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Fixpoint logics contain formulas ) that satisfy

¥ = o(¥).

for some formula .
Example. “A until B" in temporal logic: AUB =BV (AAX(AUB)).
The modal p-calculus extends basic modal logic by explicit fixpoint
operators y and v:

» uX.p(X) denotes the least fixpoint of ¢(X),

» vX.p(X) denotes the greatest fixpoint of ¢(X).
The resulting logic is very expressive yet well-behaved: decidable, small
model property, finitary axiomatization, uniform interpolation...

Non-wellfounded and cyclic proof systems provide natural syntactic
characterisations of the modal p-calculus and its fragments.
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Modal fixpoint logics over an intuitionistic propositional base are gaining
attention:

> Intuitionistic linear-time temporal logic (Balbiani, Boudou, Diégues &
Fernandez-Duque, 2019, 2022):
> Intuitionistic common-knowledge logic (Jager & Marti, 2016);
> Intuitionistic Godel-Lob logic (Das, van der Giessen, Marin, 2023).
Our aim. Develop a general framework and proof-theoretic techniques for
studying intuitionistic modal fixpoint logics.

In earlier work, we (Afshari, G., Leigh & Zenger) provided proof systems for:

1. intuitionistic linear-time temporal logic (2023);
2. intuitionistic modal logic with the master modality (2024).
Current work. We study an intuitionistic version of the modal p-calculus

with the Lewis arrow (a generalisation of the modal ). We provide game
semantics and a non-wellfounded analytic proof system.
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Dissatisfied with material implication, Lewis (1914,1932) introduced several
axiom systems (S1-S5) meant to formalize strict implication:

3P “4» can be inferred from ¢."

For the modern modal logician:
¢ 31 :=0(p = 7).

Sodp =T 3 ¢.

In an intuitionistic setting, 3 is not interdefinable with 0, as was observed in
the study of intuitionistic provability logic (lemhof 2003, Litak & Visser 2017).
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Fix some set Prop of propositions/variables. Formulas of iL, are given by the
grammar:
e =L TIPloAY VYo |e3¢|pXe|vXe
with P,X € Prop and X (weakly) positive in ¢. We define Oy := T 3 ¢.
Note: i and v are not interdefinable in the intuitionistic setting.

We consider formulas ¢ that are clean: each bound variable X belongs to a
unigue subformula nX.1yx of .

Moreover, to keep track of negative/positive formula occurrences, we will
consider polarised (sub)formulas ¢” with p € {+, —}.

Sub((1 % ¢2)°) == {17, g3} USub(pr P) U Sub(y;)  if x € {—,3}.
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Formulas are evaluated in bi-relational Kripke models M = (W, <,R, V),

where

1. <is a partial order (the intuitionistic relation),
2. R C W? (the modal relation),

3. if w < vRu then wRu (triangle confluence).

The truth relation for —, 3 and the fixpoint operators is defined by

MsEp—=yv iff
MsEe=3¢ iff
M,s = puX.p iff
M,s = vX.p iff

forallt > sif Mt |= ¢, then M, t = 9,
forall sRtif M, t = ¢, then M, t = 9,
s € LFP(}),

s € GFP(gY),

where @) : P(W) — P(W) is the function given by S +— [¢]X_,s.
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A key property of intuitionistic Kripke semantics is monotonicity: if v > w
and w = ¢, then v = .

To obtain monotonicity for iL,, models need to satisfy triangle confluence.
For O-formulas, forth-down confluence suffices.

Figure 1: Triangle confluence (left) and Forth-down confluence (right)

Lemma

A O-formula ¢ is valid on all forth-down confluent models iff it is valid on
all triangle confluent models.

As 3-formulas are not monotone for the weaker condition, we obtain that 3
indeed cannot be expressed in terms of [J.
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Given a model M = (W, <, R, V) and clean formula +, we define an
evaluation game &E(p, M) between Fand v.

