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Get to the Point!

» \\Ne suggested using SAT-Solvers for doing proof enumeration for
connection calculus:

Embedding the Connection Calculus in Satisfiability Modulo Theories
[AReCCa@TABLEAUX’23]

=» \Ve continued on that end and here is what came out...
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First-Order Connection Calculus (CC)

» "First calculus towards ATP" [Bibel; Loveland — late 70s]
» \ariant of (first-order) tableaux and binary resolution
=» Sound & complete

» Unlike "ordinary" tableaux or resolution: Goal-directed & Non-confluent

®» Some proof steps are wrong and result in "dead ends"

» F Q.

A, (=A Vv B), (mA v O), —C
= Resolve A with
®» (A V B) resulting in B or
® (=A Vv C) resulting in C

» However, we cannot do anything with B (dead end)

» |terative deepening & proof enumeration
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» Alternative way of presenting CC proofs
» (Clause copies are "written" vertically

®» | ines are drawn between dual literals

= The literals are "connected" Ci: VxVy (—.P(x) Vv —.P(f(x)))

—lP(xl) —|P($2)

\ / a(z1) = f(y1), o(x1) » f(y1),
P(f(21)) |~P(f)LAP(F(12)) o) > f(fOn). 002 = fOn)

|
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» Set of connections — “the matrix" — is spanning: no open path
» Open path: One literal of each clause instance,

such that none of them is connected with each other
Open(P) = (VC3AL(L € P)) AVLy, Ly(Ly + Ly)

» Only spanning matrices are correct proofs!

» Set of connections — "the matrix" — is fully connected:

each literal is connected with at least one other literal
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N

P(z1) _ —P(z1) —P(x2)

~

P(f(z1)) =P (f(y1)) ~P(f(y2))
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Ci: VxVy (_IP(X) Y, —|P(f(x)))
C,:vz (P(2) v P(f(2)))

)\P 1)) P (f(y2)) o(z) = () o(x1) = f (),

v o(xy) » f(f()ﬁ))» a(yz) » f(y1)

Depth/Size = 3 0

P(f
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The CC Encodings

» |n the paper we discussed three different encodings
1. CC tableau trees (omitted for this talk)
2. CC matrices with static sizes

3. CC matrices with dynamic sizes
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Basic Matrix Encoding Idea

We want to encode for some fixed number d > 0:
1. The matrix contains exactly d clause instances

2. The matrix is spanning

Condition 2. cannot be really expressed directly, hence we use instead:
1. The matrix contains exactly d clause instances

2. The matrix is fully connected

,Fully connected" is used as an approximation for ,spanning”.

=>» We check for spanningness and rule out spurious proofs on-demand
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Basic Matrix Encoding Idea

Qutput CC .
ook Spanning
h J
N Assert matrix N Assert matrix Exclude
contains d clauses fully connected Cpen Path
A

Increment d

» Encoding is lazy (SMT style)

» Unification can be expressed using algebraic datatypes (ADT)
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More Precisely

» \\e have two kinds of literals:

1. Selectors

» eg.,S5, ) denotes P(z,) v P(f(z1)) occurs in the matrix

(2)VP(f(2)
2. Connectors

» E. g, (P(f(z1)) ~ =P(x,)) denotes that the given literal instances are dual ("connected")

®» i.e., enforces f(z;) unifies with x;
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'The Whole Encoding

1. There are d clause instance in the matrix:
(St1C,1<i<d}=d

2. For each literal St in the matrix there is a connected one (fully connected)

si=\/\/ \/Ghne~0)

D 1<k<d KkeDk

3. For every open path U and set of d selectors S we add

/\5: v (L ~ K)

SEeS {LK}<U
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The Encoding

Sound
For some fixed d

» Terminating

» Complexity 2¥-complete [,NP given we have a co-NP oracle‘]
Completeness by stepwise incrementing d

However, incrementing d by one =» one more copy of each clause

» Makes it even more explosive
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Dynamic Matrix Sizing Idea

= One counter u(C) for each clause C
» So far, we had for all C that u(C) =d

» Thus, we have S: forany 1 < i < u(C)

Sét(C)+1

» | jterals are assumed to be false

= \Ne increment only some u(C) on failed proof attempts

» Decisions are based on conflict analysis (unsat core)

Si=>\/ \/ V(5§A<L~K))

D 1<ksu(D)+1 kepk

» Connect to some literal instance of clause D or require more instances of D
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P(a) —P(z1) ,u(P(a)) - 1
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2 1
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Incrementing Capacity

®» (Consider the clause set

{(P(@, —P@VP(f(x), -P(@)}

—P(z1) —P(z2) u(P(a)) - 1

/ k(PG V =P(f()) - 2
P(f(z1)) P(f(z2)) u(~P(@) - 0
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Dynamic Matrix Sizing Idea

Spanning?

of clause

Qufput CC
proof
Assert matrix at '
' Assert matrix
—» most licy instances fully connected

Increment some w(C) [«

Exclude
Open Path

Extract Failed

Selectors C

» FEliminating open paths is broken now
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Why Broken? Ns=\/ e~x

Ses (LK}SU

» The at most — instead of exactly — breaks it!

