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Introduction



Introduction: the modal µ-calculus

Fixpoint logics contain formulas ψ that satisfy

ψ ≡ ϕ(ψ).

for some formula ϕ.

Example. “A until B” in temporal logic: A U B ≡ B ∨ (A ∧ X(A U B)).

The modal µ-calculus extends basic modal logic by explicit fixpoint
operators µ and ν :

ä µX.ϕ(X) denotes the least fixpoint of ϕ(X),

ä νX.ϕ(X) denotes the greatest fixpoint of ϕ(X).

The resulting logic is very expressive yet well-behaved: decidable, small
model property, finitary axiomatization, uniform interpolation…

Non-wellfounded and cyclic proof systems provide natural syntactic
characterisations of the modal µ-calculus and its fragments.
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Introduction: intuitionistic fixpoints

Modal fixpoint logics over an intuitionistic propositional base are gaining
attention:

ä Intuitionistic linear-time temporal logic (Balbiani, Boudou, Diégues &
Fernández-Duque, 2019, 2022);

ä Intuitionistic common-knowledge logic (Jäger & Marti, 2016);

ä Intuitionistic Gödel-Löb logic (Das, van der Giessen, Marin, 2023).

Our aim. Develop a general framework and proof-theoretic techniques for
studying intuitionistic modal fixpoint logics.

In earlier work, we (Afshari, G., Leigh & Zenger) provided proof systems for:

1. intuitionistic linear-time temporal logic (2023);

2. intuitionistic modal logic with the master modality (2024).

Current work. We study an intuitionistic version of the modal µ-calculus
with the Lewis arrow (a generalisation of the modal �). We provide game
semantics and a non-wellfounded analytic proof system.
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Introduction: the Lewis arrow

Dissatisfied with material implication, Lewis (1914,1932) introduced several
axiom systems (S1-S5) meant to formalize strict implication:

ϕ J ψ “ψ can be inferred from ϕ.”

For the modern modal logician:

ϕ J ψ := �(ϕ→ ψ).

So �ϕ ≡ > J ϕ.

In an intuitionistic setting, J is not interdefinable with �, as was observed in
the study of intuitionistic provability logic (Iemhof 2003, Litak & Visser 2017).
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The logic iLµ



Syntax

Fix some set Prop of propositions/variables. Formulas of iLµ are given by the
grammar:

ϕ,ψ ::= ⊥ | > | P | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | ϕ J ψ | µX.ϕ | νX.ϕ

with P, X ∈ Prop and X (weakly) positive in ϕ. We define �ϕ := > J ϕ.

Note: µ and ν are not interdefinable in the intuitionistic setting.

We consider formulas ϕ that are clean: each bound variable X belongs to a
unique subformula ηX.ψX of ϕ.

Moreover, to keep track of negative/positive formula occurrences, we will
consider polarised (sub)formulas ϕp with p ∈ {+,−}.

Sub((ϕ1 ? ϕ2)p) := {ϕ−p
1 , ϕp2} ∪ Sub(ϕ

−p
1 ) ∪ Sub(ϕp2) if ? ∈ {→,J}.

5



Syntax

Fix some set Prop of propositions/variables. Formulas of iLµ are given by the
grammar:

ϕ,ψ ::= ⊥ | > | P | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | ϕ J ψ | µX.ϕ | νX.ϕ

with P, X ∈ Prop and X (weakly) positive in ϕ. We define �ϕ := > J ϕ.

Note: µ and ν are not interdefinable in the intuitionistic setting.

We consider formulas ϕ that are clean: each bound variable X belongs to a
unique subformula ηX.ψX of ϕ.

Moreover, to keep track of negative/positive formula occurrences, we will
consider polarised (sub)formulas ϕp with p ∈ {+,−}.

Sub((ϕ1 ? ϕ2)p) := {ϕ−p
1 , ϕp2} ∪ Sub(ϕ

−p
1 ) ∪ Sub(ϕp2) if ? ∈ {→,J}.

5



Syntax

Fix some set Prop of propositions/variables. Formulas of iLµ are given by the
grammar:

ϕ,ψ ::= ⊥ | > | P | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | ϕ J ψ | µX.ϕ | νX.ϕ

with P, X ∈ Prop and X (weakly) positive in ϕ. We define �ϕ := > J ϕ.

Note: µ and ν are not interdefinable in the intuitionistic setting.

