
Finding Connections via

Satisfiability Solving

Clemens Eisenhofer (TU Wien)

Joint work with

Michael Rawson (U. Southampton) & Laura Kovács (TU Wien)

1

The Two Worlds

2

The Two Worlds

SAT Most Deductive Calculi

3

The Two Worlds

SAT Most Deductive Calculi

(Mostly) Efficient Reasoning Construction (mostly) by enumeration/intuition

Very Easy Rules – CDCL (DPLL) Can Be Very Complicated

4

The Two Worlds

SAT Most Deductive Calculi

(Mostly) Efficient Reasoning Construction (mostly) by enumeration/intuition

Very Easy Rules – CDCL (DPLL) Can Be Very Complicated

E.g., ⊨ ((A ⇒ B) ⇒ (A ⇒ B))?

5

The Two Worlds

SAT Most Deductive Calculi

(Mostly) Efficient Reasoning Construction (mostly) by enumeration/intuition

Very Easy Rules – CDCL (DPLL) Can Be Very Complicated

E.g., ⊨ ((A ⇒ B) ⇒ (A ⇒ B))?

CNF transformation: ⊢𝐶𝐷𝐶𝐿 ¬𝐴 ∨ 𝐵 ∧ 𝐴 ∧ ¬𝐵
2x BCP: ⊢𝐶𝐷𝐶𝐿 ⊥

6

The Two Worlds

SAT Most Deductive Calculi

(Mostly) Efficient Reasoning Construction (mostly) by enumeration/intuition

Very Easy Rules – CDCL (DPLL) Can Be Very Complicated

E.g., ⊨ ((A ⇒ B) ⇒ (A ⇒ B))?

CNF transformation: ⊢𝐶𝐷𝐶𝐿 ¬𝐴 ∨ 𝐵 ∧ 𝐴 ∧ ¬𝐵
2x BCP: ⊢𝐶𝐷𝐶𝐿 ⊥

⊢𝐻𝐶 (X ⇒ ((X ⇒ X) ⇒ X) ⇒ ((X ⇒ (X ⇒ X)) ⇒ (X ⇒ X))
⊢𝐻𝐶 𝑋 ⇒ ((𝑋 ⇒ 𝑋) ⇒ 𝑋)

⊢𝐻𝐶 𝑋 ⇒ 𝑋 ⇒ 𝑋 ⇒ 𝑋 ⇒ 𝑋

…

⊢𝐻𝐶 X ⇒ X and use X ≔ A ⇒ B

7

The Two Worlds

Theory of Proof Objects

8

One Step back: Why Combine them?

SAT Solvers are efficient

9

One Step back: Why Combine them?

SAT Solvers are efficient

… and get more efficient every year

9

Get to the Point!





10

Get to the Point!

 We suggested using SAT-Solvers for doing proof enumeration for

connection calculus:

 Embedding the Connection Calculus in Satisfiability Modulo Theories

[AReCCa@TABLEAUX’23]



10

Get to the Point!

 We suggested using SAT-Solvers for doing proof enumeration for

connection calculus:

 Embedding the Connection Calculus in Satisfiability Modulo Theories

[AReCCa@TABLEAUX’23]

 We continued on that end and here is what came out…

10

First-Order Connection Calculus (CC)

























11

First-Order Connection Calculus (CC)

 "First calculus towards ATP" [Bibel; Loveland – late 70s]























11

First-Order Connection Calculus (CC)

 "First calculus towards ATP" [Bibel; Loveland – late 70s]

 Variant of (first-order) tableaux and binary resolution





















11

First-Order Connection Calculus (CC)

 "First calculus towards ATP" [Bibel; Loveland – late 70s]

 Variant of (first-order) tableaux and binary resolution

 Sound & complete















11

First-Order Connection Calculus (CC)

 "First calculus towards ATP" [Bibel; Loveland – late 70s]

 Variant of (first-order) tableaux and binary resolution

 Sound & complete

 Unlike "ordinary" tableaux or resolution: Goal-directed & Non-confluent

 Some proof steps are wrong and result in "dead ends"













11

First-Order Connection Calculus (CC)

 "First calculus towards ATP" [Bibel; Loveland – late 70s]

 Variant of (first-order) tableaux and binary resolution

 Sound & complete

 Unlike "ordinary" tableaux or resolution: Goal-directed & Non-confluent

 Some proof steps are wrong and result in "dead ends"

 E.g.

𝑨, (¬A ∨ B), (¬A ∨ C), ¬C











11

First-Order Connection Calculus (CC)

 "First calculus towards ATP" [Bibel; Loveland – late 70s]

 Variant of (first-order) tableaux and binary resolution

 Sound & complete

 Unlike "ordinary" tableaux or resolution: Goal-directed & Non-confluent

 Some proof steps are wrong and result in "dead ends"

 E.g.

𝑨, (¬A ∨ B), (¬A ∨ C), ¬C

 Resolve A with

 ¬𝐴 ∨ 𝐵 resulting in B or

 ¬𝐴 ∨ C resulting in C





11

First-Order Connection Calculus (CC)

 "First calculus towards ATP" [Bibel; Loveland – late 70s]

 Variant of (first-order) tableaux and binary resolution

 Sound & complete

 Unlike "ordinary" tableaux or resolution: Goal-directed & Non-confluent

 Some proof steps are wrong and result in "dead ends"

 E.g.

