Contents

The logic iL_{μ}

Game semantics for iL_{μ}

Guardedness

A non-wellfounded proof system for iL_μ

Conclusion

The logic iL_μ

Syntax

Syntax

Fix some set Prop of propositions/variables. Formulas of iL_{μ} are given by the grammar:

$$\varphi, \psi ::= \bot \mid \top \mid P \mid \varphi \wedge \psi \mid \varphi \vee \psi \mid \varphi \rightarrow \psi \mid \varphi \dashv \psi \mid \mu X. \varphi \mid \nu X. \varphi$$

with $P, X \in \text{Prop and } X \text{ (weakly) positive in } \varphi$. We define $\Box \varphi := \top \dashv \varphi$.

Note: μ and ν are not interdefinable in the intuitionistic setting.

Syntax

Fix some set Prop of propositions/variables. Formulas of iL_{μ} are given by the grammar:

$$\varphi, \psi ::= \bot \mid \top \mid \mathsf{P} \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \rightarrow \psi \mid \varphi \dashv \psi \mid \mu \mathsf{X}.\varphi \mid \nu \mathsf{X}.\varphi$$

with $P, X \in \text{Prop and } X \text{ (weakly) positive in } \varphi$. We define $\Box \varphi := \top \dashv \varphi$.

Note: μ and ν are not interdefinable in the intuitionistic setting.

We consider formulas φ that are clean: each bound variable X belongs to a unique subformula $\eta X.\psi_X$ of φ .

Fix some set Prop of propositions/variables. Formulas of iL_{μ} are given by the grammar:

$$\varphi, \psi ::= \bot \mid \top \mid \mathsf{P} \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \rightarrow \psi \mid \varphi \dashv \psi \mid \mu \mathsf{X}.\varphi \mid \nu \mathsf{X}.\varphi$$

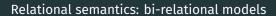
with $P, X \in \text{Prop and } X \text{ (weakly) positive in } \varphi$. We define $\Box \varphi := \top \dashv \varphi$.

Note: μ and ν are not interdefinable in the intuitionistic setting.

We consider formulas φ that are clean: each bound variable X belongs to a unique subformula $\eta X. \psi_X$ of φ .

Moreover, to keep track of negative/positive formula occurrences, we will consider polarised (sub)formulas φ^p with $p \in \{+, -\}$.

$$Sub((\varphi_1\star\varphi_2)^p):=\{\varphi_1^{-p},\varphi_2^p\}\cup Sub(\varphi_1^{-p})\cup Sub(\varphi_2^p) \qquad \text{if } \star\in\{\rightarrow, \dashv\}.$$



Relational semantics: bi-relational models

Formulas are evaluated in bi-relational Kripke models $M = (W, \leq, R, V)$, where

- 1. \leq is a partial order (the intuitionistic relation),
- 2. $R \subseteq W^2$ (the modal relation),
- 3. if $w \le vRu$ then wRu (triangle confluence).

Relational semantics: bi-relational models

Formulas are evaluated in bi-relational Kripke models $M = (W, \leq, R, V)$, where

- 1. \leq is a partial order (the intuitionistic relation),
- 2. $R \subseteq W^2$ (the modal relation),
- 3. if $w \le vRu$ then wRu (triangle confluence).

The truth relation for \rightarrow , \rightarrow and the fixpoint operators is defined by

$$\begin{array}{lll} \textit{M}, s \models \varphi \rightarrow \psi & \text{iff} & \text{for all } t \geq s \text{ if } \textit{M}, t \models \varphi, \text{ then } \textit{M}, t \models \psi, \\ \textit{M}, s \models \varphi \rightarrow \psi & \text{iff} & \text{for all } sRt \text{ if } \textit{M}, t \models \varphi, \text{ then } \textit{M}, t \models \psi, \\ \textit{M}, s \models \mu \textit{X}.\varphi & \text{iff} & s \in \textit{LFP}(\varphi_{\textit{X}}^{\textit{M}}), \\ \textit{M}, s \models \nu \textit{X}.\varphi & \text{iff} & s \in \textit{GFP}(\varphi_{\textit{X}}^{\textit{M}}), \end{array}$$

where $\varphi_X^M : \mathcal{P}(W) \to \mathcal{P}(W)$ is the function given by $S \mapsto [\![\varphi]\!]_{X \mapsto S}^M$.

A key property of intuitionistic Kripke semantics is monotonicity: if $v \ge w$ and $w \models \varphi$, then $v \models \varphi$.

