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Introduction to justification logic

▶ In modal logic, 2A can mean A is provable or known.
▶ Justification logic makes this knowledge explicit.

p [Artemov]

▶ 2A⇝ t:A, where t is a proof of A, or explicit knowledge of A.
▶ Read this as t justifies A.
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Introduction to justification logic

▶ Proof terms are equipped with operations.

▶ Gives an internal view of proof manipulations or tracing
knowledge.

▶ E.g. Proof application internalising modus ponens:

k : 2(A→B)→(2A→2B)⇝ jk : s:(A→B)→(t:A→s · t:B)

▶ Allow monotonicity of proofs

si :A → s1 + s2:A

where i ∈ {1, 2}.
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Introduction to justification logic

▶ First justification logic, Logic of Proofs (LP) is corresponding
logic for S4. [Artemov]

S4 ⊢ 2A ⇐⇒ ∃t such that LP ⊢ t:Ar

▶ Provides a connection to PA:

LP ⊢ t:A ⇐⇒ PA ⊢ Proof(t, A∗)

▶ Other justification logics include:
▶ Logics for S5 cube [Artemov et al., Brezhnev, Brünnler et al.]
▶ Geach/Scott-Lemmon logics [Fitting]
▶ Gödel-Löb logic [Shamkanov, Fitting]
▶ Non-normal modal logics [Rohani and Studer]
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Introduction to justification logic

▶ JL formally, extends the language of CPL with t:A.

▶ Proof terms t ::= x | c | (t + t) | (t · t).
▶ x ranges over proof variables: x represents arbitrary proofs.
▶ c ranges over proof constants – proof constants witness

axioms.
▶ Base axiomatisation extends CPL with

jk : s:(A → B) → (t:A → s · t:B)
j+ : (s:A ∨ t:A) → s + t:A

A is an axiom instance
can

cn: . . . :c1:A
▶ Add other proof operators and axioms if required.
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Internalisation of justification logic

▶ Justification logic can internalise its own reasoning.

Lemma (Lifting Lemma)
If JL ⊢ A1 → . . . → An → B, then there exists a proof term
t(x1, . . . , xn) such that

LP ⊢ x1:A1 → . . . → xn:An → t(x1, . . . , xn):B

This mirrors the external modal view:

A1, . . . , An ⇒ B
k
2A1, . . . ,2An ⇒ 2B

6 / 29



Internalisation of justification logic

▶ Justification logic can internalise its own reasoning.

Lemma (Lifting Lemma)
If JL ⊢ A1 → . . . → An → B, then there exists a proof term
t(x1, . . . , xn) such that

LP ⊢ x1:A1 → . . . → xn:An → t(x1, . . . , xn):B

This mirrors the external modal view:

A1, . . . , An ⇒ B
k
2A1, . . . ,2An ⇒ 2B

6 / 29



Internalisation of justification logic

▶ Justification logic can internalise its own reasoning.

Lemma (Lifting Lemma)
If JL ⊢ A1 → . . . → An → B, then there exists a proof term
t(x1, . . . , xn) such that

LP ⊢ x1:A1 → . . . → xn:An → t(x1, . . . , xn):B

This mirrors the external modal view:

A1, . . . , An ⇒ B
k
2A1, . . . ,2An ⇒ 2B

6 / 29



Internalisation of justification logic

▶ Justification logic can internalise its own reasoning.

Lemma (Lifting Lemma)
If JL ⊢ A1 → . . . → An → B, then there exists a proof term
t(x1, . . . , xn) such that

LP ⊢ x1:A1 → . . . → xn:An → t(x1, . . . , xn):B

This mirrors the external modal view:

A1, . . . , An ⇒ B
k
2A1, . . . ,2An ⇒ 2B

6 / 29



Internalisation of justification logic

▶ As a corollary, justification logic can emulate necessitation

⊢ A
nec

⊢ 2A

Corollary
If JL ⊢ A, then there exists a proof term t such that

LP ⊢ t:A

7 / 29



Correspondence between modal logic and justification logic

▶ Both modal logic and justification logic share a similar
structure.

▶ Terms behave externally like 2:
▶ Forgetting each term into a box
▶ JL ⊢ A ⇒ ML ⊢ Af

▶ For each 2 we can find its corresponding proof term:

ML ⊢ 2A =⇒ ∃t such that JL ⊢ t:Ar

.
▶ 2s are realised into proof terms through a realisation

function r .
▶ Realisation can be done proof-theoretically or semantically.

b [Artemov, Fitting]
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Correspondence between modal logic and justification logic

▶ Proof-theoretic realisation "re-writes" proofs of modal logic,
into proofs of justification logic.

