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Introduction to justification logic

» In modal logic, DA can mean A is provable or known.

> Justification logic makes this knowledge explicit.

[Artemov]
> OA ~ t:A, where t is a proof of A, or explicit knowledge of A.
» Read this as t justifies A.
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Introduction to justification logic

» Proof terms are equipped with operations.

» Gives an internal view of proof manipulations or tracing
knowledge.

» E.g. Proof application internalising modus ponens:

k:O0(A—B)—(0A—0OB) ~ jk : s:(A—=B)—(t:A—s-t:B)

» Allow monotonicity of proofs
SitA— 51+ A

where i € {1,2}.
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Introduction to justification logic

» First justification logic, Logic of Proofs (LP) is corresponding
logic for S4. [Artemov]

S4+ 0OA <= 3t such that LP - t:A"

» Provides a connection to PA:

LP - t:A <= PA+ Proof(t, A*)

» Other justification logics include:

» Logics for S5 cube [Artemov et al., Brezhnev, Briinnler et al.]
» Geach/Scott-Lemmon logics [Fitting]
» Godel-Lob logic [Shamkanov, Fitting]
» Non-normal modal logics [Rohani and Studer]
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Introduction to justification logic

» JL formally, extends the language of CPL with t:A.
» Proof terms t = x| c| (t+1t) | (t-1).
P x ranges over proof variables: x represents arbitrary proofs.

» ¢ ranges over proof constants — proof constants witness
axioms.

» Base axiomatisation extends CPL with
jk : ss(A—=B)—= (ttA—s-t:B)
i+ (ssAVtA)—s+tA

A is an axiom instance

can

» Add other proof operators and axioms if required.
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Internalisation of justification logic

» Justification logic can internalise its own reasoning.

Lemma (Lifting Lemma)
IfJLE AL — ... — A, — B, then there exists a proof term
t(x1,...,xn) such that

LPF x1:A1 — ... = xp:Ap = t(x1, ..., xn):B

This mirrors the external modal view:

A= B
OA;,...,0A, = OB
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Internalisation of justification logic

> As a corollary, justification logic can emulate necessitation

FA
FDOA

nec

Corollary
If JLE A, then there exists a proof term t such that

LP - t:A
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Correspondence between modal logic and justification logic

» Both modal logic and justification logic share a similar
structure.
> Terms behave externally like O:

» Forgetting each term into a box
> JLEFA= MLF Af

» For each O we can find its corresponding proof term:

MLF OA = 3t such that JLF t:A"

» Os are realised into proof terms through a realisation
function r.

» Realisation can be done proof-theoretically or semantically.
[Artemov, Fitting]
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Correspondence between modal logic and justification logic

» Proof-theoretic realisation "re-writes" proofs of modal logic,
into proofs of justification logic.
» First realisation method uses cut-free Gentzen-style sequent
calculi. [Artemov, Brezhnev]
> Method was expanded to hypersequent and nested sequent
calculi.
[Artemov et. al, Briinnler et. al]
» Briefly outline the method for constructing a realisation with
nested sequents. [Goetschi and Kuznets]
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A nested sequent is a finite multiset of formulas and boxed
sequents.

M=o | ATl

fm(@) =L, fm(A,I) = AV fm(l), and

fm(rl, [rz]) = fm(l'l) V Dfm(rg)

A context is a nested sequent with one or several holes { }
which can take the place of a formula in the sequent.

This lets us write ['1{I'2} when we replace the hole in I'1{ }
by I'2
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Nested sequents

> A nested sequent is a finite multiset of formulas and boxed
sequents.

> =g | AT |
» fm(@) =1, fm(A,I) = AV fm(l), and
fm(rl, [rz]) = fm(l'l) V Dfm(rg)

» A context is a nested sequent with one or several holes { }
which can take the place of a formula in the sequent.

» This lets us write '1{l'2} when we replace the hole in ';{ }
by I'2
> Eg T{}=AI[BI[{},[D]]]. Then

r{C} = A, [Bv [C7 [D]]]
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Nested system nK

r{A} Tr{B} r{A, B}

- A

d M{a,a} 4 r{AA B} v r{Av B}

M{A Al
M{OA [A]}

r{oA}

11/29



Nested system nK

G AT B TAB) (A
{a, 3} r{An B} r{Av B} r{OA}

M{A Al
M{OA [A]}

Theorem (Soundness and Completeness)

KFA < nKFA

(Proved using a cut-elimination argument)

r{A} T{A}
P!

cu

[Briinnler, Poggiolesi]
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Realisation with nested sequents

Theorem
There exists a realisation function r such that

KFA= JKF A"

Proof sketch:
> Take a cut-free nested sequent proof of A.
» Construct a realisation "top-down".