A key property of intuitionistic Kripke semantics is monotonicity: if $v \ge w$ and $w \models \varphi$, then $v \models \varphi$.

To obtain monotonicity for iL_{μ} , models need to satisfy triangle confluence. For \Box -formulas, forth-down confluence suffices.

Figure 1: Triangle confluence (left) and Forth-down confluence (right)

A key property of intuitionistic Kripke semantics is monotonicity: if $v \ge w$ and $w \models \varphi$, then $v \models \varphi$.

To obtain monotonicity for iL_{μ} , models need to satisfy triangle confluence. For \Box -formulas, forth-down confluence suffices.

Figure 1: Triangle confluence (left) and Forth-down confluence (right)

Lemma

A \Box -formula φ is valid on all forth-down confluent models iff it is valid on all triangle confluent models.

A key property of intuitionistic Kripke semantics is monotonicity: if $v \ge w$ and $w \models \varphi$, then $v \models \varphi$.

To obtain monotonicity for iL_{μ} , models need to satisfy triangle confluence. For \Box -formulas, forth-down confluence suffices.

Figure 1: Triangle confluence (left) and Forth-down confluence (right)

Lemma

A \Box -formula φ is valid on all forth-down confluent models iff it is valid on all triangle confluent models.

As \dashv -formulas are **not** monotone for the weaker condition, we obtain that \dashv indeed cannot be expressed in terms of \square .

Game semantics for iL_μ

Given a model $M=(W,\leq,R,V)$ and clean formula ψ , we define an evaluation game $\mathcal{E}(\varphi,M)$ between \exists and \forall .

Given a model $M = (W, \leq, R, V)$ and clean formula ψ , we define an evaluation game $\mathcal{E}(\varphi, M)$ between \exists and \forall .

Intuition: at position (ψ^+, s) , \exists wants to show that $M, s \models \psi$, while \forall wants to show the converse.

Given a model $M = (W, \leq, R, V)$ and clean formula ψ , we define an evaluation game $\mathcal{E}(\varphi, M)$ between \exists and \forall .

Intuition: at position (ψ^+, s) , \exists wants to show that $M, s \models \psi$, while \forall wants to show the converse.

Position	Player	Admissible moves
		7 dilliosible illoves
(P^+,s) , $P \notin BV(\psi)$, $s \in V(P)$	\forall	Ø
(P^+,s) , $P \notin BV(\psi)$, $s \notin V(P)$	3	Ø
$(\varphi_1 \wedge \varphi_2^+, S)$	\forall	$\{(\varphi_i^+,s): i=1,2\}$
$(\varphi_1 \vee \varphi_2^+, S)$	∃	$\{(\varphi_i^+,s): i=1,2\}$
$(arphi_1 ightarrow arphi_2^+, s)$	\forall	$\{(\varphi_1 \to \varphi_2^+, s, t) : s \le t\}$
$(\varphi_1 o \varphi_2^+, S, t)$	3	$\{(\varphi_1^-,t),(\varphi_2^+,t)\}$
$(\varphi_1 \dashv \varphi_2^+, s)$	\forall	$\{(\varphi_1 \dashv \varphi_2^+, s, t) : sRt\}$
$(\varphi_1 \rightarrow 3 \varphi_2^+, s, t)$	3	$\{(\varphi_1^-,t),(\varphi_2^+,t)\}$
$((\eta X.\psi_X)^p,s)$	-	$\{(\psi_{X}^{p},S)\}$
$(X^p,s), X \in BV(\psi)$	-	$\{(\psi_{X}^{p},s)\}$

Given a model $M = (W, \leq, R, V)$ and clean formula ψ , we define an evaluation game $\mathcal{E}(\varphi, M)$ between \exists and \forall .

Intuition: at position (ψ^+, s) , \exists wants to show that $M, s \models \psi$, while \forall wants to show the converse.

