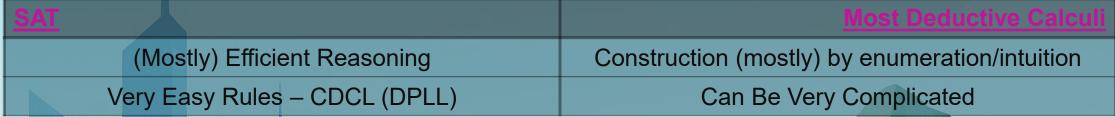


Finding Connections via Satisfiability Solving

Clemens Eisenhofer (TU Wien)

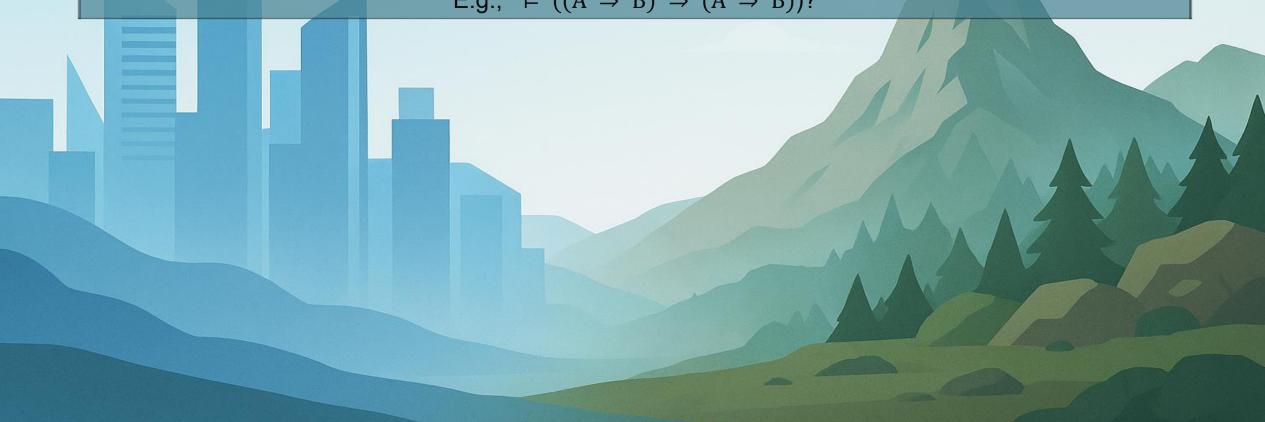
Joint work with

Michael Rawson (U. Southampton) & Laura Kovács (TU Wien)



The Two Worlds

SAT	Most Deductive Calculi
(Mostly) Efficient Reasoning	Construction (mostly) by enumeration/intuition
Very Easy Rules – CDCL (DPLL)	Can Be Very Complicated
E.g., \models ((A \Rightarrow B) \Rightarrow (A \Rightarrow B))?	



The Two Worlds

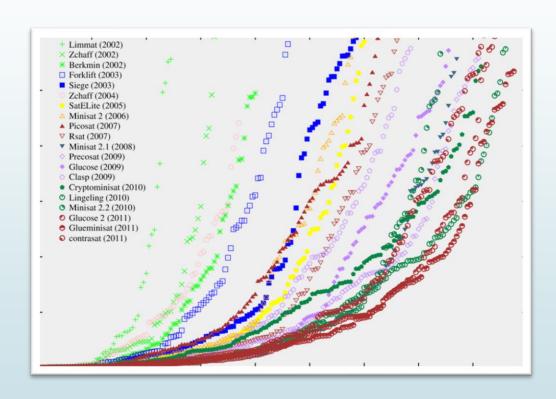
SAT	Most Deductive Calculi
(Mostly) Efficient Reasoning	Construction (mostly) by enumeration/intuition
Very Easy Rules – CDCL (DPLL)	Can Be Very Complicated
E.g., \models ((A \Rightarrow B) \Rightarrow (A \Rightarrow B))?	
CNF transformation: $\vdash_{CDCL} (\neg A \lor B) \land A \land \neg B$ 2x BCP: $\vdash_{CDCL} \bot$	