» Proceed by induction on the height of the proof of A.
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id

M{a,3a}
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Realisation with nested sequents

» For the base case, proof is an instance of id.

id

M{a,3a}

> "Replicate" the soundness of this rule in justification logic.

v

E.g. id -
p; [a, 3]

fm(p,[a,3]) = pV O(aVa)

Construct a realisation through the following:
JKFava

Apply constructive necessitation JK - t:(aV 3)

vvyyypy
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Realisation with nested sequents

» For the base case, proof is an instance of id.

d M{a,3a}

> "Replicate" the soundness of this rule in justification logic.

v

E.g. id

p,[a, 3]
fm(p,[a,3]) = pV O(aVa)
Construct a realisation through the following:
JKFava
Apply constructive necessitation JK - t:(aV 3)
JKEpVit(aVva)

vVvYyyvyy

13/29
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Realisation with nested sequents

v

For inductive case, consider each rule of the system:

o I,
rule ——

Using the inductive hypothesis, we have some realisations
riy...rpwith JKET™ 00 JKET ™,

Using these theorems, we construct a realisation r on I.
"Replicate" the soundness of this rule in justification logic.

Difficulty here is dealing with nesting where rules are applied
within brackets.
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Realisation with nested sequents

» Consider the following:

pla]  p,[q2]
p, (a1 A q2]

with realisations (p, [g1])" = p V t1:g1 and
(p.[@])® =pV t2:q2
» Construct the new realisation r with the following:
> JK|—q1—>q2—>(q1/\q2)
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Realisation with nested sequents

» Consider the following:

pla]  p,[q2]
p, (a1 A q2]

with realisations (p, [g1])" = p V t1:g1 and
(p.[@])® =pV t2:q2
» Construct the new realisation r with the following:
> JK|—q1—>q2—>(q1/\q2)
> Lifting Lemma: JKF t1:g1 — t2:q2 — t(t1, t2):(q1 A G2)
> JKH+ (p V t1:q1) — (p V t21(]2) — (p \% t(tl, tz)i(ql A QQ))

15/29
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Why do we need a cut-free proof system?

> Rules give a manageable way constructing realisations
top-down.

» Modus ponens and cut rules in modal logic don't always
translate to justification logic.

> E.g.
OA— DA (DA—O0OA)—B

B

mp

xA—t-xA (xA—xA)—B
?

mp

where t is a proof of A — A.

16/29



Justification logic over an intutionistic base

» Focus is on intuitionistic justification logics.

17/29



Justification logic over an intutionistic base

» Focus is on intuitionistic justification logics.
P Past work includes:
» Explicit counterpart to iS4. [Artemov]

17/29



Justification logic over an intutionistic base

» Focus is on intuitionistic justification logics.
P Past work includes:

» Explicit counterpart to iS4. [Artemov]
» Connections to Heyting arithmetic (HA)
[Artemov and lemhoff, Dashkov]

17/29



Justification logic over an intutionistic base

» Focus is on intuitionistic justification logics.
P Past work includes:

» Explicit counterpart to iS4. [Artemov]
» Connections to Heyting arithmetic (HA)

[Artemov and lemhoff, Dashkov]
» Curry-Howard correspondence [Steren and Bonelli]

17/29



Justification logic over an intutionistic base

» Focus is on intuitionistic justification logics.
P Past work includes:

» Explicit counterpart to iS4. [Artemov]
» Connections to Heyting arithmetic (HA)

[Artemov and lemhoff, Dashkov]
» Curry-Howard correspondence [Steren and Bonelli]

17/29



Intuitionistic diamonds
» What about &7

18/29



Intuitionistic diamonds

» What about &7
P Intuitionistic O and <& are not De Morgan dual.

OA §L> -O—A

18/29



Intuitionistic diamonds

» What about &7
P Intuitionistic O and <& are not De Morgan dual.

DA ¢ ~O-A

» Language Lgo:
Ai=1]p|(ANA)|(AVA) | (A= A)|OA|CA

18/29



Intuitionistic diamonds

» What about &7
P Intuitionistic O and <& are not De Morgan dual.

OA §L> -O—A

» Language Lgo:
Ai=1]p|(ANA)|(AVA) | (A= A)|OA|CA

» Smallest intuitionistic modal logic with < is constructive
modal logic CK. [Bellin et al ]

ky:O(A—B)— (ODA—0OB)
ky : O(A— B) = (¢CA— ©OB)

18/29



Intuitionistic diamonds

» What about &7
P Intuitionistic O and <& are not De Morgan dual.