Position	Player	Admissible moves
(P^+,s) , $P \notin BV(\psi)$, $s \in V(P)$	\forall	Ø
(P^+,s) , $P \notin BV(\psi)$, $s \notin V(P)$	∃ ∃	Ø
$(\varphi_1 \wedge \varphi_2^+, s)$	\forall	$\{(\varphi_i^+,s): i=1,2\}$
$(\varphi_1 \vee \varphi_2^+, S)$	3	$\{(\varphi_i^+,s): i=1,2\}$
$(arphi_1 ightarrow arphi_2^+, s)$	\forall	$\{(\varphi_1 \to \varphi_2^+, s, t) : s \le t\}$
$(\varphi_1 ightarrow \varphi_2^+, s, t)$	∃	$\{(\varphi_1^-,t),(\varphi_2^+,t)\}$
$(\varphi_1 \dashv \varphi_2^+, s)$	\forall	$\{(\varphi_1 \dashv \varphi_2^+, s, t) : sRt\}$
$(\varphi_1 \rightarrow 3 \varphi_2^+, s, t)$	∃	$\{(\varphi_1^-,t),(\varphi_2^+,t)\}$
$((\eta X.\psi_X)^p,s)$	-	$\{(\psi_{X}^{p},S)\}$
$(X^p,s), X \in BV(\psi)$	-	$\{(\psi_{X}^{p},S)\}$

For negative positions (ψ^-, s) swap the roles of \exists and \forall .

We write $\mathcal{E}(\varphi, M)@q$ for the evaluation game with starting position q. A play of $\mathcal{E}(\varphi, M)@q$ is either infinite or ends in a position with no admissible moves. Finite plays are lost by the player who got stuck.

We write $\mathcal{E}(\varphi, M)@q$ for the evaluation game with starting position q. A play of $\mathcal{E}(\varphi, M)@q$ is either infinite or ends in a position with no admissible moves. Finite plays are lost by the player who got stuck.

Who wins an infinite play?

Lemma

Let π an infinite play of $\mathcal{E}(\varphi, M)@(\varphi^+, s)$. Then there is a unique, outermost $X_{\pi} \in BV(\varphi)$ occurring infinitely often in π . Moreover, there is a unique polarity p_{π} such that $X_{\pi}^{p_{\pi}}$ occurs infinitely often in π .

We write $\mathcal{E}(\varphi, M)@q$ for the evaluation game with starting position q. A play of $\mathcal{E}(\varphi, M)@q$ is either infinite or ends in a position with no admissible moves. Finite plays are lost by the player who got stuck.

Who wins an infinite play?

Lemma

Let π an infinite play of $\mathcal{E}(\varphi, M)@(\varphi^+, s)$. Then there is a unique, outermost $X_{\pi} \in BV(\varphi)$ occurring infinitely often in π . Moreover, there is a unique polarity p_{π} such that $X_{\pi}^{p_{\pi}}$ occurs infinitely often in π .

Recall that every bound variable is bound by either μ or ν . The infinite play π is won by \exists iff X_{π} is a negative μ -variable or a positive ν -variable.

We write $\mathcal{E}(\varphi, M)@q$ for the evaluation game with starting position q. A play of $\mathcal{E}(\varphi, M)@q$ is either infinite or ends in a position with no admissible moves. Finite plays are lost by the player who got stuck.

Who wins an infinite play?

Lemma

Let π an infinite play of $\mathcal{E}(\varphi, M)@(\varphi^+, s)$. Then there is a unique, outermost $X_{\pi} \in BV(\varphi)$ occurring infinitely often in π . Moreover, there is a unique polarity p_{π} such that $X_{\pi}^{p_{\pi}}$ occurs infinitely often in π .

Recall that every bound variable is bound by either μ or ν . The infinite play π is won by \exists iff X_{π} is a negative μ -variable or a positive ν -variable.

Theorem (Adequacy of the Game Semantics)

For any clean formula φ and pointed model (M, s), we have

 $M, s \models \varphi \text{ iff } \exists \text{ has a (positional) winning strategy in } \mathcal{E}(\varphi, M) \mathbf{Q}(\varphi^+, s).$

We call a variable X guarded in φ if every occurrence of X in φ is in the scope of some \neg 3-operator. A formula φ is guarded if for every subformula $\eta X.\psi$ of φ , X is guarded in ψ .

We call a variable X guarded in φ if every occurrence of X in φ is in the scope of some \neg -operator. A formula φ is guarded if for every subformula $\eta X.\psi$ of φ , X is guarded in ψ .

Theorem

Every iL_{μ} -formula φ is equivalent to a guarded one.

We call a variable X guarded in φ if every occurrence of X in φ is in the scope of some \neg -operator. A formula φ is guarded if for every subformula $\eta X.\psi$ of φ , X is guarded in ψ .

Theorem

Every iL_{μ} -formula φ is equivalent to a guarded one.

Proof sketch: By induction on φ . For the fixpoint case $\eta X.\psi$, use Ruitenburg's theorem for IPC:

Theorem (Ruitenburg, 1984)

Let φ be a formula of IPC and X a propositional letter such that X is positive in φ . Define $\varphi_X^0 := X$ and $\varphi_X^{n+1} := \varphi[\varphi_X^n/X]$. Then there exists an N such that $\varphi_X^N \equiv \varphi_X^{N+1}$.