𝑨, (¬A ∨ B), (¬A ∨ C), ¬C

 Resolve A with

 ¬𝐴 ∨ 𝐵 resulting in B or

 ¬𝐴 ∨ C resulting in C

 However, we cannot do anything with B (dead end)



11

First-Order Connection Calculus (CC)

 "First calculus towards ATP" [Bibel; Loveland – late 70s]

 Variant of (first-order) tableaux and binary resolution

 Sound & complete

 Unlike "ordinary" tableaux or resolution: Goal-directed & Non-confluent

 Some proof steps are wrong and result in "dead ends"

 E.g.

𝑨, (¬A ∨ B), (¬A ∨ C), ¬C

 Resolve A with

 ¬𝐴 ∨ 𝐵 resulting in B or

 ¬𝐴 ∨ C resulting in C

 However, we cannot do anything with B (dead end)

 Iterative deepening & proof enumeration

11

The Matrix Representation









12

The Matrix Representation

 Alternative way of presenting CC proofs







12

The Matrix Representation

 Alternative way of presenting CC proofs

 Clause copies are "written" vertically





12

The Matrix Representation

 Alternative way of presenting CC proofs

 Clause copies are "written" vertically

 Lines are drawn between dual literals

 The literals are "connected"

12

The Matrix Representation

 Alternative way of presenting CC proofs

 Clause copies are "written" vertically

 Lines are drawn between dual literals

 The literals are "connected" 𝐶1: ∀𝑥∀𝑦 ¬𝑃 𝑥 ∨ ¬𝑃 𝑓 𝑥

 𝐶2: ∀𝑧 𝑃 𝑧 ∨ 𝑃 𝑓 𝑧

12

The Matrix Representation

 Alternative way of presenting CC proofs

 Clause copies are "written" vertically

 Lines are drawn between dual literals

 The literals are "connected"

𝜎 𝑧1 ↦ 𝑓 𝑦1 , 𝜎 𝑥1 ↦ 𝑓 𝑦1 ,

𝜎 𝑥2 ↦ 𝑓 𝑓 𝑦1 , 𝜎 𝑦2 ↦ 𝑓 𝑦1

𝐶1: ∀𝑥∀𝑦 ¬𝑃 𝑥 ∨ ¬𝑃 𝑓 𝑥

 𝐶2: ∀𝑧 𝑃 𝑧 ∨ 𝑃 𝑓 𝑧

12

The Matrix Representation









13

The Matrix Representation

 Set of connections – “the matrix" – is spanning: no open path







13

The Matrix Representation

 Set of connections – “the matrix" – is spanning: no open path

 Open path: One literal of each clause instance,

 such that none of them is connected with each other





13

The Matrix Representation

 Set of connections – “the matrix" – is spanning: no open path

 Open path: One literal of each clause instance,

 such that none of them is connected with each other

𝑂𝑝𝑒𝑛 𝑃 ≡ ∀𝐶∃𝐿 𝐿 ∈ 𝑃 ∧ ∀𝐿1, 𝐿2 𝐿1 ≁ 𝐿2





13

The Matrix Representation

 Set of connections – “the matrix" – is spanning: no open path

 Open path: One literal of each clause instance,

 such that none of them is connected with each other

𝑂𝑝𝑒𝑛 𝑃 ≡ ∀𝐶∃𝐿 𝐿 ∈ 𝑃 ∧ ∀𝐿1, 𝐿2 𝐿1 ≁ 𝐿2

 Only spanning matrices are correct proofs!



13

The Matrix Representation

 Set of connections – “the matrix" – is spanning: no open path

 Open path: One literal of each clause instance,

 such that none of them is connected with each other

𝑂𝑝𝑒𝑛 𝑃 ≡ ∀𝐶∃𝐿 𝐿 ∈ 𝑃 ∧ ∀𝐿1, 𝐿2 𝐿1 ≁ 𝐿2

 Only spanning matrices are correct proofs!

 Set of connections – "the matrix" – is fully connected:

13

The Matrix Representation

 Set of connections – “the matrix" – is spanning: no open path

 Open path: One literal of each clause instance,

 such that none of them is connected with each other

𝑂𝑝𝑒𝑛 𝑃 ≡ ∀𝐶∃𝐿 𝐿 ∈ 𝑃 ∧ ∀𝐿1, 𝐿2 𝐿1 ≁ 𝐿2

 Only spanning matrices are correct proofs!

 Set of connections – "the matrix" – is fully connected:

 each literal is connected with at least one other literal

13

Another Example14

Another Example14

Another Example14

The Matrix Representation - Definitions

𝜎 𝑧1 ↦ 𝑓 𝑦1 , 𝜎 𝑥1 ↦ 𝑓 𝑦1 ,

𝜎 𝑥2 ↦ 𝑓 𝑓 𝑦1 , 𝜎 𝑦2 ↦ 𝑓 𝑦1

𝐶1: ∀𝑥∀𝑦 ¬𝑃 𝑥 ∨ ¬𝑃 𝑓 𝑥

 𝐶2: ∀𝑧 𝑃 𝑧 ∨ 𝑃 𝑓 𝑧

15

The Matrix Representation - Definitions

𝜎 𝑧1 ↦ 𝑓 𝑦1 , 𝜎 𝑥1 ↦ 𝑓 𝑦1 ,

𝜎 𝑥2 ↦ 𝑓 𝑓 𝑦1 , 𝜎 𝑦2 ↦ 𝑓 𝑦1

𝐶1: ∀𝑥∀𝑦 ¬𝑃 𝑥 ∨ ¬𝑃 𝑓 𝑥

 𝐶2: ∀𝑧 𝑃 𝑧 ∨ 𝑃 𝑓 𝑧

Clauses

15

The Matrix Representation - Definitions

𝜎 𝑧1 ↦ 𝑓 𝑦1 , 𝜎 𝑥1 ↦ 𝑓 𝑦1 ,

𝜎 𝑥2 ↦ 𝑓 𝑓 𝑦1 , 𝜎 𝑦2 ↦ 𝑓 𝑦1

𝐶1: ∀𝑥∀𝑦 ¬𝑃 𝑥 ∨ ¬𝑃 𝑓 𝑥

 𝐶2: ∀𝑧 𝑃 𝑧 ∨ 𝑃 𝑓 𝑧

Unifier

15

The Matrix Representation - Definitions

𝜎 𝑧1 ↦ 𝑓 𝑦1 , 𝜎 𝑥1 ↦ 𝑓 𝑦1 ,

𝜎 𝑥2 ↦ 𝑓 𝑓 𝑦1 , 𝜎 𝑦2 ↦ 𝑓 𝑦1

𝐶1: ∀𝑥∀𝑦 ¬𝑃 𝑥 ∨ ¬𝑃 𝑓 𝑥

 𝐶2: ∀𝑧 𝑃 𝑧 ∨ 𝑃 𝑓 𝑧

Clause Instances

15

The Matrix Representation - Definitions

𝜎 𝑧1 ↦ 𝑓 𝑦1 , 𝜎 𝑥1 ↦ 𝑓 𝑦1 ,

𝜎 𝑥2 ↦ 𝑓 𝑓 𝑦1 , 𝜎 𝑦2 ↦ 𝑓 𝑦1

𝐶1: ∀𝑥∀𝑦 ¬𝑃 𝑥 ∨ ¬𝑃 𝑓 𝑥

 𝐶2: ∀𝑧 𝑃 𝑧 ∨ 𝑃 𝑓 𝑧

Connections

15

The Matrix Representation - Definitions

𝜎 𝑧1 ↦ 𝑓 𝑦1 , 𝜎 𝑥1 ↦ 𝑓 𝑦1 ,

𝜎 𝑥2 ↦ 𝑓 𝑓 𝑦1 , 𝜎 𝑦2 ↦ 𝑓 𝑦1

𝐶1: ∀𝑥∀𝑦 ¬𝑃 𝑥 ∨ ¬𝑃 𝑓 𝑥

 𝐶2: ∀𝑧 𝑃 𝑧 ∨ 𝑃 𝑓 𝑧

Depth/Size = 3

15

The Matrix Representation - Definitions

𝜎 𝑧1 ↦ 𝑓 𝑦1 , 𝜎 𝑥1 ↦ 𝑓 𝑦1 ,

𝜎 𝑥2 ↦ 𝑓 𝑓 𝑦1 , 𝜎 𝑦2 ↦ 𝑓 𝑦1

𝐶1: ∀𝑥∀𝑦 ¬𝑃 𝑥 ∨ ¬𝑃 𝑓 𝑥

 𝐶2: ∀𝑧 𝑃 𝑧 ∨ 𝑃 𝑓 𝑧

Depth/Size = 3

15

SAT/SMT Encodings for CC

Finding Connections

via Satisfiability Solving

16

The CC Encodings



1.

2.

3.

17

The CC Encodings

 In the paper we discussed three different encodings

1.

2.

3.

17

The CC Encodings

 In the paper we discussed three different encodings

1. CC tableau trees (omitted for this talk)

2. CC matrices with static sizes

3. CC matrices with dynamic sizes

17

Basic Matrix Encoding Idea

1.

2.

1.

2.

18

Basic Matrix Encoding Idea

We want to encode for some fixed number d > 0:

1. The matrix contains exactly d clause instances

2. The matrix is spanning

1.

2.

18

Basic Matrix Encoding Idea

We want to encode for some fixed number d > 0:

1. The matrix contains exactly d clause instances

2. The matrix is spanning

Condition 2. cannot be really expressed directly, hence we use instead:

1. The matrix contains exactly d clause instances

2. The matrix is fully connected

18

Basic Matrix Encoding Idea

We want to encode for some fixed number d > 0:

1. The matrix contains exactly d clause instances

2. The matrix is spanning

Condition 2. cannot be really expressed directly, hence we use instead:

1. The matrix contains exactly d clause instances

2. The matrix is fully connected

„Fully connected“ is used as an approximation for „spanning“.

18

Basic Matrix Encoding Idea

We want to encode for some fixed number d > 0:

1. The matrix contains exactly d clause instances

2. The matrix is spanning

Condition 2. cannot be really expressed directly, hence we use instead:

1. The matrix contains exactly d clause instances

2. The matrix is fully connected

„Fully connected“ is used as an approximation for „spanning“.

➔ We check for spanningness and rule out spurious proofs on-demand

18

Basic Matrix Encoding Idea





19

Basic Matrix Encoding Idea

 Encoding is lazy (SMT style)

 Unification can be expressed using algebraic datatypes (ADT)

19

More Precisely



1.



2.





20

More Precisely

 We have two kinds of literals:

1.



2.





20

More Precisely

 We have two kinds of literals:

1. Selectors

 e.g., 𝑆𝑃 𝑧 ∨𝑃 𝑓 𝑧
1 denotes 𝑃 𝑧1 ∨ 𝑃 𝑓 𝑧1 occurs in the matrix

2.