We consider formulas ϕ that are clean: each bound variable X belongs to a
unique subformula ηX.ψX of ϕ.

Moreover, to keep track of negative/positive formula occurrences, we will
consider polarised (sub)formulas ϕp with p ∈ {+,−}.

Sub((ϕ1 ? ϕ2)p) := {ϕ−p
1 , ϕp2} ∪ Sub(ϕ

−p
1 ) ∪ Sub(ϕp2) if ? ∈ {→,J}.

5



Syntax

Fix some set Prop of propositions/variables. Formulas of iLµ are given by the
grammar:

ϕ,ψ ::= ⊥ | > | P | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | ϕ J ψ | µX.ϕ | νX.ϕ

with P, X ∈ Prop and X (weakly) positive in ϕ. We define �ϕ := > J ϕ.

Note: µ and ν are not interdefinable in the intuitionistic setting.

We consider formulas ϕ that are clean: each bound variable X belongs to a
unique subformula ηX.ψX of ϕ.

Moreover, to keep track of negative/positive formula occurrences, we will
consider polarised (sub)formulas ϕp with p ∈ {+,−}.

Sub((ϕ1 ? ϕ2)p) := {ϕ−p
1 , ϕp2} ∪ Sub(ϕ

−p
1 ) ∪ Sub(ϕp2) if ? ∈ {→,J}.

5



Relational semantics: bi-relational models

Formulas are evaluated in bi-relational Kripke models M = (W,≤,R, V),
where

1. ≤ is a partial order (the intuitionistic relation),

2. R ⊆ W2 (the modal relation),

3. if w ≤ vRu then wRu (triangle confluence).

The truth relation for→, J and the fixpoint operators is defined by

M, s |= ϕ→ ψ iff for all t ≥ s if M, t |= ϕ, then M, t |= ψ,
M, s |= ϕ J ψ iff for all sRt if M, t |= ϕ, then M, t |= ψ,
M, s |= µX.ϕ iff s ∈ LFP(ϕMX ),
M, s |= νX.ϕ iff s ∈ GFP(ϕMX ),

where ϕMX : P(W) → P(W) is the function given by S 7→ JϕKMX 7→S.
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(Algebraic) semantics of iLµ: monotonicity and confluence properties

A key property of intuitionistic Kripke semantics is monotonicity: if v ≥ w
and w |= ϕ, then v |= ϕ.

To obtain monotonicity for iLµ, models need to satisfy triangle confluence.
For �-formulas, forth-down confluence suffices.

v u

w

R

≤
R

v u

w ·

R

≤

R

≤

Figure 1: Triangle confluence (left) and Forth-down confluence (right)

Lemma
A �-formula ϕ is valid on all forth-down confluent models iff it is valid on
all triangle confluent models.

As J-formulas are not monotone for the weaker condition, we obtain that J
indeed cannot be expressed in terms of �.
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Game semantics for iLµ



Game semantics for iLµ: the evaluation game

Given a model M = (W,≤,R, V) and clean formula ψ, we define an
evaluation game E(ϕ,M) between ∃ and ∀.

Intuition: at position (ψ+, s), ∃ wants to show that M, s |= ψ, while ∀ wants to
show the converse.

Position Player Admissible moves
(P+, s), P /∈ BV(ψ), s ∈ V(P) ∀ ∅
(P+, s), P /∈ BV(ψ), s /∈ V(P) ∃ ∅

(ϕ1 ∧ ϕ+
2 , s) ∀ {(ϕ+

i , s) : i = 1, 2}
(ϕ1 ∨ ϕ+

2 , s) ∃ {(ϕ+
i , s) : i = 1, 2}

(ϕ1 → ϕ+
2 , s) ∀ {(ϕ1 → ϕ+

2 , s, t) : s ≤ t}
(ϕ1 → ϕ+

2 , s, t) ∃ {(ϕ−
1 , t), (ϕ

+
2 , t)}

(ϕ1 J ϕ
+
2 , s) ∀ {(ϕ1 J ϕ+

2 , s, t) : sRt}
(ϕ1 J ϕ

+
2 , s, t) ∃ {(ϕ−

1 , t), (ϕ
+
2 , t)}

((ηX.ψX)p, s) - {(ψpX , s)}
(Xp, s), X ∈ BV(ψ) - {(ψpX , s)}

For negative positions (ψ−, s) swap the roles of ∃ and ∀.