A non-wellfounded proof system for iL_μ

A non-wellfounded proof system for iL_{μ} : the propositional rules

A non-wellfounded proof system for iL_{μ} : the propositional rules

We define a sequent as a finite set of polarised formulas. We let $\Gamma\Rightarrow\Delta$ denote $\{\varphi^+:\varphi\in\Gamma\}\cup\{\varphi^-:\varphi\in\Delta\}$ and its interpretation is given by

$$\bigwedge \Gamma \rightarrow \bigvee \Delta$$
.

A non-wellfounded proof system for iL_{μ} : the propositional rules

We define a sequent as a finite set of polarised formulas. We let $\Gamma \Rightarrow \Delta$ denote $\{\varphi^+ : \varphi \in \Gamma\} \cup \{\varphi^- : \varphi \in \Delta\}$ and its interpretation is given by

$$\bigwedge \Gamma \rightarrow \bigvee \Delta$$
.

For the propositional rules, we use standard multi-conclusion rules for IPC.

A non-wellfounded proof system for iL_{μ} : the modal rule

A non-wellfounded proof system for iL_u : the modal rule

Consider the following sound rule for the modality -3:

$$\frac{A \Rightarrow B, C \quad D, A \Rightarrow B}{\Gamma, C \mathrel{\dashv} D \Rightarrow A \mathrel{\dashv} B, \Delta} \mathrel{\dashv} _1$$

A non-wellfounded proof system for iL_{μ} : the modal rule

Consider the following sound rule for the modality -3:

$$\frac{A \Rightarrow B, C \quad D, A \Rightarrow B}{\Gamma, C \Rightarrow D \Rightarrow A \Rightarrow B, \Delta} \Rightarrow_{1}$$

For completeness, we generalize it to the following:

$$\frac{\{\mathcal{D}_j, A \Rightarrow B, \mathcal{C}_j\}_{j \leq 2^n}}{\Gamma, \{C_i \mathrel{\lnot} D_i\}_{i \leq n} \Rightarrow A \mathrel{\lnot} B, \Delta} \; \mathrel{\lnot}_n$$

where $n \ge 0$, and the sets $\mathcal{D}_1, \dots, \mathcal{D}_{2^n}$ and $\mathcal{C}_1, \dots, \mathcal{C}_{2^n}$ enumerate the subsets of $\{D_1, \dots, D_n\}$ and $\{C_1, \dots, C_n\}$, respectively, such that

$$D_i \in \mathcal{D}_j$$
 if and only if $C_i \notin \mathcal{C}_j$.

A non-wellfounded proof system for iL_{μ} : the fixpoint rules

A non-wellfounded proof system for iL_{μ} : the fixpoint rules

For $\eta \in {\{\mu, \nu\}}$, we have the fixpoint rules:

$$\begin{split} &\frac{\Gamma, \psi \Rightarrow \Delta}{\Gamma, \eta X. \psi \Rightarrow \Delta} \ \eta L \quad \frac{\Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \eta X. \psi, \Delta} \ \eta R \\ &\frac{\Gamma, \psi_X \Rightarrow \Delta}{\Gamma, X \Rightarrow \Delta} \ XL \quad \frac{\Gamma \Rightarrow \psi_X, \Delta}{\Gamma \Rightarrow X, \Delta} \ XR \end{split}$$

We work in the context of a clean formula φ , so each bound variable $X \in BV(\varphi)$ has an associated fixpoint formula ψ_X .

A non-wellfounded proof system for iL_{μ} : the fixpoint rules

For $\eta \in \{\mu, \nu\}$, we have the fixpoint rules:

$$\begin{split} &\frac{\Gamma, \psi \Rightarrow \Delta}{\Gamma, \eta X. \psi \Rightarrow \Delta} \ \eta L \quad \frac{\Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \eta X. \psi, \Delta} \ \eta R \\ &\frac{\Gamma, \psi_X \Rightarrow \Delta}{\Gamma, X \Rightarrow \Delta} \ XL \quad \frac{\Gamma \Rightarrow \psi_X, \Delta}{\Gamma \Rightarrow X, \Delta} \ XR \end{split}$$

We work in the context of a clean formula φ , so each bound variable $X \in BV(\varphi)$ has an associated fixpoint formula ψ_X .