The Two Worlds

SAT	Most Deductive Calculi
(Mostly) Efficient Reasoning	Construction (mostly) by enumeration/intuition
Very Easy Rules – CDCL (DPLL)	Can Be Very Complicated
E.g., \models ((A \Rightarrow B) \Rightarrow (A \Rightarrow B))?	
CNF transformation: $\vdash_{CDCL} (\neg A \lor B) \land A \land \neg B$ $2x \ BCP: \vdash_{CDCL} \bot$	$\vdash_{HC} (X \Rightarrow ((X \Rightarrow X) \Rightarrow X) \Rightarrow ((X \Rightarrow (X \Rightarrow X)) \Rightarrow (X \Rightarrow X))$ $\vdash_{HC} X \Rightarrow ((X \Rightarrow X) \Rightarrow X)$ $\vdash_{HC} (X \Rightarrow (X \Rightarrow X)) \Rightarrow (X \Rightarrow X)$ $\vdash_{HC} X \Rightarrow X \text{ and use } X \coloneqq A \Rightarrow B$

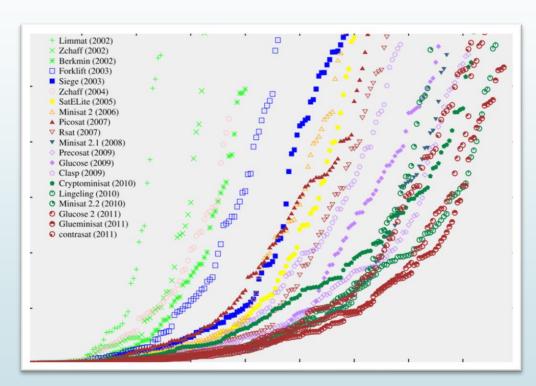
One Step back: Why Combine them?

SAT Solvers are efficient



One Step back: Why Combine them?

SAT Solvers are efficient



... and get more efficient every year

Get to the Point!

Get to the Point!

We suggested using SAT-Solvers for doing proof enumeration for connection calculus:

Embedding the Connection Calculus in Satisfiability Modulo Theories [AReCCa@TABLEAUX'23]

Get to the Point!

We suggested using SAT-Solvers for doing proof enumeration for connection calculus:

Embedding the Connection Calculus in Satisfiability Modulo Theories [AReCCa@TABLEAUX'23]

■ We continued on that end and here is what came out...

■ "First calculus towards ATP" [Bibel; Loveland – late 70s]

- "First calculus towards ATP" [Bibel; Loveland late 70s]
- ► Variant of (first-order) tableaux and binary resolution

- "First calculus towards ATP" [Bibel; Loveland late 70s]
- Variant of (first-order) tableaux and binary resolution
- Sound & complete

- "First calculus towards ATP" [Bibel; Loveland late 70s]
- Variant of (first-order) tableaux and binary resolution
- Sound & complete
- Unlike "ordinary" tableaux or resolution: Goal-directed & Non-confluent
 - Some proof steps are wrong and result in "dead ends"

- "First calculus towards ATP" [Bibel; Loveland late 70s]
- Variant of (first-order) tableaux and binary resolution
- Sound & complete
- Unlike "ordinary" tableaux or resolution: **Goal-directed & Non-confluent**
 - Some proof steps are wrong and result in "dead ends"
 - **■** E.g.

$$A$$
, $(\neg A \lor B)$, $(\neg A \lor C)$, $\neg C$

- "First calculus towards ATP" [Bibel; Loveland late 70s]
- Variant of (first-order) tableaux and binary resolution
- **■** Sound & complete
- Unlike "ordinary" tableaux or resolution: Goal-directed & Non-confluent
 - Some proof steps are wrong and result in "dead ends"
 - **■** E.g.

$$A$$
, $(\neg A \lor B)$, $(\neg A \lor C)$, $\neg C$

- Resolve A with
- \blacksquare ($\neg A \lor B$) resulting in B **or**
- \blacksquare ($\neg A \lor C$) resulting in C

- "First calculus towards ATP" [Bibel; Loveland late 70s]
- Variant of (first-order) tableaux and binary resolution
- Sound & complete
- Unlike "ordinary" tableaux or resolution: Goal-directed & Non-confluent
 - Some proof steps are wrong and result in "dead ends"
 - E.g.