20

More Precisely

 We have two kinds of literals:

1. Selectors

 e.g., 𝑆𝑃 𝑧 ∨𝑃 𝑓 𝑧
1 denotes 𝑃 𝑧1 ∨ 𝑃 𝑓 𝑧1 occurs in the matrix

2. Connectors

 E.g., ⟨𝑃(𝑓(𝑧1)) ∼ ¬𝑃(𝑥1)⟩ denotes that the given literal instances are dual ("connected")



20

More Precisely

 We have two kinds of literals:

1. Selectors

 e.g., 𝑆𝑃 𝑧 ∨𝑃 𝑓 𝑧
1 denotes 𝑃 𝑧1 ∨ 𝑃 𝑓 𝑧1 occurs in the matrix

2. Connectors

 E.g., ⟨𝑃(𝑓(𝑧1)) ∼ ¬𝑃(𝑥1)⟩ denotes that the given literal instances are dual ("connected")

 i.e., enforces 𝑓 𝑧1 unifies with 𝑥1

20

The Whole Encoding

1.

2.

3.

21

The Whole Encoding

1. There are d clause instance in the matrix:

|{𝑆𝐶
𝑖 ∣ 𝐶, 1 ≤ 𝑖 ≤ 𝑑}| = 𝑑

2.

3.

21

The Whole Encoding

1. There are d clause instance in the matrix:

|{𝑆𝐶
𝑖 ∣ 𝐶, 1 ≤ 𝑖 ≤ 𝑑}| = 𝑑

2. For each literal 𝑆𝑖 in the matrix there is a connected one (fully connected)

𝑆𝑖 ⇒ ሧ

𝐷

ሧ

1≤𝑘≤𝑑

ሧ

𝐾∈𝐷𝑘

𝑆𝐷
𝑘 ∧ 𝐿 ∼ 𝐾

3.

21

The Whole Encoding

1. There are d clause instance in the matrix:

|{𝑆𝐶
𝑖 ∣ 𝐶, 1 ≤ 𝑖 ≤ 𝑑}| = 𝑑

2. For each literal 𝑆𝑖 in the matrix there is a connected one (fully connected)

𝑆𝑖 ⇒ ሧ

𝐷

ሧ

1≤𝑘≤𝑑

ሧ

𝐾∈𝐷𝑘

𝑆𝐷
𝑘 ∧ 𝐿 ∼ 𝐾

3. For every open path 𝑈 and set of d selectors ҧ𝑆 we add

ሥ

𝑆∈ ҧ𝑆

𝑆 ⇒ ሧ

{𝐿,𝐾}⊆𝑈

𝐿 ∼ 𝐾

21

The Encoding















22

The Encoding

 Sound













22

The Encoding

 Sound

 For some fixed d

 Terminating

 Complexity Σ2
𝑃-complete [„NP given we have a co-NP oracle“]







22

The Encoding

 Sound

 For some fixed d

 Terminating

 Complexity Σ2
𝑃-complete [„NP given we have a co-NP oracle“]

 Completeness by stepwise incrementing d





22

The Encoding

 Sound

 For some fixed d

 Terminating

 Complexity Σ2
𝑃-complete [„NP given we have a co-NP oracle“]

 Completeness by stepwise incrementing d

 However, incrementing d by one ➔ one more copy of each clause

 Makes it even more explosive

22

Dynamic Matrix Sizing Idea















23

Dynamic Matrix Sizing Idea

 One counter 𝝁 𝑪 for each clause 𝐶

 So far, we had for all 𝐶 that 𝜇 𝐶 ≔ 𝑑

 Thus, we have 𝑆𝐶
𝑖 for any 1 ≤ 𝑖 ≤ 𝜇 𝐶

 Literals 𝑆𝐶
𝜇(C)+1

 are assumed to be false







23

Dynamic Matrix Sizing Idea

 One counter 𝝁 𝑪 for each clause 𝐶

 So far, we had for all 𝐶 that 𝜇 𝐶 ≔ 𝑑

 Thus, we have 𝑆𝐶
𝑖 for any 1 ≤ 𝑖 ≤ 𝜇 𝐶

 Literals 𝑆𝐶
𝜇(C)+1

 are assumed to be false

 We increment only some 𝜇 𝐶 on failed proof attempts





23

Dynamic Matrix Sizing Idea

 One counter 𝝁 𝑪 for each clause 𝐶

 So far, we had for all 𝐶 that 𝜇 𝐶 ≔ 𝑑

 Thus, we have 𝑆𝐶
𝑖 for any 1 ≤ 𝑖 ≤ 𝜇 𝐶

 Literals 𝑆𝐶
𝜇(C)+1

 are assumed to be false

 We increment only some 𝜇 𝐶 on failed proof attempts

 Decisions are based on conflict analysis (unsat core)

𝑆𝑖 ⇒ ሧ

𝐷

ሧ

1≤𝑘≤𝝁(𝑫)+𝟏

ሧ

𝐾∈𝐷𝑘

𝑆𝐷
𝑘 ∧ 𝐿 ∼ 𝐾



23

Dynamic Matrix Sizing Idea

 One counter 𝝁 𝑪 for each clause 𝐶

 So far, we had for all 𝐶 that 𝜇 𝐶 ≔ 𝑑

 Thus, we have 𝑆𝐶
𝑖 for any 1 ≤ 𝑖 ≤ 𝜇 𝐶

 Literals 𝑆𝐶
𝜇(C)+1

 are assumed to be false

 We increment only some 𝜇 𝐶 on failed proof attempts

 Decisions are based on conflict analysis (unsat core)