▶ First realisation method uses cut-free Gentzen-style sequent
calculi. [Artemov, Brezhnev]

▶ Method was expanded to hypersequent and nested sequent
calculi.
s [Artemov et. al, Brünnler et. al]

▶ Briefly outline the method for constructing a realisation with
nested sequents. [Goetschi and Kuznets]
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Nested sequents

▶ A nested sequent is a finite multiset of formulas and boxed
sequents.

▶ Γ ::= ∅ | A, Γ | Γ, [Γ]
▶ fm(∅) = ⊥, fm(A, Γ) = A ∨ fm(Γ), and

fm(Γ1, [Γ2]) = fm(Γ1) ∨ 2fm(Γ2)
▶ A context is a nested sequent with one or several holes { }

which can take the place of a formula in the sequent.
▶ This lets us write Γ1{Γ2} when we replace the hole in Γ1{ }

by Γ2
▶ E.g. Γ{ } = A,

[
B, [{ }, [D]]

]
. Then

Γ{C} = A,
[
B, [C , [D]]

]
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Nested system nK

id
Γ{a, ā}

Γ{A} Γ{B}
∧

Γ{A ∧ B}
Γ{A, B}

∨
Γ{A ∨ B}

Γ{[A]}
2

Γ{2A}

Γ{[A, ∆]}
k

Γ{3A, [∆]}

Theorem (Soundness and Completeness)

K ⊢ A ⇐⇒ nK ⊢ A

(Proved using a cut-elimination argument)

Γ{A} Γ{Ā}
cut

Γ{∅}

s [Brünnler, Poggiolesi]
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Realisation with nested sequents

Theorem
There exists a realisation function r such that

K ⊢ A ⇒ JK ⊢ Ar

Proof sketch:
▶ Take a cut-free nested sequent proof of A.
▶ Construct a realisation "top-down".
▶ Proceed by induction on the height of the proof of A.
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Realisation with nested sequents

▶ For the base case, proof is an instance of id.

id
Γ{a, ā}

▶ "Replicate" the soundness of this rule in justification logic.

▶ E.g. id
p, [a, ā]

▶ fm(p, [a, ā]) = p ∨ 2(a ∨ ā)
▶ Construct a realisation through the following:
▶ JK ⊢ a ∨ ā
▶ Apply constructive necessitation JK ⊢ t:(a ∨ ā)
▶ JK ⊢ p ∨ t:(a ∨ ā)
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13 / 29



Realisation with nested sequents

▶ For the base case, proof is an instance of id.

id
Γ{a, ā}
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Realisation with nested sequents

▶ For inductive case, consider each rule of the system:

Γ1 · · · Γnrule
Γ

▶ Using the inductive hypothesis, we have some realisations
r1, . . . rn with JK ⊢ Γ1

r1 , . . . , JK ⊢ Γn
rn .

▶ Using these theorems, we construct a realisation r on Γ.
▶ "Replicate" the soundness of this rule in justification logic.
▶ Difficulty here is dealing with nesting where rules are applied

within brackets.

14 / 29
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Realisation with nested sequents

▶ Consider the following:

p, [q1] p, [q2]
∧

p, [q1 ∧ q2]

with realisations (p, [q1])r1 = p ∨ t1:q1 and
(p, [q2])r2 = p ∨ t2:q2

▶ Construct the new realisation r with the following:
▶ JK ⊢ q1 → q2 → (q1 ∧ q2)
▶ Lifting Lemma: JK ⊢ t1:q1 → t2:q2 → t(t1, t2):(q1 ∧ q2)
▶ JK ⊢ (p ∨ t1:q1) → (p ∨ t2:q2) → (p ∨ t(t1, t2):(q1 ∧ q2))
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Why do we need a cut-free proof system?

▶ Rules give a manageable way constructing realisations
top-down.

▶ Modus ponens and cut rules in modal logic don’t always
translate to justification logic.

▶ E.g.
2A → 2A (2A → 2A) → B

mp
B

x :A → t · x :A (x :A → x :A) → B
mp

?

where t is a proof of A → A.
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Justification logic over an intutionistic base

▶ Focus is on intuitionistic justification logics.

▶ Past work includes:
▶ Explicit counterpart to iS4. [Artemov]
▶ Connections to Heyting arithmetic (HA)

b [Artemov and Iemhoff, Dashkov]
▶ Curry-Howard correspondence [Steren and Bonelli]
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Intuitionistic diamonds
▶ What about 3?

▶ Intuitionistic 2 and 3 are not De Morgan dual.

2A ̸↔ ¬3¬A

▶ Language L2 :

A ::= ⊥ | p | (A ∧ A) | (A ∨ A) | (A → A) | 2A | 3A

▶ Smallest intuitionistic modal logic with 3 is constructive
modal logic CK. [Bellin et al.]

k1 : 2(A → B) → (2A → 2B)

k2 : 2(A → B) → (3A → 3B)

▶ CK (and some extensions) have Gentzen-style proof theory
p [Bierman and de Paiva]
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Intuitionistic diamonds

▶ Idea: Make diamond explicit with satisfiers.