$$A$$
, $(\neg A \lor B)$, $(\neg A \lor C)$, $\neg C$

- Resolve A with
- \blacksquare ($\neg A \lor B$) resulting in B or
- \blacksquare ($\neg A \lor C$) resulting in C
- However, we cannot do anything with B (dead end)

- "First calculus towards ATP" [Bibel; Loveland late 70s]
- Variant of (first-order) tableaux and binary resolution
- Sound & complete
- Unlike "ordinary" tableaux or resolution: Goal-directed & Non-confluent
 - Some proof steps are wrong and result in "dead ends"
 - **■** E.g.

$$A$$
, $(\neg A \lor B)$, $(\neg A \lor C)$, $\neg C$

- Resolve A with
- ($\neg A \lor B$) resulting in B **or**
- \blacksquare ($\neg A \lor C$) resulting in C
- ► However, we cannot do anything with B (dead end)
- Iterative deepening & proof enumeration

Alternative way of presenting CC proofs

- Alternative way of presenting CC proofs
- Clause copies are "written" vertically

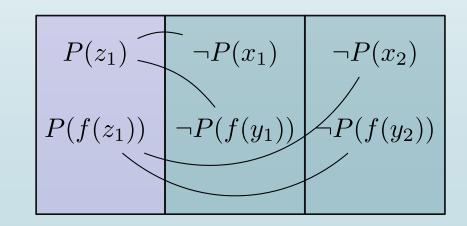
- Alternative way of presenting CC proofs
- Clause copies are "written" vertically
- Lines are drawn between dual literals
 - The literals are "connected"

- Alternative way of presenting CC proofs
- Clause copies are "written" vertically
- Lines are drawn between dual literals
 - The literals are "connected"

$$\begin{array}{|c|c|c|c|c|}\hline P(z_1) & \neg P(x_1) & \neg P(x_2) \\ \hline P(f(z_1)) & \neg P(f(y_1)) & \neg P(f(y_2)) \\ \hline \end{array}$$

$$C_1$$
: $\forall x \forall y \left(\neg P(x) \lor \neg P(f(x)) \right)$
 C_2 : $\forall z \left(P(z) \lor P(f(z)) \right)$

- Alternative way of presenting CC proofs
- Clause copies are "written" vertically
- Lines are drawn between dual literals
 - The literals are "connected"



$$C_1$$
: $\forall x \forall y \left(\neg P(x) \lor \neg P(f(x)) \right)$
 C_2 : $\forall z \left(P(z) \lor P(f(z)) \right)$

$$\sigma(z_1) \mapsto f(y_1), \qquad \sigma(x_1) \mapsto f(y_1),$$

 $\sigma(x_2) \mapsto f(f(y_1)), \qquad \sigma(y_2) \mapsto f(y_1)$

► Set of connections – "the matrix" – is **spanning**: **no open path**

- Set of connections "the matrix" is spanning: no open path
- Open path: One literal of each clause instance, such that none of them is connected with each other

- Set of connections "the matrix" is spanning: no open path
- Open path: One literal of each clause instance, such that none of them is connected with each other

$$Open(P) \equiv (\forall C \exists L(L \in P)) \land \forall L_1, L_2(L_1 \not\sim L_2)$$

- Set of connections "the matrix" is spanning: no open path
- Open path: One literal of each clause instance, such that none of them is connected with each other

$$Open(P) \equiv (\forall C \exists L(L \in P)) \land \forall L_1, L_2(L_1 \nsim L_2)$$

Only spanning matrices are correct proofs!

- Set of connections "the matrix" is spanning: no open path
- Open path: One literal of each clause instance, such that none of them is connected with each other

$$Open(P) \equiv (\forall C \exists L(L \in P)) \land \forall L_1, L_2(L_1 \nsim L_2)$$

- Only spanning matrices are correct proofs!
- Set of connections "the matrix" is fully connected:

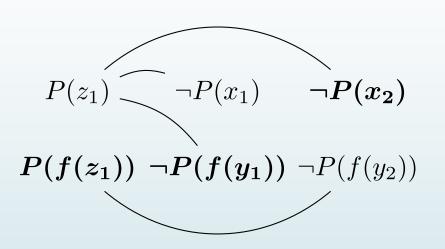
- Set of connections "the matrix" is spanning: no open path
- Open path: One literal of each clause instance, such that none of them is connected with each other

$$Open(P) \equiv (\forall C \exists L(L \in P)) \land \forall L_1, L_2(L_1 \nsim L_2)$$