𝑆𝑖 ⇒ ሧ

𝐷

ሧ

1≤𝑘≤𝝁(𝑫)+𝟏

ሧ

𝐾∈𝐷𝑘

𝑆𝐷
𝑘 ∧ 𝐿 ∼ 𝐾

 „Connect to some literal instance of clause 𝐷 or require more instances of 𝐷“

23

Incrementing Capacity



24

Incrementing Capacity

 Consider the clause set

{ 𝑃 𝑎 , ¬𝑃 𝑥 ∨ 𝑃 𝑓 𝑥 , ¬𝑃 𝑎 }

𝜇 𝑃 𝑎 ↦ 1

𝜇 𝑃 𝑥 ∨ ¬𝑃 𝑓 𝑥 ↦ 0

𝜇 ¬𝑃 𝑎 ↦ 0

24

Incrementing Capacity

 Consider the clause set

{ 𝑃 𝑎 , ¬𝑃 𝑥 ∨ 𝑃 𝑓 𝑥 , ¬𝑃 𝑎 }

𝜇 𝑃 𝑎 ↦ 1

𝜇 𝑃 𝑥 ∨ ¬𝑃 𝑓 𝑥 ↦ 0

𝜇 ¬𝑃 𝑎 ↦ 0

𝑆1
𝑃 𝑎 ⇒ 𝑆¬𝑃 𝑥 ∨𝑃 𝑓 𝑥

1 ∧ 𝑃 𝑎 ∼ ¬𝑃 𝑥1 ∨ 𝑆¬𝑃 𝑎
1

24

Incrementing Capacity

 Consider the clause set

{ 𝑃 𝑎 , ¬𝑃 𝑥 ∨ 𝑃 𝑓 𝑥 , ¬𝑃 𝑎 }

𝜇 𝑃 𝑎 ↦ 1

𝜇 𝑃 𝑥 ∨ ¬𝑃 𝑓 𝑥 ↦ 0

𝜇 ¬𝑃 𝑎 ↦ 0

𝑆1
𝑃 𝑎 ⇒ 𝑆¬𝑃 𝑥 ∨𝑃 𝑓 𝑥

1 ∧ 𝑃 𝑎 ∼ ¬𝑃 𝑥1 ∨ 𝑆¬𝑃 𝑎
1

{ 𝑆¬𝑃 𝑥 ∨𝑃 𝑓 𝑥
1 , 𝑆¬𝑃 𝑎

1 }

24

Incrementing Capacity

 Consider the clause set

{ 𝑃 𝑎 , ¬𝑃 𝑥 ∨ 𝑃 𝑓 𝑥 , ¬𝑃 𝑎 }

𝜇 𝑃 𝑎 ↦ 1

𝜇 ¬𝑃 𝑎 ↦ 0

𝑆¬𝑃 𝑥 ∨𝑃 𝑓 𝑥
1 ⇒ 𝑆¬𝑃 𝑥 ∨𝑃 𝑓 𝑥

2 ∧ 𝑃 𝑓 𝑥1 ∼ 𝑃 𝑥2

𝜇 𝑃 𝑥 ∨ ¬𝑃 𝑓 𝑥 ↦ 1

𝑆1
𝑃 𝑎 ⇒ 𝑆¬𝑃 𝑥 ∨𝑃 𝑓 𝑥

1 ∧ 𝑃 𝑎 ∼ ¬𝑃 𝑥1 ∨ 𝑆¬𝑃 𝑎
1

24

Incrementing Capacity

 Consider the clause set

{ 𝑃 𝑎 , ¬𝑃 𝑥 ∨ 𝑃 𝑓 𝑥 , ¬𝑃 𝑎 }

𝜇 𝑃 𝑎 ↦ 1

𝜇 ¬𝑃 𝑎 ↦ 0

𝑆¬𝑃 𝑥 ∨𝑃 𝑓 𝑥
1 ⇒ 𝑆¬𝑃 𝑥 ∨𝑃 𝑓 𝑥

2 ∧ 𝑃 𝑓 𝑥1 ∼ 𝑃 𝑥2

{ 𝑆¬𝑃 𝑥 ∨𝑃 𝑓 𝑥
2 , 𝑆¬𝑃 𝑎

1 }

𝜇 𝑃 𝑥 ∨ ¬𝑃 𝑓 𝑥 ↦ 1

𝑆1
𝑃 𝑎 ⇒ 𝑆¬𝑃 𝑥 ∨𝑃 𝑓 𝑥

1 ∧ 𝑃 𝑎 ∼ ¬𝑃 𝑥1 ∨ 𝑆¬𝑃 𝑎
1

24

Incrementing Capacity

 Consider the clause set

{ 𝑃 𝑎 , ¬𝑃 𝑥 ∨ 𝑃 𝑓 𝑥 , ¬𝑃 𝑎 }

𝜇 𝑃 𝑎 ↦ 1

𝜇 ¬𝑃 𝑎 ↦ 0

𝜇 𝑃 𝑥 ∨ ¬𝑃 𝑓 𝑥 ↦ 2

24

Incrementing Capacity

 Consider the clause set

{ 𝑃 𝑎 , ¬𝑃 𝑥 ∨ 𝑃 𝑓 𝑥 , ¬𝑃 𝑎 }

𝜇 𝑃 𝑎 ↦ 1

𝜇 ¬𝑃 𝑎 ↦ 0

𝜇 𝑃 𝑥 ∨ ¬𝑃 𝑓 𝑥 ↦ 2

➔ Fair incrementation of

clauses in unsat cores

24

Dynamic Matrix Sizing Idea



25

Dynamic Matrix Sizing Idea

 Eliminating open paths is broken now

25

Why Broken?