8
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Game semantics for iLµ: the evaluation game

Given a model M = (W,≤,R, V) and clean formula ψ, we define an
evaluation game E(ϕ,M) between ∃ and ∀.
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show the converse.
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Game semantics for iLµ: winning conditions and adequacy

We write E(ϕ,M)@q for the evaluation game with starting position q. A play
of E(ϕ,M)@q is either infinite or ends in a position with no admissible
moves. Finite plays are lost by the player who got stuck.

Who wins an infinite play?

Lemma
Let π an infinite play of E(ϕ,M)@(ϕ+, s). Then there is a unique, outermost
Xπ ∈ BV(ϕ) occurring infinitely often in π. Moreover, there is a unique
polarity pπ such that Xpππ occurs infinitely often in π.

Recall that every bound variable is bound by either µ or ν . The infinite play
π is won by ∃ iff Xπ is a negative µ-variable or a positive ν-variable.

Theorem (Adequacy of the Game Semantics)
For any clean formula ϕ and pointed model (M, s), we have

M, s |= ϕ iff ∃ has a (positional) winning strategy in E(ϕ,M)@(ϕ+, s).
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Guardedness

We call a variable X guarded in ϕ if every occurrence of X in ϕ is in the scope
of some J-operator. A formula ϕ is guarded if for every subformula ηX.ψ of
ϕ, X is guarded in ψ.

Theorem
Every iLµ-formula ϕ is equivalent to a guarded one.

Proof sketch: By induction on ϕ. For the fixpoint case ηX.ψ, use Ruitenburg’s
theorem for IPC:

Theorem (Ruitenburg, 1984)
Let ϕ be a formula of IPC and X a propositional letter such that X is positive
in ϕ. Define ϕ0X := X and ϕn+1X := ϕ[ϕnX/X]. Then there exists an N such that
ϕNX ≡ ϕN+1X .
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A non-wellfounded proof system for iLµ: the propositional rules

We define a sequent as a finite set of polarised formulas. We let Γ ⇒ ∆

denote {ϕ+ : ϕ ∈ Γ} ∪ {ϕ− : ϕ ∈ ∆} and its interpretation is given by∧
Γ →

∨
∆.

For the propositional rules, we use standard multi-conclusion rules for IPC.

Γ, A⇒ A,∆ id
Γ,⊥ ⇒ ∆

⊥

Γ, A,B⇒ ∆

Γ, A ∧ B⇒ ∆
∧L

Γ ⇒ A,∆ Γ ⇒ B,∆
Γ ⇒ A ∧ B,∆ ∧R

Γ, A⇒ ∆ Γ,B⇒ ∆

Γ, A ∨ B⇒ ∆
∨L

Γ ⇒ A,B,∆
Γ ⇒ A ∨ B,∆ ∨R

Γ, A→ B⇒ A,∆ Γ,B⇒ ∆

Γ, A→ B⇒ ∆
→L

Γ, A⇒ B
Γ ⇒ A→ B,∆ →R
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A non-wellfounded proof system for iLµ: the modal rule

Consider the following sound rule for the modality J:

A⇒ B, C D, A⇒ B
Γ, C J D⇒ A J B,∆

J1

For completeness, we generalize it to the following:

{Dj, A⇒ B, Cj}j≤2n

Γ, {Ci J Di}i≤n ⇒ A J B,∆
Jn

where n ≥ 0, and the sets D1, . . . ,D2n and C1, . . . , C2n enumerate the subsets
of {D1, . . . ,Dn} and {C1, . . . , Cn}, respectively, such that

Di ∈ Dj if and only if Ci /∈ Cj.
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A non-wellfounded proof system for iLµ: the fixpoint rules

For η ∈ {µ, ν}, we have the fixpoint rules:

Γ, ψ ⇒ ∆

Γ, ηX.ψ ⇒ ∆
ηL

Γ ⇒ ψ,∆

Γ ⇒ ηX.ψ,∆ ηR

Γ, ψX ⇒ ∆

Γ, X ⇒ ∆
XL

Γ ⇒ ψX,∆

Γ ⇒ X,∆ XR

We work in the context of a clean formula ϕ, so each bound variable
X ∈ BV(ϕ) has an associated fixpoint formula ψX .

This concludes the rules of nwILµ.
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A non-wellfounded proof system for iLµ: derivations and proofs

A derivation T in nwILµ is a finite or infinite tree labelled according to the
rules of nwILµ.

