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Modal Logic
▶ Normal propositional modal logic:

α, β ::= p | ⊥ | α → β | □α

▶ Classical logic plus Necessitation, axiom K and some
combination of axioms D, T, B, 4 and 5.

RN ⊢⋆ A ⇒⊢⋆ □A K □(A → B) → (□A → □B)

D □A → ♢A
T □A → A
B A → □♢A
4 □A → □□A
5 ♢A → □♢A
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Kripke Semantics

▶ The usual relational semantics of “possible worlds”

M,w ⊩ □A iff for all wRv implies M, v ⊩ A;

▶ Frame conditions:
D : Seriality
T : Reflexivity
B : Symmetry
4 : Transitivity
5 : Euclidianness

What about the “standard” truth table semantics?
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Bad news

▶ Gödel: intuitionistic logic admits no finite-valued
truth-functional semantics

▶ Since IPL can be faithfully embedded in S4, then S4 itself is
not finite-valued.

▶ Dugundji: The above (negative) result holds for the whole
modal cube.

We are then in a sort of dead end...



Kearns Semantics [Kea81]

▶ No need of possible worlds to give meaning to modalities.
▶ Non-deterministic matrix (nmatrix) generalize truth

tables [AL05].
▶ 4 truth values for a complete system for KT,S4 and S5.

A □KT4A ♢KT4A
F {F} {F}
f {F, f} {T, t}
t {F, f} {T, t}
T {T} {T}



A simple example in S4

A □KT4A ♢KT4A
F {F} {F}
f {F, f} {T, t}
t {F, f} {T, t}
T {T} {T}

α → β F f t T
F T T T T
f t T, t T, t T
t f f T, t T
T F f t T

▶ p → p

▶ ♢(p → p)
▶ □(p → p) (bad surprise...)
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Kearns Semantics [Kea81]

Soundness fails!

p p → p □(p → p)
F T T
f T T
f t F, f
t T T
t t F, f
T T T

▶ Kearns’ solution: level valuations, that remove
“undesirable” valuations.



Kearns Semantics [Kea81]

p p → p □(p → p) · · ·
F T T · · ·
f T T · · ·

× f t F, f · · ·
t T T · · ·

× t t F, f · · ·
T T T · · ·

▶ Since p → p is a tautology, a good level valuation must
assign a designed value to □α.

▶ This enforces the necessitation rule.

However, this is NOT a decision procedure:
1. It requires to check all the tautologies.
2. Some rows will be removed “later” (when do we stop?)
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Grätz Procedure [Grä22]: Partial Valuations

▶ Sound and complete decision procedure for KT and KT4.
▶ Only subformulas of the formula are evaluated.
▶ Certain values creates dependencies that must be

satisfied.

▶ E.g., t below is not properly supported:
p p → p □(p → p)
F T T
f T T

× f t F, f
t T T

× t t F, f
T T T
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Our Contribution

State of the art
▶ Kearns’ level valuations for 9/15 modal logics.
▶ Decision procedures only for KT and KT4.

Our Contribution
▶ Kearns’ level valuations and decision procedures for all the

15 logics.
▶ All such procedures are systematically constructed (and

previous ones are obtained as instances).
▶ The key point: meaning and classification of truth values.
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Ecumenism

The present [Kearnsean] semantic account is simpler
than the standard [Kripkean] account [...] For I do not
think there are such things as possible worlds, or even
that they constitute a useful fiction.” (Kearns)

One of the virtues of Kripkean semantics is the corre-
spondence between axioms and the accessibility rela-
tions [...] If there is a correspondence [with Kearnsean
semantics] it is not a simple one. (Omori and Skurt)

Both semantics are indeed very well related!
Our relational model, on partial valuations, preserves the usual
frame conditions in modal logics!
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How Many Truth Values?

The 8 values introduced in [OS16] for K.