This concludes the rules of $nwlL_{\mu}$.

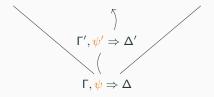
A non-wellfounded proof system for iL_{μ} : derivations and proofs

A derivation T in $nwlL_{\mu}$ is a finite or infinite tree labelled according to the rules of $nwlL_{\mu}$.

A non-wellfounded proof system for iL_u : derivations and proofs

A derivation T in $nwIL_{\mu}$ is a finite or infinite tree labelled according to the rules of $nwIL_{\mu}$.

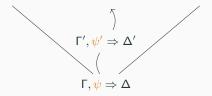
Given a path ρ through T, a trace on ρ is a sequence $(\varphi_i^{p_i})_i$ of polarised formulas following the principal-residual relation.



A non-wellfounded proof system for iL_{μ} : derivations and proofs

A derivation T in $nwIL_{\mu}$ is a finite or infinite tree labelled according to the rules of $nwIL_{\mu}$.

Given a path ρ through T, a trace on ρ is a sequence $(\varphi_i^{p_i})_i$ of polarised formulas following the principal-residual relation.

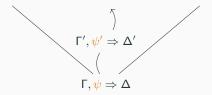


Each (non-stagnating) trace has a unique outermost bound variable *X* that occurs infinitely often and has a well-defined polarity.

A non-wellfounded proof system for iL_{μ} : derivations and proofs

A derivation T in $nwIL_{\mu}$ is a finite or infinite tree labelled according to the rules of $nwIL_{\mu}$.

Given a path ρ through T, a trace on ρ is a sequence $(\varphi_i^{p_i})_i$ of polarised formulas following the principal-residual relation.



Each (non-stagnating) trace has a unique outermost bound variable *X* that occurs infinitely often and has a well-defined polarity.

A derivation is a proof in $nwlL_{\mu}$ if every infinite path of T has either a negative μ -trace or a positive ν -trace.

Theorem

If φ is provable in nwIL_μ then it is valid on triangle models.

Theorem

If φ is provable in nWIL_{μ} then it is valid on triangle models.

Theorem

Every guarded formula valid on triangle models is provable in $nwlL_{\mu}$.

Theorem

If φ is provable in $nwlL_{\mu}$ then it is valid on triangle models.

Theorem

Every guarded formula valid on triangle models is provable in $nwlL_{\mu}$.

Proof sketch:

• Given a sequent σ , construct an ω -regular validity game between Prover and Refuter (à la Niwiński & Walukiewicz, 1996).

Theorem

If φ is provable in $nwlL_{\mu}$ then it is valid on triangle models.

Theorem

Every guarded formula valid on triangle models is provable in $nwlL_{\mu}$.

Proof sketch:

- Given a sequent σ , construct an ω -regular validity game between Prover and Refuter (à la Niwiński & Walukiewicz, 1996).
- A winning strategy for Prover corresponds to a (regular) proof of σ .

Theorem

If φ is provable in $nwlL_{\mu}$ then it is valid on triangle models.

Theorem

Every guarded formula valid on triangle models is provable in $nwlL_{\mu}$.

Proof sketch:

- Given a sequent σ , construct an ω -regular validity game between Prover and Refuter (à la Niwiński & Walukiewicz, 1996).
- A winning strategy for Prover corresponds to a (regular) proof of σ .
- A winning strategy for Refuter induces a (pre)countermodel M for σ .

A non-wellfounded proof system for iL_{μ} : soundness and completeness

Theorem

If φ is provable in $nwlL_{\mu}$ then it is valid on triangle models.

Theorem

Every guarded formula valid on triangle models is provable in $nwlL_{\mu}$.

Proof sketch:

- Given a sequent σ , construct an ω -regular validity game between Prover and Refuter (à la Niwiński & Walukiewicz, 1996).
- A winning strategy for Prover corresponds to a (regular) proof of σ .
- A winning strategy for Refuter induces a (pre)countermodel M for σ .
- We make M satisfy triangle confluence by replacing the modal relation R by the composition \leq ; R. This does not break monotonicity of the valuation nor falsification of φ in M.

The logic iL_{μ} is an intuitionistic version of the modal μ -calculus with an expressive universal modality that has many desirable properties:

· Elegant game semantics;

- · Elegant game semantics;
- · Guardedness property;

- · Elegant game semantics;
- · Guardedness property;
- · A guarded complete, cut-free, non-wellfounded proof system;

- · Elegant game semantics;
- · Guardedness property;
- · A guarded complete, cut-free, non-wellfounded proof system;
- Regular proofs and decidability (as the validity game is ω -regular).