Given a path ρ through T , a trace on ρ is a sequence (ϕ
pi
i )i of polarised

formulas following the principal-residual relation.

Γ′, ψ′ ⇒ ∆′

Γ, ψ ⇒ ∆

Each (non-stagnating) trace has a unique outermost bound variable X that
occurs infinitely often and has a well-defined polarity.

A derivation is a proof in nwILµ if every infinite path of T has either a
negative µ-trace or a positive ν-trace.
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A non-wellfounded proof system for iLµ: soundness and completeness

Theorem
If ϕ is provable in nwILµ then it is valid on triangle models.

Theorem
Every guarded formula valid on triangle models is provable in nwILµ.

Proof sketch:

• Given a sequent σ, construct an ω-regular validity game between Prover
and Refuter (à la Niwiński & Walukiewicz, 1996).

• A winning strategy for Prover corresponds to a (regular) proof of σ.

• A winning strategy for Refuter induces a (pre)countermodel M for σ.

• We make M satisfy triangle confluence by replacing the modal relation R
by the composition ≤;R. This does not break monotonicity of the
valuation nor falsification of ϕ in M.

15



A non-wellfounded proof system for iLµ: soundness and completeness

Theorem
If ϕ is provable in nwILµ then it is valid on triangle models.

Theorem
Every guarded formula valid on triangle models is provable in nwILµ.

Proof sketch:

• Given a sequent σ, construct an ω-regular validity game between Prover
and Refuter (à la Niwiński & Walukiewicz, 1996).

• A winning strategy for Prover corresponds to a (regular) proof of σ.

• A winning strategy for Refuter induces a (pre)countermodel M for σ.

• We make M satisfy triangle confluence by replacing the modal relation R
by the composition ≤;R. This does not break monotonicity of the
valuation nor falsification of ϕ in M.

15



A non-wellfounded proof system for iLµ: soundness and completeness

Theorem
If ϕ is provable in nwILµ then it is valid on triangle models.

Theorem
Every guarded formula valid on triangle models is provable in nwILµ.

Proof sketch:

• Given a sequent σ, construct an ω-regular validity game between Prover
and Refuter (à la Niwiński & Walukiewicz, 1996).

• A winning strategy for Prover corresponds to a (regular) proof of σ.

• A winning strategy for Refuter induces a (pre)countermodel M for σ.

• We make M satisfy triangle confluence by replacing the modal relation R
by the composition ≤;R. This does not break monotonicity of the
valuation nor falsification of ϕ in M.

15



A non-wellfounded proof system for iLµ: soundness and completeness

Theorem
If ϕ is provable in nwILµ then it is valid on triangle models.

Theorem
Every guarded formula valid on triangle models is provable in nwILµ.

Proof sketch:

• Given a sequent σ, construct an ω-regular validity game between Prover
and Refuter (à la Niwiński & Walukiewicz, 1996).

• A winning strategy for Prover corresponds to a (regular) proof of σ.

• A winning strategy for Refuter induces a (pre)countermodel M for σ.

• We make M satisfy triangle confluence by replacing the modal relation R
by the composition ≤;R. This does not break monotonicity of the
valuation nor falsification of ϕ in M.

15



A non-wellfounded proof system for iLµ: soundness and completeness

Theorem
If ϕ is provable in nwILµ then it is valid on triangle models.

Theorem
Every guarded formula valid on triangle models is provable in nwILµ.

Proof sketch:

• Given a sequent σ, construct an ω-regular validity game between Prover
and Refuter (à la Niwiński & Walukiewicz, 1996).

• A winning strategy for Prover corresponds to a (regular) proof of σ.

• A winning strategy for Refuter induces a (pre)countermodel M for σ.

• We make M satisfy triangle confluence by replacing the modal relation R
by the composition ≤;R. This does not break monotonicity of the
valuation nor falsification of ϕ in M.

15



A non-wellfounded proof system for iLµ: soundness and completeness

Theorem
If ϕ is provable in nwILµ then it is valid on triangle models.

Theorem
Every guarded formula valid on triangle models is provable in nwILµ.

Proof sketch:

• Given a sequent σ, construct an ω-regular validity game between Prover
and Refuter (à la Niwiński & Walukiewicz, 1996).

• A winning strategy for Prover corresponds to a (regular) proof of σ.

• A winning strategy for Refuter induces a (pre)countermodel M for σ.