Truth-value Intuitive meaning
v(α) = F ♢¬α ∧ ¬α ∧□¬α
v(α) = f ♢¬α ∧ ¬α ∧ ♢α
v(α) = f1 □α ∧ ¬α ∧□¬α
v(α) = f2 □α ∧ ¬α ∧ ♢α
v(α) = t2 ♢¬α ∧ α ∧□¬α
v(α) = t1 □α ∧ α ∧□¬α
v(α) = t ♢¬α ∧ α ∧ ♢α
v(α) = T □α ∧ α ∧ ♢α
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Distinguished Sets

Classification of the 8 values:
1. D = {T, t, t1, t2} (α is true)
2. N = {T, t1, f2, f1} (α is necessary)
3. I = {F, f1, t2, t1} (¬α is necessary)
4. P = {T, t, f2, f} (α is possible)
5. PN = {F, f, t, t2} (¬α is possible)

For example, t2(α) = ♢¬α ∧ α ∧□¬α, hence:
▶ t2 ∈ PN (¬α is possible)
▶ t2 ∈ D (designated value, α is true “now”)
▶ t2 ∈ I (α is impossible)



Do we need all the 8 values?

t1 and f1 denote “states” without successors:

t1(α) = □¬α ∧ α ∧□α
f1(α) = □¬α ∧ ¬α ∧□α

▶ Not needed in logics characterizing serial frames.
▶ Our approach: The “modal characterization” of truth values

yields conditions on those values. These conditions are
systemically obtained for all the 15 logics.
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Values per Family of Logics

Truth-value Meaning
v(α) = F ♢¬α,¬α,□¬α
v(α) = f ♢¬α,¬α,♢α
v(α) = f1 □α,¬α,□¬α
v(α) = f2 □α,¬α,♢α
v(α) = t2 ♢¬α, α,□¬α
v(α) = t1 □α, α,□¬α
v(α) = t ♢¬α, α,♢α
v(α) = T □α, α,♢α

Distinguished sets
▶ D = {T, t, t1, t2}
▶ N = {T, t1, f2, f1}
▶ I = {F, f1, t2, t1}
▶ P = {T, t, f2, f}
▶ PN = {F, f, t, t2}

Axiom Condition Rule

D □α → ♢α
v(α) ∈ N v(α) ∈ P
v(α) ∈ I v(α) ∈ PN

Values allowed
▶ V(K) = {T, t, t1, t2, F, f, f1, f2}
▶ V(KD) = {T, t,Xt1, t2, F, f,Xf1, f2}
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D □α → ♢α
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T □α → α
v(α) ∈ N v(α) ∈ D
v(α) ∈ I v(α) ̸∈ D

Values allowed
▶ V(K) = {T, t, t1, t2, F, f, f1, f2}
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The Matrices

α → β F f f1 f2 t2 t1 t T
F {T} {T} {T} {T} {T} {T} {T} {T}
f {t} {T, t} {t1} {T} {t} {T} {T, t} {T}
f1 {t2} {t} {t1} {T} {t2} {t1} {t} {T}
f2 {t2} {t} {t1} {T} {t2} {t1} {t} {T}
t2 {f2} {f2} {f2} {f2} {T} {T} {T} {T}
t1 {F} {f} {f1} {f2} {t2} {t1} {t2} {T}
t {f} {f, f2} {f2} {f2} {t} {T} {T, t} {T}
T {F} {f} {f1} {f2} {t2} {t1} {t} {T}



The Matrices

α □Kα □KBα □K4α □K5α □K45α

F {F, f, f2} {F} {F, f, f2} {F} {F}
f {F, f, f2} {F} {F, f, f2} {F} {F}
f1 {t1} {t1} {t1} {t1} {t1}
f2 {T, t, t2} {t2} {T} {T, t2} {T}
t2 {F, f, f2} {F, f, f2} {F, f, f2} {F} {F}
t1 {t1} {t1} {t1} {t1} {t1}
t {F, f, f2} {F, f, f2} {F, f, f2} {F} {F}
T {T, t, t2} {T, t, t2} {T} {T, t2} {T}