26

Why Broken?

 The at most – instead of exactly – breaks it!



26

Why Broken?

 The at most – instead of exactly – breaks it!

 Let‘s consider a propositional example

26

Why Broken?

 The at most – instead of exactly – breaks it!

 Let‘s consider a propositional example

{ A ∨ B, ¬A ∨ ¬B, A ∨ ¬B, ¬A ∨ B }

26

Why Broken?

 The at most – instead of exactly – breaks it!

 Let‘s consider a propositional example

{ A ∨ B, ¬A ∨ ¬B, A ∨ ¬B, ¬A ∨ B }

26

Why Broken?

 The at most – instead of exactly – breaks it!

 Let‘s consider a propositional example

{ A ∨ B, ¬A ∨ ¬B, A ∨ ¬B, ¬A ∨ B }

ሥ

𝑆∈ ҧ𝑆

𝑆 ⇒ ሧ

{𝐿,𝐾}⊆𝑈

𝐿 ∼ 𝐾26

Why Broken?

 The at most – instead of exactly – breaks it!

 Let‘s consider a propositional example

{ A ∨ B, ¬A ∨ ¬B, A ∨ ¬B, ¬A ∨ B }

ሥ

𝑆∈ ҧ𝑆

𝑆 ⇒ ሧ

{𝐿,𝐾}⊆𝑈

𝐿 ∼ 𝐾

(𝑆𝐴∨𝐵
1 ∧ 𝑆¬𝐴∨¬𝐵

1 ∧ 𝑆𝐴∨¬𝐵
1) ⇒ ⊥

26

Solution

 We have to choose another element not yet in the matrix

27

Solution

 We have to choose another element not yet in the matrix

{ A ∨ B, ¬A ∨ ¬B, A ∨ ¬B, ¬A ∨ B }

27

Solution

 We have to choose another element not yet in the matrix

{ A ∨ B, ¬A ∨ ¬B, A ∨ ¬B, ¬A ∨ B }

ሥ

𝑆∈ ҧ𝑆

𝑆 ⇒ ሧ

{𝐿,𝐾}⊆𝑈

𝐿 ∼ 𝐾 ∨ ሧ

𝐿∈𝑈

𝐹𝐿27

Solution

 We have to choose another element not yet in the matrix

{ A ∨ B, ¬A ∨ ¬B, A ∨ ¬B, ¬A ∨ B }

(𝑆𝐴∨𝐵
1 ∧ 𝑆¬𝐴∨¬𝐵

1 ∧ 𝑆𝐴∨¬𝐵
1) ⇒

 (𝑆𝐴∨𝐵
2 ∨ 𝑆¬𝐴∨¬𝐵

2 ∨ 𝑆𝐴∨¬𝐵
2 ∨ 𝑆¬𝐴∨𝐵

1)

ሥ

𝑆∈ ҧ𝑆

𝑆 ⇒ ሧ

{𝐿,𝐾}⊆𝑈

𝐿 ∼ 𝐾 ∨ ሧ

𝐿∈𝑈

𝐹𝐿27

Optimisations



















28

Optimisations

 Monotonicity of selectors of some clause 𝐶

𝑆𝐶
𝑖+1 ⇒ 𝑆𝐶

𝑖

















28

Optimisations

 Monotonicity of selectors of some clause 𝐶

𝑆𝐶
𝑖+1 ⇒ 𝑆𝐶

𝑖

 Term Ordering

 If 𝑖 < 𝑗 then 𝐶𝑖 ⊀ 𝐶j modulo unifier

 e.g., assume term order a ≺ f(a) and some matrix containing 𝑃 𝑥1 and 𝑃 𝑥2

 Having σ(𝑥1) ↦ f(a) forbids 𝜎 𝑥2 ↦ 𝑎









28

Optimisations

 Monotonicity of selectors of some clause 𝐶

𝑆𝐶
𝑖+1 ⇒ 𝑆𝐶

𝑖

 Term Ordering

 If 𝑖 < 𝑗 then 𝐶𝑖 ⊀ 𝐶j modulo unifier

 e.g., assume term order a ≺ f(a) and some matrix containing 𝑃 𝑥1 and 𝑃 𝑥2

 Having σ(𝑥1) ↦ f(a) forbids 𝜎 𝑥2 ↦ 𝑎

 "Subsumption"

 For any clause instances 𝐶𝑖 and 𝐷𝑗 we have 𝐶𝑖 ≠ 𝐷𝑗 modulo unifier





28

Optimisations

 Monotonicity of selectors of some clause 𝐶

𝑆𝐶
𝑖+1 ⇒ 𝑆𝐶

𝑖

 Term Ordering

 If 𝑖 < 𝑗 then 𝐶𝑖 ⊀ 𝐶j modulo unifier

 e.g., assume term order a ≺ f(a) and some matrix containing 𝑃 𝑥1 and 𝑃 𝑥2

 Having σ(𝑥1) ↦ f(a) forbids 𝜎 𝑥2 ↦ 𝑎

 "Subsumption"