• We make M satisfy triangle confluence by replacing the modal relation R
by the composition ≤;R. This does not break monotonicity of the
valuation nor falsification of ϕ in M.

15



A non-wellfounded proof system for iLµ: soundness and completeness

Theorem
If ϕ is provable in nwILµ then it is valid on triangle models.

Theorem
Every guarded formula valid on triangle models is provable in nwILµ.

Proof sketch:

• Given a sequent σ, construct an ω-regular validity game between Prover
and Refuter (à la Niwiński & Walukiewicz, 1996).

• A winning strategy for Prover corresponds to a (regular) proof of σ.

• A winning strategy for Refuter induces a (pre)countermodel M for σ.

• We make M satisfy triangle confluence by replacing the modal relation R
by the composition ≤;R. This does not break monotonicity of the
valuation nor falsification of ϕ in M.

15



Conclusion



Conclusion

The logic iLµ is an intuitionistic version of the modal µ-calculus with an
expressive universal modality that has many desirable properties:

• Elegant game semantics;

• Guardedness property;

• A guarded complete, cut-free, non-wellfounded proof system;

• Regular proofs and decidability (as the validity game is ω-regular).

The latter also means we can obtain a cyclic proof system with a local
soundness condition.

Directions for future work:

• Completeness for unguarded formulas;

• Interpolation (might be difficult with the Lewis arrow);

• A finite Hilbert axiomatisation?

• Adding diamonds?
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• Interpolation (might be difficult with the Lewis arrow);

• A finite Hilbert axiomatisation?

• Adding diamonds?

16



Conclusion

The logic iLµ is an intuitionistic version of the modal µ-calculus with an
expressive universal modality that has many desirable properties:

• Elegant game semantics;

• Guardedness property;

• A guarded complete, cut-free, non-wellfounded proof system;

• Regular proofs and decidability (as the validity game is ω-regular).

The latter also means we can obtain a cyclic proof system with a local
soundness condition.

Directions for future work:

• Completeness for unguarded formulas;

• Interpolation (might be difficult with the Lewis arrow);

• A finite Hilbert axiomatisation?

• Adding diamonds?

16



Conclusion

The logic iLµ is an intuitionistic version of the modal µ-calculus with an
expressive universal modality that has many desirable properties:

• Elegant game semantics;

• Guardedness property;

• A guarded complete, cut-free, non-wellfounded proof system;

• Regular proofs and decidability (as the validity game is ω-regular).

The latter also means we can obtain a cyclic proof system with a local
soundness condition.

Directions for future work:

• Completeness for unguarded formulas;

• Interpolation (might be difficult with the Lewis arrow);

• A finite Hilbert axiomatisation?

• Adding diamonds?

16



Conclusion

The logic iLµ is an intuitionistic version of the modal µ-calculus with an
expressive universal modality that has many desirable properties:

• Elegant game semantics;

• Guardedness property;

• A guarded complete, cut-free, non-wellfounded proof system;

• Regular proofs and decidability (as the validity game is ω-regular).

The latter also means we can obtain a cyclic proof system with a local
soundness condition.

Directions for future work:

• Completeness for unguarded formulas;

• Interpolation (might be difficult with the Lewis arrow);

• A finite Hilbert axiomatisation?

• Adding diamonds?

16



Conclusion

The logic iLµ is an intuitionistic version of the modal µ-calculus with an
expressive universal modality that has many desirable properties:

• Elegant game semantics;

• Guardedness property;

• A guarded complete, cut-free, non-wellfounded proof system;

• Regular proofs and decidability (as the validity game is ω-regular).

The latter also means we can obtain a cyclic proof system with a local
soundness condition.

Directions for future work:

• Completeness for unguarded formulas;

• Interpolation (might be difficult with the Lewis arrow);

• A finite Hilbert axiomatisation?

• Adding diamonds?

16



Conclusion

The logic iLµ is an intuitionistic version of the modal µ-calculus with an
expressive universal modality that has many desirable properties:

• Elegant game semantics;

• Guardedness property;

• A guarded complete, cut-free, non-wellfounded proof system;

• Regular proofs and decidability (as the validity game is ω-regular).

The latter also means we can obtain a cyclic proof system with a local
soundness condition.

Directions for future work:

• Completeness for unguarded formulas;

• Interpolation (might be difficult with the Lewis arrow);

• A finite Hilbert axiomatisation?

• Adding diamonds?