3A⇝ µ:A

▶ µ:A read as µ satisfies A, or µ is a model of A.
s [Kuznets, Marin, Straßburger]

▶ Language LJ:

A ::= ⊥ | p | (A ∧ A) | (A ∨ A) | (A → A) | t:A | µ:A

▶ Satisfier terms µ ::= α | (µ ⊔ µ) | (t ⋆ µ)
▶ Proof terms encapsulates global reasoning.
▶ Satisfier terms encapsulates local reasoning, or reasoning

about consistency.
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Intuitionistic diamonds

▶ Justification counterpart: [Kuznets, Marin and Straßburger]
jk1 : s:(A → B) → (t:A → s · t:B)

jk2 : s:(A → B) → (µ:A → s ⋆ µ:B)
j+ : (s:A ∨ t:A) → s + t:A
j⊔ : (µ:A ∨ ν:A) → µ ⊔ ν:A

A is an axiom instance
can

cn: . . . :c1:A
▶ Method of realisation is established similarly.
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Modal logic IK

▶ Objective: justification counterpart of intuitionistic variant of
modal logic IK [Fischer Servi, Plotkin and Stirling]

▶ Has following axiomatisation by extending IPL with:
k1 : 2(A → B) → (2A → 2B)
k2 : 2(A → B) → (3A → 3B)
k3 : 3(A ∨ B) → (3A ∨ 3B)
k4 : (3A → 2B) → 2(A → B)
k5 : 3⊥ → ⊥

⊢ A
nec

⊢ 2A
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Justification logic JIK

▶ Language LJ:

A ::= ⊥ | p | (A ∧ A) | (A ∨ A) | (A → A) | t:A | µ:A

▶ Proof terms t ::= x | c | (t + t) | (t · t) | (µ ▷ t).
▶ Satisfier terms µ ::= α | (µ ⊔ µ) | (t ⋆ µ)
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Justification logic JIK

▶ Axiomatisation given by extending IPL with:

jk1 : s:(A → B) → (t:A → s · t:B)
jk2 : s:(A → B) → (µ:A → s ⋆ µ:B)
jk3 : µ:(A ∨ B) → (µ:A ∨ µ:B)
jk4 : (µ:A → t:B) → µ ▷ t:(A → B)
jk5 : µ:⊥ → ⊥
j+ : (s:A ∨ t:A) → s + t:A
j⊔ : (µ:A ∨ ν:A) → µ ⊔ ν:A

A is an axiom instance
can

cn: . . . :c1:A
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Establishing correspondence: JIK to IK

▶ Each proof term replaced with a 2.
▶ Each satisfier term replaced with a 3.
▶ Achieved through the following:

Definition (Forgetful projection)
The forgetful projection is a map

(·)f : LJ → L2

inductively defined as follows:
⊥f := ⊥ (t:A)f := 2Af

pf := p (µ:A)f := 3Af

(A ∗ B)f := (Af ∗ Bf) where ∗ ∈ {∧, ∨, →}
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Establishing correspondence: JIK to IK

Result is formally stated as follows:

Theorem
JIK ⊢ A ⇒ IK ⊢ Af .

Proof.
Apply forgetful projection on axioms of JIK to see we get theorems
of IK.
For example:

jk4 : ((µ:A → t:B) → µ ▷ t:(A → B))f = (3A → 2B) → 2(A → B)
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Establishing correspondence: IK to JIK

Idea:
▶ Systematically replace each 2 with a proof term, and each 3

with a satisfier term.

▶ The objective is to produce a realisation function:

Definition (Realisation)
A realisation is a map (·)r : L2 → LJ such that (Ar )f = A for each
A ∈ L2 .
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Establishing correspondence: IK to JIK

Correspondence is formally stated as:

Theorem (Marin and P.)
There exists a realisation function r such that

IK ⊢ A ⇒ JIK ⊢ Ar

▶ Only cut-free system available is a nested sequent system.
s [Straßburger]

▶ A two-sided system with both structural boxes and diamonds.
▶ Adapt the method in the classical case.
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Concluding remarks

▶ Provides a treatment to make 3 explicit for most
intuitionistic modal logics.

▶ Method for realisation can be applied to other nested sequent
systems for intuitionistic modal logics.
a [Arisaka et al., Kuznets and Straßburger]
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Concluding remarks
Future work:

▶ Exploring connections to arithmetic.

K, S4 PA

IK, IS4 HA

¬¬ ¬¬

?

▶ Understanding 3 and satisfiers in classical logic.

IK + LEM = K ⇝ JIK + LEM ?= JK

▶ Semantics for JIK.
▶ Proof theory of JIK
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