 For any clause instances 𝐶𝑖 and 𝐷𝑗 we have 𝐶𝑖 ≠ 𝐷𝑗 modulo unifier

 ("AVATAR"-like) Clause splitting



28

Optimisations

 Monotonicity of selectors of some clause 𝐶

𝑆𝐶
𝑖+1 ⇒ 𝑆𝐶

𝑖

 Term Ordering

 If 𝑖 < 𝑗 then 𝐶𝑖 ⊀ 𝐶j modulo unifier

 e.g., assume term order a ≺ f(a) and some matrix containing 𝑃 𝑥1 and 𝑃 𝑥2

 Having σ(𝑥1) ↦ f(a) forbids 𝜎 𝑥2 ↦ 𝑎

 "Subsumption"

 For any clause instances 𝐶𝑖 and 𝐷𝑗 we have 𝐶𝑖 ≠ 𝐷𝑗 modulo unifier

 ("AVATAR"-like) Clause splitting

 Decision procedure for EPR ("Bernays-Schönfinkel") fragment

28

Results

 Prototype UpCoP using both CaDiCal (SAT) and Z3 (SMT) backend

 Compared against meanCoP (complete mode)

29

Results

 Prototype UpCoP using both CaDiCal (SAT) and Z3 (SMT) backend

 Compared against meanCoP (complete mode)

Solver UpCoPSMT UpCoPSAT UpCoPSMT UpCoPSAT UpCoPSMT UpCoPSAT meanCoP

Enc. ℰM ℰU ℰH

Solved 928 855 1152 1055 1272 1264 1972

Unique 27 20 109 93 105 76 551

29

Results

 Prototype UpCoP using both CaDiCal (SAT) and Z3 (SMT) backend

 Compared against meanCoP (complete mode)

Solver UpCoPSMT UpCoPSAT UpCoPSMT UpCoPSAT UpCoPSMT UpCoPSAT meanCoP

Enc. ℰM ℰU ℰH

Solved 928 855 1152 1055 1272 1264 1972

Unique 27 20 109 93 105 76 551

Huch! What went wrong??

29

Several Reasons for Bad Performance







30

Several Reasons for Bad Performance

 Overhead of delegating reasoning to SAT core





30

Several Reasons for Bad Performance

 Overhead of delegating reasoning to SAT core

 Learned conflicts often unhelpful/very specific



30

Several Reasons for Bad Performance

 Overhead of delegating reasoning to SAT core

 Learned conflicts often unhelpful/very specific

 The SAT solver "builds" independent matrix parts

30

Several Reasons for Bad Performance

 Overhead of delegating reasoning to SAT core

 Learned conflicts often unhelpful/very specific

 The SAT solver "builds" independent matrix parts

{ 𝑃 𝑎 , ¬Q 𝑥 ∨ Q 𝑓 𝑥 , ¬𝑃 𝑎 }

30

Several Reasons for Bad Performance

 Overhead of delegating reasoning to SAT core

 Learned conflicts often unhelpful/very specific

 The SAT solver "builds" independent matrix parts

{ 𝑃 𝑎 , ¬Q 𝑥 ∨ Q 𝑓 𝑥 , ¬𝑃 𝑎 }

30

Summary









31

Summary

 Encoded the existence of a spanning matrix as a SAT problem

 Usually: propositionally unsatisfiable ➔ FO proof





31

Summary

 Encoded the existence of a spanning matrix as a SAT problem

 Usually: propositionally unsatisfiable ➔ FO proof

 Evaluated our prototype using a SAT and SMT backend



31

Summary

 Encoded the existence of a spanning matrix as a SAT problem

 Usually: propositionally unsatisfiable ➔ FO proof

 Evaluated our prototype using a SAT and SMT backend

 Experimental results are rather modest

31

Summary

 Encoded the existence of a spanning matrix as a SAT problem

 Usually: propositionally unsatisfiable ➔ FO proof

 Evaluated our prototype using a SAT and SMT backend

 Experimental results are rather modest

In-depth

investigation

of SAT for

CC

reasoning

31

Summary

 Encoded the existence of a spanning matrix as a SAT problem

 Usually: propositionally unsatisfiable ➔ FO proof

 Evaluated our prototype using a SAT and SMT backend

 Experimental results are rather modest

Experiments:

No SAT-guided CC 

In-depth

investigation

of SAT for

CC

reasoning

31

Summary

 Encoded the existence of a spanning matrix as a SAT problem

 Usually: propositionally unsatisfiable ➔ FO proof

 Evaluated our prototype using a SAT and SMT backend

 Experimental results are rather modest

Experiments:

No SAT-guided CC 

" "
what is definitely unhelpful towards a closed tableaux

In-depth

investigation

of SAT for

CC

reasoning

31

Summary

 Encoded the existence of a spanning matrix as a SAT problem

 Usually: propositionally unsatisfiable ➔ FO proof

 Evaluated our prototype using a SAT and SMT backend

 Experimental results are rather modest

Experiments:

No SAT-guided CC 

Stay tuned for the next

lecture ☺

" "
what is definitely unhelpful towards a closed tableaux

In-depth

investigation

of SAT for

CC

reasoning

31

Summary

 Encoded the existence of a spanning matrix as a SAT problem

 Usually: propositionally unsatisfiable ➔ FO proof

 Evaluated our prototype using a SAT and SMT backend

 Exerimental results are rather modest

Experiments:

No SAT-guided CC 

Stay tuned for the next

lecture ☺

Thanks for

your

attention!