Intuition: at position (™, s), 7 wants to show that M, s |= +, while ¥ wants to
show the converse.
Position Player Admissible moves
(P+,S), P ¢ BV(v),s € V(P) A 0
(PT,s), P& BV(y),s & V(P) 3 0
(pr1Ag3,s) v {(¢f,8) 1 1=1,2}
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(1 = ¢7,5,1) 3 {(er, 1), (3, 1)}
((/31 =3 902+75) v {(901 =3 <P§ra57t) : SRt}
(@1 =3 (p;,S, t) 3 {(W?vtL (@;’t)}
(X4x)’, s) - {(¥5,5)}
(XD,S), X € BV(i/)) - {(d’fas)}

For negative positions (¥, s) swap the roles of 3and V.
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Game semantics for iL,: winning conditions and adequacy

We write for the evaluation game with starting position g. A
of £(¢,M)@q is either infinite or ends in a position with no admissible
moves. are lost by the player who got stuck.

Who wins an infinite play?

Lemma

Let 7 an infinite play of £(p, M)@(¢*,s). Then there is a unique, outermost
Xz € BV(y) occurring infinitely often in w. Moreover, there is a unique
polarity p» such that X2~ occurs infinitely often in .

Recall that every bound variable is bound by either p or v. The
miswon by Fiff X, is a ora

Theorem (Adequacy of the Game Semantics)
For any clean formula ¢ and pointed model (M, s), we have

M,s = ¢ iff 3 has a (positional) winning strategy in &(¢, M)@(x ™, s).
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We call a variable X if every occurrence of X in ¢ is in the scope

of some 3-operator. A formula ¢ is if for every subformula nX.1 of
o, X is guarded in .

Theorem

Every iL,-formula ¢ is equivalent to a guarded one.

Proof sketch: By induction on . For the fixpoint case nX.i, use

Theorem (Ruitenburg, 1984)

Let ¢ be a formula of IPC and X a propositional letter such that X is positive

in . Define ¢% := X and §*" := p[p}/X]. Then there exists an N such that
N —  N+1
Px =$x -
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A non-wellfounded proof system for iL,: the propositional rules

We define a sequent as a finite set of polarised formulas. We let I = A
denote {¢t : o e TFU{p™ : ¢ € A} and its interpretation is given by

Ar—=\VA

For the propositional rules, we use standard multi-conclusion rules for IPC.

rAsAn risa -t
rag=a . Fr=AA F=BA
LAAB=A = AAB,A
NMA=A IB=A = ABA
L —— 05 R
LAVB= A F=AVBA
FASB=AA IB=A rA=B
—L

A-B= A r=AoBa 't
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Consider the following sound rule for the modality -3:

A=B,C D,A=B 4
rC3D=A3BA

For completeness, we generalize it to the following:

{’Dj,A = B,C]‘}jSQn
F, {C, =3 Di}ign = A3 B,A

n

where n > 0, and the sets Dy, ..., D, and Gy, ...,Con enumerate the subsets
of {D1,...,Dn} and {G, ..., Cp}, respectively, such that

D; € Djifand only if G; ¢ C;.
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A non-wellfounded proof system for iL,: the fixpoint rules

For n € {u, v}, we have the fixpoint rules:
My=A M=y, A
X =A T T=nXo,A
Myx = A F:>1/JX,AXR
rX=A r=X A

We work in the context of a clean formula ¢, so each bound variable
X € BV(y) has an associated fixpoint formula tx.

This concludes the rules of nwiL,.
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A derivation T in nwlL, is a finite or infinite tree labelled according to the
rules of nwlL,,.

Given a path p through T, a trace on p is a sequence (¢!"); of polarised
formulas following the principal-residual relation.

)

I, = A

(

My=A

Each (non-stagnating) trace has a unique outermost bound variable X that
occurs infinitely often and has a well-defined polarity.

A derivation is a proof in nwlL, if every infinite path of T has either a
negative u-trace or a positive v-trace.
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A non-wellfounded proof system for iL,: soundness and completeness

Theorem
If ¢ is provable in nwiL, then it is valid on triangle models.

Theorem
Every guarded formula valid on triangle models is provable in nwiL,,.

Proof sketch:
- Given a sequent o, construct an w-regular validity game between Prover
and Refuter (a2 la Niwinski & Walukiewicz, 1996).
- A winning strategy for Prover corresponds to a (regular) proof of o.
- A winning strategy for Refuter induces a (pre)countermodel M for o.

- We make M satisfy triangle confluence by replacing the modal relation R
by the composition <; R. This does not break monotonicity of the
valuation nor falsification of ¢ in M.
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- Interpolation (might be difficult with the Lewis arrow);
- A finite Hilbert axiomatisation?

- Adding diamonds?
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