» | et's consider a propositional example

{AVB, —AV =B, AV =B, —|AVB}

A—A—F A (Save N Siav-p A Siv-p) = L
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» \Ne have to choose another element not yet in the matrix

{AVB, —AV =B, AV =B, —|AVB}




Solution /\Sﬁ \/ w~K)v\/

SES LeU
» \Ne have to choose another element not yet in the matrix
{AVB, —AV =B, AV =B, —|AVB}
A—-A——A (Save A S2av-p A Sdv-p) =
/—\ (Sive V SZav-p V Sav-p V SSavp)




Optmisations




Optmisations

» Monotonicity of selectors of some clause C
SPr =5




Optmisations

» Monotonicity of selectors of some clause C
Sttt = St
» Term Ordering

» |fi < jthen C' < C) modulo unifier

®» ¢.g., assume term order a < f(a) and some matrix containing P(x;) and P(x,)

®» Having o(x;) = f(a) forbids a(x,) » a




Optmisations

» Monotonicity of selectors of some clause C
SPr =5
» Term Ordering
» |fi < jthen C' < C) modulo unifier

®» ¢.g., assume term order a < f(a) and some matrix containing P(x;) and P(x,)

®» Having o(x;) = f(a) forbids a(x,) » a
» "Subsumption”

» For any clause instances C' and D’ we have C! # D/ modulo unifier




Optmisations

» Monotonicity of selectors of some clause C
SPr =5

» Term Ordering

» |fi < jthen C' < C) modulo unifier

®» ¢.g., assume term order a < f(a) and some matrix containing P(x;) and P(x,)
®» Having o(x;) = f(a) forbids a(x,) » a

» "Subsumption”
» For any clause instances C' and D’ we have C! # D/ modulo unifier

» ("AVATAR"-like) Clause splitting
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» Monotonicity of selectors of some clause C
SPr =5
» Term Ordering
» |fi < jthen C' < C) modulo unifier

®» ¢.g., assume term order a < f(a) and some matrix containing P(x;) and P(x,)

®» Having o(x;) = f(a) forbids a(x,) » a
» "Subsumption”
» For any clause instances C' and D’ we have C! # D/ modulo unifier

» ("AVATAR"-like) Clause splitting

» Decision procedure for EPR ("Bernays-Schonfinkel") fragment
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Results

» Prototype UpCoP using both CaDiCal (SAT) and Z3 (SMT) backend

» Compared against meanCoP (complete mode)

UpCoPgyr | UpCoPgyr | UpCoPgyr | UpCoPgyyr | UpCoPgyy | UpCoPgy;

Solved 928 855 1152 1055 1272 1264 1972
Unique 27 20 109 93 105 76 551

Huch! What went wrong??
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Several Reasons for Bad Performance

» (QOverhead of delegating reasoning to SAT core
» | earned conflicts often unhelpful/very specific

» The SAT solver "builds" independent matrix parts

P(a) —Q(z1)  —Q(w2)  —Q(z3)




Summary




Summary

» Encoded the existence of a spanning matrix as a SAT problem

» Usually: propositionally unsatisfiable = FO proof




Summary

» Encoded the existence of a spanning matrix as a SAT problem

» Usually: propositionally unsatisfiable = FO proof

» [Fvaluated our prototype using a SAT and SMT backend




Summary

» Encoded the existence of a spanning matrix as a SAT problem
» Usually: propositionally unsatisfiable = FO proof
» [Fvaluated our prototype using a SAT and SMT backend

®» Experimental results are rather modest




Summary

» Encoded the existence of a spanning matrix as a SAT problem
» Usually: propositionally unsatisfiable = FO proof

» [Fvaluated our prototype using a SAT and SMT backend

®» Experimental results are rather modest



Summary

» Encoded the existence of a spanning matrix as a SAT problem
» Usually: propositionally unsatisfiable = FO proof

» [Fvaluated our prototype using a SAT and SMT backend

®» Experimental results are rather modest




Summary

what is definitely unhelpful towards a closed tableaux

®» [ ncodee=tre=giotence-of-a-opamning=-medrix as a "SAT" problem

» Usually: propositionally unsatisfiable = FO proof

» [Fvaluated our prototype using a SAT and SMT backend

®» Experimental results are rather modest



ummary

what is definitely unhelpful towards a closed tableaux

®» [ ncodee=tre=giotence-of-a-opamning=-medrix as a "SAT" problem
- E=d




ummary
what is definitely unhelpful towards a closed tableaux
®» [ ncodee=tre=gidotence-oi-a-opamning-metrix as a "SAT" pr
- E=d