" "
what is definitely unhelpful towards a closed tableaux

In-depth

investigation

of SAT for

CC

reasoning

31

Summary

 Encoded the existence of a spanning matrix as a SAT problem

 Usually: propositionally unsatisfiable ➔ FO proof

 Evaluated our prototype using a SAT and SMT backend

 Exerimental results are rather modest

Experiments:

No SAT-guided CC 

Stay tuned for the next

lecture ☺

Thanks for

your

attention!

" "
what is definitely unhelpful towards a closed tableaux

Questions?In-depth

investigation

of SAT for

CC

reasoning

31

	Folie 1: Finding Connections via Satisfiability Solving
	Folie 2: The Two Worlds
	Folie 3: The Two Worlds
	Folie 4: The Two Worlds
	Folie 5: The Two Worlds
	Folie 6: The Two Worlds
	Folie 7: The Two Worlds
	Folie 8: The Two Worlds
	Folie 9: One Step back: Why Combine them?
	Folie 10: One Step back: Why Combine them?
	Folie 11: Get to the Point!
	Folie 12: Get to the Point!
	Folie 13: Get to the Point!
	Folie 14: First-Order Connection Calculus (CC)
	Folie 15: First-Order Connection Calculus (CC)
	Folie 16: First-Order Connection Calculus (CC)
	Folie 17: First-Order Connection Calculus (CC)
	Folie 18: First-Order Connection Calculus (CC)
	Folie 19: First-Order Connection Calculus (CC)
	Folie 20: First-Order Connection Calculus (CC)
	Folie 21: First-Order Connection Calculus (CC)
	Folie 22: First-Order Connection Calculus (CC)
	Folie 23: The Matrix Representation
	Folie 24: The Matrix Representation
	Folie 25: The Matrix Representation
	Folie 26: The Matrix Representation
	Folie 27: The Matrix Representation
	Folie 28: The Matrix Representation
	Folie 29: The Matrix Representation
	Folie 30: The Matrix Representation
	Folie 31: The Matrix Representation
	Folie 32: The Matrix Representation
	Folie 33: The Matrix Representation
	Folie 34: The Matrix Representation
	Folie 35: The Matrix Representation
	Folie 36: Another Example
	Folie 37: Another Example
	Folie 38: Another Example
	Folie 39: The Matrix Representation - Definitions
	Folie 40: The Matrix Representation - Definitions
	Folie 41: The Matrix Representation - Definitions
	Folie 42: The Matrix Representation - Definitions
	Folie 43: The Matrix Representation - Definitions
	Folie 44: The Matrix Representation - Definitions
	Folie 45: The Matrix Representation - Definitions
	Folie 46: SAT/SMT Encodings for CC
	Folie 47: The CC Encodings
	Folie 48: The CC Encodings
	Folie 49: The CC Encodings
	Folie 50: Basic Matrix Encoding Idea
	Folie 51: Basic Matrix Encoding Idea
	Folie 52: Basic Matrix Encoding Idea
	Folie 53: Basic Matrix Encoding Idea
	Folie 54: Basic Matrix Encoding Idea
	Folie 55: Basic Matrix Encoding Idea
	Folie 56: Basic Matrix Encoding Idea
	Folie 57: More Precisely
	Folie 58: More Precisely
	Folie 59: More Precisely
	Folie 60: More Precisely
	Folie 61: More Precisely
	Folie 62: The Whole Encoding
	Folie 63: The Whole Encoding
	Folie 64: The Whole Encoding
	Folie 65: The Whole Encoding
	Folie 66: The Encoding
	Folie 67: The Encoding
	Folie 68: The Encoding
	Folie 69: The Encoding
	Folie 70: The Encoding
	Folie 71: Dynamic Matrix Sizing Idea
	Folie 72: Dynamic Matrix Sizing Idea
	Folie 73: Dynamic Matrix Sizing Idea
	Folie 74: Dynamic Matrix Sizing Idea
	Folie 75: Dynamic Matrix Sizing Idea
	Folie 76: Incrementing Capacity
	Folie 77: Incrementing Capacity
	Folie 78: Incrementing Capacity
	Folie 79: Incrementing Capacity
	Folie 80: Incrementing Capacity
	Folie 81: Incrementing Capacity
	Folie 82: Incrementing Capacity
	Folie 83: Incrementing Capacity
	Folie 84: Dynamic Matrix Sizing Idea
	Folie 85: Dynamic Matrix Sizing Idea
	Folie 86: Why Broken?
	Folie 87: Why Broken?
	Folie 88: Why Broken?
	Folie 89: Why Broken?
	Folie 90: Why Broken?
	Folie 91: Why Broken?
	Folie 92: Why Broken?
	Folie 93: Solution
	Folie 94: Solution
	Folie 95: Solution
	Folie 96: Solution
	Folie 97: Optimisations
	Folie 98: Optimisations
	Folie 99: Optimisations
	Folie 100: Optimisations
	Folie 101: Optimisations
	Folie 102: Optimisations
	Folie 103: Results
	Folie 104: Results
	Folie 105: Results
	Folie 106: Several Reasons for Bad Performance
	Folie 107: Several Reasons for Bad Performance
	Folie 108: Several Reasons for Bad Performance
	Folie 109: Several Reasons for Bad Performance
	Folie 110: Several Reasons for Bad Performance
	Folie 111: Several Reasons for Bad Performance
	Folie 112: Summary
	Folie 113: Summary
	Folie 114: Summary
	Folie 115: Summary
	Folie 116: Summary
	Folie 117: Summary
	Folie 118: Summary
	Folie 119: Summary
	Folie 120: Summary
	Folie 121: Summary