- · Elegant game semantics;
- · Guardedness property;
- · A guarded complete, cut-free, non-wellfounded proof system;
- Regular proofs and decidability (as the validity game is ω -regular).

The logic iL_{μ} is an intuitionistic version of the modal μ -calculus with an expressive universal modality that has many desirable properties:

- · Elegant game semantics;
- · Guardedness property;
- · A guarded complete, cut-free, non-wellfounded proof system;
- Regular proofs and decidability (as the validity game is ω -regular).

The latter also means we can obtain a cyclic proof system with a local soundness condition.

The logic iL_{μ} is an intuitionistic version of the modal μ -calculus with an expressive universal modality that has many desirable properties:

- · Elegant game semantics;
- · Guardedness property;
- · A guarded complete, cut-free, non-wellfounded proof system;
- Regular proofs and decidability (as the validity game is ω -regular).

The latter also means we can obtain a cyclic proof system with a local soundness condition.

Directions for future work:

The logic iL_{μ} is an intuitionistic version of the modal μ -calculus with an expressive universal modality that has many desirable properties:

- · Elegant game semantics;
- · Guardedness property;
- · A guarded complete, cut-free, non-wellfounded proof system;
- Regular proofs and decidability (as the validity game is ω -regular).

The latter also means we can obtain a cyclic proof system with a local soundness condition.

Directions for future work.

· Completeness for unguarded formulas;

The logic iL_{μ} is an intuitionistic version of the modal μ -calculus with an expressive universal modality that has many desirable properties:

- · Elegant game semantics;
- · Guardedness property;
- · A guarded complete, cut-free, non-wellfounded proof system;
- Regular proofs and decidability (as the validity game is ω -regular).

The latter also means we can obtain a cyclic proof system with a local soundness condition.

Directions for future work.

- · Completeness for unguarded formulas;
- Interpolation (might be difficult with the Lewis arrow);

The logic iL_{μ} is an intuitionistic version of the modal μ -calculus with an expressive universal modality that has many desirable properties:

- · Elegant game semantics;
- · Guardedness property;
- · A guarded complete, cut-free, non-wellfounded proof system;
- Regular proofs and decidability (as the validity game is ω -regular).

The latter also means we can obtain a cyclic proof system with a local soundness condition.

Directions for future work.

- · Completeness for unguarded formulas;
- · Interpolation (might be difficult with the Lewis arrow);
- · A finite Hilbert axiomatisation?

The logic iL_{μ} is an intuitionistic version of the modal μ -calculus with an expressive universal modality that has many desirable properties:

- · Elegant game semantics;
- · Guardedness property;
- A guarded complete, cut-free, non-wellfounded proof system;
- Regular proofs and decidability (as the validity game is ω -regular).

The latter also means we can obtain a cyclic proof system with a local soundness condition.

Directions for future work.

- · Completeness for unguarded formulas;
- · Interpolation (might be difficult with the Lewis arrow);
- · A finite Hilbert axiomatisation?
- Adding diamonds?

The logic iL_{μ} is an intuitionistic version of the modal μ -calculus with an expressive universal modality that has many desirable properties:

- · Elegant game semantics;
- · Guardedness property;
- · A guarded complete, cut-free, non-wellfounded proof system;
- Regular proofs and decidability (as the validity game is ω -regular).

The latter also means we can obtain a cyclic proof system with a local soundness condition.

Directions for future work:

- · Completeness for unguarded formulas;
- · Interpolation (might be difficult with the Lewis arrow);
- · A finite Hilbert axiomatisation?
- Adding diamonds?

References

- Balbiani, P., Boudou, J., Diéguez, M. & Fernández-Duque, D. (2019).
 Intuitionistic linear temporal logics.
- Das, A., van der Giessen, I. & Marin, S. (2023). Intuitionistic Gödel-Löb logic, à la Simpson: Labelled systems and birelational semantics.
- Iemhoff, R., De Jongh, D., & Zhou, C. (2005). Properties of intuitionistic provability and preservativity logics.
- · Jäger, G. & M. Marti (2016). Intuitionistic common knowledge or belief.
- Litak, T., & Visser, A. (2018). Lewis meets Brouwer: constructive strict implication.
- Ruitenburg, W. (1984). On the period of sequences (an(p)) in intuitionistic propositional calculus.
- Venema, Y. (2024). Lectures on the modal μ -calculus.