Summary

what is definitely unhelpful towards a closed tableaux

®» [ ncodee=He-aitotence-oia-apamnirg=-meadrix as a "SAT" pro




	Folie 1: Finding Connections via Satisfiability Solving 
	Folie 2: The Two Worlds
	Folie 3: The Two Worlds
	Folie 4: The Two Worlds
	Folie 5: The Two Worlds
	Folie 6: The Two Worlds
	Folie 7: The Two Worlds
	Folie 8: The Two Worlds
	Folie 9: One Step back: Why Combine them?
	Folie 10: One Step back: Why Combine them?
	Folie 11: Get to the Point!
	Folie 12: Get to the Point!
	Folie 13: Get to the Point!
	Folie 14: First-Order Connection Calculus (CC)
	Folie 15: First-Order Connection Calculus (CC)
	Folie 16: First-Order Connection Calculus (CC)
	Folie 17: First-Order Connection Calculus (CC)
	Folie 18: First-Order Connection Calculus (CC)
	Folie 19: First-Order Connection Calculus (CC)
	Folie 20: First-Order Connection Calculus (CC)
	Folie 21: First-Order Connection Calculus (CC)
	Folie 22: First-Order Connection Calculus (CC)
	Folie 23: The Matrix Representation
	Folie 24: The Matrix Representation
	Folie 25: The Matrix Representation
	Folie 26: The Matrix Representation
	Folie 27: The Matrix Representation
	Folie 28: The Matrix Representation
	Folie 29: The Matrix Representation
	Folie 30: The Matrix Representation
	Folie 31: The Matrix Representation
	Folie 32: The Matrix Representation
	Folie 33: The Matrix Representation
	Folie 34: The Matrix Representation
	Folie 35: The Matrix Representation
	Folie 36: Another Example
	Folie 37: Another Example
	Folie 38: Another Example
	Folie 39: The Matrix Representation - Definitions
	Folie 40: The Matrix Representation - Definitions
	Folie 41: The Matrix Representation - Definitions
	Folie 42: The Matrix Representation - Definitions
	Folie 43: The Matrix Representation - Definitions
	Folie 44: The Matrix Representation - Definitions
	Folie 45: The Matrix Representation - Definitions
	Folie 46: SAT/SMT Encodings for CC
	Folie 47: The CC Encodings
	Folie 48: The CC Encodings
	Folie 49: The CC Encodings
	Folie 50: Basic Matrix Encoding Idea
	Folie 51: Basic Matrix Encoding Idea
	Folie 52: Basic Matrix Encoding Idea
	Folie 53: Basic Matrix Encoding Idea
	Folie 54: Basic Matrix Encoding Idea
	Folie 55: Basic Matrix Encoding Idea
	Folie 56: Basic Matrix Encoding Idea
	Folie 57: More Precisely
	Folie 58: More Precisely
	Folie 59: More Precisely
	Folie 60: More Precisely
	Folie 61: More Precisely
	Folie 62: The Whole Encoding
	Folie 63: The Whole Encoding
	Folie 64: The Whole Encoding
	Folie 65: The Whole Encoding
	Folie 66: The Encoding
	Folie 67: The Encoding
	Folie 68: The Encoding
	Folie 69: The Encoding
	Folie 70: The Encoding
	Folie 71: Dynamic Matrix Sizing Idea
	Folie 72: Dynamic Matrix Sizing Idea
	Folie 73: Dynamic Matrix Sizing Idea
	Folie 74: Dynamic Matrix Sizing Idea
	Folie 75: Dynamic Matrix Sizing Idea
	Folie 76: Incrementing Capacity
	Folie 77: Incrementing Capacity
	Folie 78: Incrementing Capacity
	Folie 79: Incrementing Capacity
	Folie 80: Incrementing Capacity
	Folie 81: Incrementing Capacity
	Folie 82: Incrementing Capacity
	Folie 83: Incrementing Capacity
	Folie 84: Dynamic Matrix Sizing Idea
	Folie 85: Dynamic Matrix Sizing Idea
	Folie 86: Why Broken?
	Folie 87: Why Broken?
	Folie 88: Why Broken?
	Folie 89: Why Broken?
	Folie 90: Why Broken?
	Folie 91: Why Broken?
	Folie 92: Why Broken?
	Folie 93: Solution
	Folie 94: Solution
	Folie 95: Solution
	Folie 96: Solution
	Folie 97: Optimisations
	Folie 98: Optimisations
	Folie 99: Optimisations
	Folie 100: Optimisations
	Folie 101: Optimisations
	Folie 102: Optimisations
	Folie 103: Results
	Folie 104: Results
	Folie 105: Results
	Folie 106: Several Reasons for Bad Performance
	Folie 107: Several Reasons for Bad Performance
	Folie 108: Several Reasons for Bad Performance
	Folie 109: Several Reasons for Bad Performance
	Folie 110: Several Reasons for Bad Performance
	Folie 111: Several Reasons for Bad Performance
	Folie 112: Summary
	Folie 113: Summary
	Folie 114: Summary
	Folie 115: Summary
	Folie 116: Summary
	Folie 117: Summary
	Folie 118: Summary
	Folie 119: Summary
	Folie 120: Summary
	Folie 121: Summary