OA §L> -O—A

» Language Lgo:
Ai=1]p|(ANA)|(AVA) | (A= A)|OA|CA

» Smallest intuitionistic modal logic with < is constructive
modal logic CK. [Bellin et al ]

ky:O(A—B)— (ODA—0OB)
ky : O(A— B) = (¢CA— ©OB)

» CK (and some extensions) have Gentzen-style proof theory

[Bierman and de Paiva]
18/29
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Intuitionistic diamonds

>

\4

Idea: Make diamond explicit with satisfiers.
CA~ 1A

1:A read as p satisfies A, or y is a model of A.
[Kuznets, Marin, StraBburger]

Language L;:

Ai=1|p|(ANA) | (AVA) | (A= A) | tA]| A

Satisfier terms p = a | (U p) | (t* p)
Proof terms encapsulates global reasoning.

Satisfier terms encapsulates local reasoning, or reasoning
about consistency.

19/29
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Intuitionistic diamonds

> Justification counterpart:

kg
ko
i+
ju

[Kuznets, Marin and StraBburger]
s:(A— B) — (t:A—s- t:B)

si(A— B) = (1A — s* u:B)

(ssAV t:A) > s+ t:A

(WAVVA) = U A
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Intuitionistic diamonds

» Justification counterpart: [Kuznets, Marin and StraBburger]
jk;  si(A—B) = (ttA—s- t:B)
jko  si(A— B) = (A — s*u:B)
i+ ¢ (ssAVtA)—=s+tA
o o (wAVEA) = pU A
A is an axiom instance

can

» Method of realisation is established similarly.
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Modal logic IK

» Objective: justification counterpart of intuitionistic variant of

modal logic IK [Fischer Servi, Plotkin and Stirling]
> Has foIIowmg axiomatisation by extending IPL with:

ki : OA—B)—(O0A—0OB)

ke : OA—=B)— (CA—=OB)

ks : O(AVB)—(CAVOB)
ke : (CA—0OB)—O(A— B)
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Modal logic IK

» Objective: justification counterpart of intuitionistic variant of
modal logic IK [Fischer Servi, Plotkin and Stirling]

> Has foIIowmg axiomatisation by extending IPL with:

kq
ko
k3
kg
ks

0O(A— B)— (DA—OB)
O(A— B) = (CA— OB)
O(AV B)— (CAVOB)
(CA—0OB)—0O(A— B)
CL—1
FA

FOA

nec
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Justification logic JIK

> AX|omat|sat|on given by extending IPL with:
jk; @ si(A—=B)—= (ttA—s-t:B)
jky ¢ si(A— B) = (A — s* u:B)
jks + pw(AV B) = (wAV u:B)
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Justification logic JIK

> AX|omat|sat|on given by extending IPL with:

kg
iko
Jk3
ik
Jks
I+
ju

ss(A—B)— (ttA—s-t:B)
si(A— B) = (1A — s*u:B)
w:(AV B) = (:AV w:B)
(wA—=t:B) = u>t:(A— B)
wl — 1
(sstAV tA) > s+ tA
(wAVVA) = pUvA

A is an axiom instance
can
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Establishing correspondence: JIK to IK

» Each proof term replaced with a O.

» Each satisfier term replaced with a <.

» Achieved through the following:
Definition (Forgetful projection)

The forgetful projection is a map

() Ly = Lo
inductively defined as follows:
1f =1 (t:A)f
pro=p (u:A)

(Ax B) = (A" % Bf) where x € {A,V, =}

_DAf
= OAf
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Establishing correspondence: JIK to IK

Result is formally stated as follows:

Theorem
JKF- A= IK+ A

Proof.

Apply forgetful projection on axioms of JIK to see we get theorems

of IK.
For example:

jkg : (A= t:B) = pv t:(A— B)) = (0A— OB) —» O(A— B)
O
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Establishing correspondence: IK to JIK

ldea:

» Systematically replace each O with a proof term, and each ¢
with a satisfier term.

» The objective is to produce a realisation function:

Definition (Realisation)

A realisation is a map (-)" : Lo — £ such that (A")" = A for each
Ac Ln.
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Establishing correspondence: IK to JIK

Correspondence is formally stated as:

Theorem (Marin and P.)

There exists a realisation function r such that

IKFA= JIKF A"

» Only cut-free system available is a nested sequent system.
[StraBburger]

> A two-sided system with both structural boxes and diamonds.

» Adapt the method in the classical case.

27/29
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Concluding remarks

» Provides a treatment to make < explicit for most
intuitionistic modal logics.
> Method for realisation can be applied to other nested sequent
systems for intuitionistic modal logics.
[Arisaka et al., Kuznets and StraBburger]
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Concluding remarks
Future work:

» Exploring connections to arithmetic.

K,S4 — 5 PA

IK, 1S4 ————— HA

» Understanding < and satisfiers in classical logic.

IK+LEM =K ~ JIK+LEM = JK

» Semantics for JIK.
» Proof theory of JIK
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