The Matrices

α □KTα □KTBα □KT4α □KTB45α

F {F} {F} {F} {F}
f {F, f} {F} {F, f} {F}
t {F, f} {F, f} {F, f} {F}
T {T, t} {T, t} {T} {T}



The Matrices

α □KDα □KDBα □KD4α □KD5α □KD45α

F {F, f, f2} {F} {F} {F} {F}
f {F, f, f2} {F} {F, f, f2} {F} {F}
f2 {T, t, t2} {t2} {T} {T, t2} {T}
t2 {F, f, f2} {F, f, f2} {F} {F} {F}
t {F, f, f2} {F, f, f2} {F, f, f2} {F} {F}
T {T, t, t2} {T, t, t2} {T} {T, t2} {T}
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Level Semantics Revisited

Definition (Level valuation in M⋆)
Let Val(M⋆) be the set of valuation functions in M⋆.

L0(M⋆) Every v ∈ Val(M⋆) where, if ∃α.v(α) ∈ {t1, f1}, then
∀β, v(β) ∈ {t1, f1}.

Lk+1(M⋆) Every v ∈ Lk such that, for every formula α, if
⊨Lk α, then v(α) ∈ {T, t1}

The set of level valuations in M⋆ is given by

L(M⋆) =
∞⋂
n=0

Ln

Soundness (Γ ⊢⋆ α ⇒ Γ ⊨L(M⋆) α) is easy.
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Completeness of Level Valuations
▶ Henkin construction where characteristic functions are

obtained directly from the meaning of the truth values.

vL∆(α) = ι iff ∆ ⊢L ι(α)

For instance, for the family KT⋆:

vL∆(α) =


F iff ∆ ⊢L □¬α (and ∆ ⊢L ¬α ∧ ♢¬α)
f iff ∆ ⊢L ¬α ∧ ♢α (and ∆ ⊢L ♢¬α)
t iff ∆ ⊢L α ∧ ♢¬α (and ∆ ⊢L ♢α)
T iff ∆ ⊢L □α (and ∆ ⊢L α ∧ ♢α)

.

Lemma (Adequacy)
For every logic L and maximally consistent set ∆, vL∆ is a level
valuation.

Theorem (Completeness)
For every modal logic L and associated Nmatrix M,
Γ ⊨L(M⋆) α ⇒ Γ ⊢⋆ α.
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Back to the Meaning of Values

Consider a valuation v s.t v(α) = f2:
▶ Recall: f2(α) = □α ∧ ¬α ∧ ♢α.
▶ Hence, ♢α needs to be true.
▶ This requires the existence of a valuation v′ s.t. v′(α) ∈ D,

thus fulfilling the requirement ♢α.

▶ Such v′ must satisfy some extra requirements (due to □):
▶ By NEC: if v(β) ∈ N and vRv′ then v′(β) ∈ D
▶ In, e.g., K4: if v(β) ∈ N and vRv′ then v′(β) ∈ N .

We will systematically build a relational model for partial
valuations.
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Relational Model

Definition (Pre-model ⟨Π,R⟩)
Where Π ⊆ [Λ → V]M is a set of partial valuations, and
R ⊆ Π× Π relates valuations:

1. If v(α) ∈ P , then ∃v′ ∈ Π such that vRv′ and v′(α)∈ D;
2. If v(α) ∈ PN , then ∃v′ ∈ Π such that vRv′ and v′(α)̸∈ D.

α . . . β . . .

v : . . .P . . .PN . . .

↓∃ ↓∃
v′ : . . .D . . .D∁ . . .



From Pre-models to K-Models

Property Condition Implies

nec v(α) ∈ N and vRv′ v′(α) ∈ D
v(α) ∈ I and vRv′ v′(α) ̸∈ D

▶ Notation ι ⇒R V: if v(α) = ι and vRv′, then v′(α) ∈ V.

T ⇒R T, t, t1, t2

α . . . β . . .

v : . . .T . . .P,PN . . .