16



Conclusion

The logic iLµ is an intuitionistic version of the modal µ-calculus with an
expressive universal modality that has many desirable properties:

• Elegant game semantics;

• Guardedness property;

• A guarded complete, cut-free, non-wellfounded proof system;

• Regular proofs and decidability (as the validity game is ω-regular).

The latter also means we can obtain a cyclic proof system with a local
soundness condition.

Directions for future work:

• Completeness for unguarded formulas;

• Interpolation (might be difficult with the Lewis arrow);

• A finite Hilbert axiomatisation?

• Adding diamonds?

16



Conclusion

The logic iLµ is an intuitionistic version of the modal µ-calculus with an
expressive universal modality that has many desirable properties:

• Elegant game semantics;

• Guardedness property;

• A guarded complete, cut-free, non-wellfounded proof system;

• Regular proofs and decidability (as the validity game is ω-regular).

The latter also means we can obtain a cyclic proof system with a local
soundness condition.

Directions for future work:

• Completeness for unguarded formulas;

• Interpolation (might be difficult with the Lewis arrow);

• A finite Hilbert axiomatisation?

• Adding diamonds?

16



Conclusion

The logic iLµ is an intuitionistic version of the modal µ-calculus with an
expressive universal modality that has many desirable properties:

• Elegant game semantics;

• Guardedness property;

• A guarded complete, cut-free, non-wellfounded proof system;

• Regular proofs and decidability (as the validity game is ω-regular).

The latter also means we can obtain a cyclic proof system with a local
soundness condition.

Directions for future work:

• Completeness for unguarded formulas;

• Interpolation (might be difficult with the Lewis arrow);

• A finite Hilbert axiomatisation?

• Adding diamonds?

16



Conclusion

The logic iLµ is an intuitionistic version of the modal µ-calculus with an
expressive universal modality that has many desirable properties:

• Elegant game semantics;

• Guardedness property;

• A guarded complete, cut-free, non-wellfounded proof system;

• Regular proofs and decidability (as the validity game is ω-regular).

The latter also means we can obtain a cyclic proof system with a local
soundness condition.

Directions for future work:

• Completeness for unguarded formulas;

• Interpolation (might be difficult with the Lewis arrow);

• A finite Hilbert axiomatisation?

• Adding diamonds?

16



Conclusion

The logic iLµ is an intuitionistic version of the modal µ-calculus with an
expressive universal modality that has many desirable properties:

• Elegant game semantics;

• Guardedness property;

• A guarded complete, cut-free, non-wellfounded proof system;

• Regular proofs and decidability (as the validity game is ω-regular).

The latter also means we can obtain a cyclic proof system with a local
soundness condition.

Directions for future work:

• Completeness for unguarded formulas;

• Interpolation (might be difficult with the Lewis arrow);

• A finite Hilbert axiomatisation?

• Adding diamonds?

16



Conclusion

The logic iLµ is an intuitionistic version of the modal µ-calculus with an
expressive universal modality that has many desirable properties:

• Elegant game semantics;

• Guardedness property;

• A guarded complete, cut-free, non-wellfounded proof system;

• Regular proofs and decidability (as the validity game is ω-regular).

The latter also means we can obtain a cyclic proof system with a local
soundness condition.

Directions for future work:

• Completeness for unguarded formulas;

• Interpolation (might be difficult with the Lewis arrow);

• A finite Hilbert axiomatisation?

• Adding diamonds?

16



References

• Balbiani, P., Boudou, J., Diéguez, M. & Fernández-Duque, D. (2019).
Intuitionistic linear temporal logics.

• Das, A., van der Giessen, I. & Marin, S. (2023). Intuitionistic Gödel-Löb
logic, à la Simpson: Labelled systems and birelational semantics.

• Iemhoff, R., De Jongh, D., & Zhou, C. (2005). Properties of intuitionistic
provability and preservativity logics.

• Jäger, G. & M. Marti (2016). Intuitionistic common knowledge or belief.

• Litak, T., & Visser, A. (2018). Lewis meets Brouwer: constructive strict
implication.

• Ruitenburg, W. (1984). On the period of sequences (an(p)) in
intuitionistic propositional calculus.

• Venema, Y. (2024). Lectures on the modal µ-calculus.

17


	Introduction
	The logic iL 
	Game semantics for iL
	Guardedness
	A non-wellfounded proof system for iL
	Conclusion