⇓R ↓∃
v′ : . . .D . . .D,D∁ . . .

F ⇒R F, f, f1, f2

α . . . β . . .

v : . . .F . . . P,PN . . .

⇓R ↓∃
v′ : . . .D∁ . . .D,D∁ . . .



From K-Models to K4⋆ Models

Property Condition Implies

4 □α → □□α
v(α) ∈ N and vRv′ v′(α) ∈ N
v(α) ∈ I and vRv′ v′(α) ∈ I

K K4
T ⇒R T, t, t1, t2 T ⇒R T, t1
t2 ⇒R F, f, f1, f2 t2 ⇒R F, f1

Distinguished sets
▶ N = {T, t1, f2, f1}
▶ I = {F, f1, t2, t1}



The Whole Picture (The Recipe)

Property Condition Implies

nec w(α) ∈ N and wRw′ w′(α) ∈ D
w(α) ∈ I and wRw′ w′(α) ̸∈ D

t □α → α
w(α) ∈ N w(α) ∈ D
w(α) ∈ I w(α) ̸∈ D

d □α → ♢α
w(α) ∈ N w(α) ∈ P
w(α) ∈ I w(α) ∈ PN

b α → □♢α
w(α) ∈ D and wRw′ w′(α) ∈ P
w(α) ̸∈ D and wRw′ w′(α) ∈ PN

4 □α → □□α
w(α) ∈ N and wRw′ w′(α) ∈ N
w(α) ∈ I and wRw′ w′(α) ∈ I

5
♢α → □♢α

w(α) ∈ P and wRw′ w′(α) ∈ P
w(α) ∈ PN and wRw′ w′(α) ∈ PN

□□α → □□□α
w(α),w′(α) ∈ N , wRw′ and (wRw′′ or w′Rw′′) w′′(α) ∈ N
w(α),w′(α) ∈ I , wRw′ and (wRw′′ or w′Rw′′) w′′(α) ∈ I



The Whole Picture (The Dishes)

Frame Properties
According to the logic L, the relation induced by ⇒R is
serial/reflexive/symmetric/transitive/Euclidian.



Building Tables

▶ Models can be extended with “new columns”
▶ This procedure is deterministic.

Theorem (Analyticity (Procedure))
Every partial level-valuation can be extended to a level-valuation.

Theorem (Soundness)
For every L, Γ ⊢L α ⇒ Γ ⊨L α.



Completeness of Partial Valuations

▶ We show that level valuations restricted to a (closed)
domain are good partial valuations.

▶ This is called co-analyticity.
▶ The proof is entirely guided by the modal characterization

of truth values.

Theorem (Co-analyticity)
For every level-valuation v and every set closed under
subformulas Λ, v ↓Λ is a partial level-valuation.

Theorem (Completeness)
For every L, Γ ⊨L α ⇒ Γ ⊢L α.



Completeness of Partial Valuations

▶ We show that level valuations restricted to a (closed)
domain are good partial valuations.

▶ This is called co-analyticity.
▶ The proof is entirely guided by the modal characterization

of truth values.

Theorem (Co-analyticity)
For every level-valuation v and every set closed under
subformulas Λ, v ↓Λ is a partial level-valuation.

Theorem (Completeness)
For every L, Γ ⊨L α ⇒ Γ ⊢L α.
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Concluding Remarks

Our nmatrices were computed (and refined) with the aid of a
Rocq procedure (impossible by hand!). E.g, axiom K in KTB45:

Future work
Full mechanization of our proofs. Partial results for S5.



Concluding Remarks

Showing analyticity correct for KD requires checking more than
15M cases!
Maude to the rescue:



Future Work

▶ Intuitionistic modal cube: combining the nmatrices for LJ
in [LCL24] with those proposed here.

▶ Non-normal modalities? How many values are needed?
▶ Counter-models (some partial results with our Rocq tool)
▶ Relating complexity results?
▶ NMatrices for Ecumenical systems (already in progress).



Thank you!
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