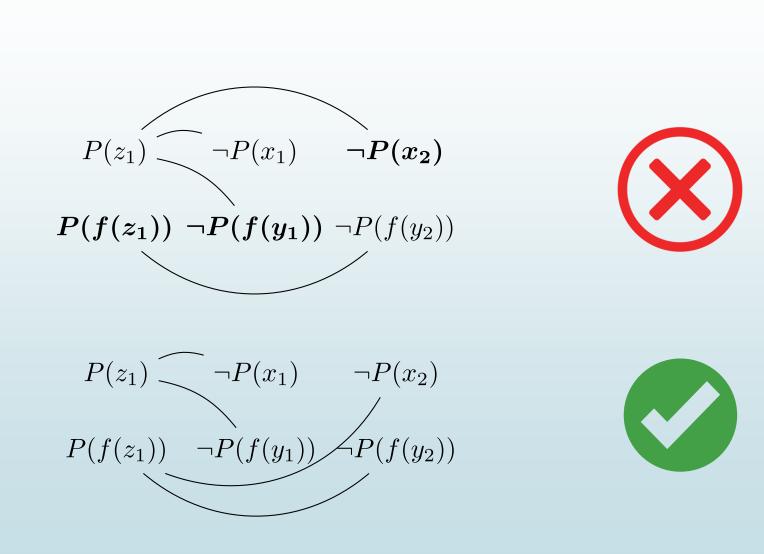
- Only spanning matrices are correct proofs!
- Set of connections "the matrix" is fully connected:
 each literal is connected with at least one other literal

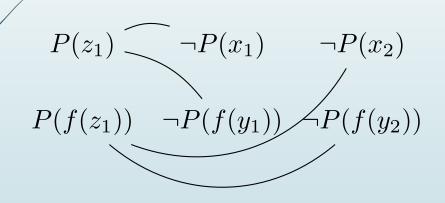
Another Example

Another Example



Another Example





$$C_1$$
: $\forall x \forall y \left(\neg P(x) \lor \neg P(f(x)) \right)$
 C_2 : $\forall z \left(P(z) \lor P(f(z)) \right)$

$$\sigma(z_1) \mapsto f(y_1), \qquad \sigma(x_1) \mapsto f(y_1),$$

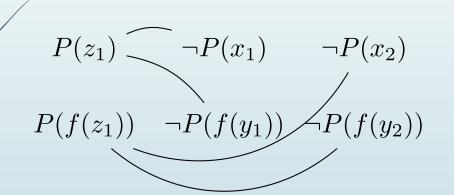
 $\sigma(x_2) \mapsto f(f(y_1)), \qquad \sigma(y_2) \mapsto f(y_1)$

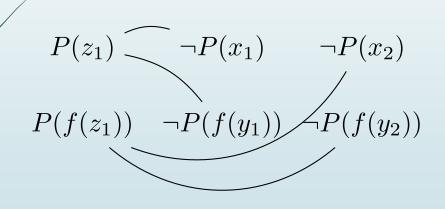
Clauses

$$C_1$$
: $\forall x \forall y \left(\neg P(x) \lor \neg P(f(x)) \right)$
 C_2 : $\forall z \left(P(z) \lor P(f(z)) \right)$

$$\sigma(z_1) \mapsto f(y_1), \qquad \sigma(x_1) \mapsto f(y_1),$$

 $\sigma(x_2) \mapsto f(f(y_1)), \qquad \sigma(y_2) \mapsto f(y_1)$



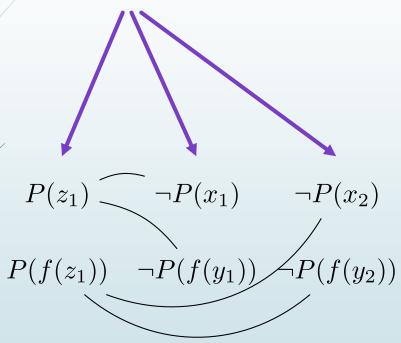


$$C_1$$
: $\forall x \forall y \left(\neg P(x) \lor \neg P(f(x)) \right)$
 C_2 : $\forall z \left(P(z) \lor P(f(z)) \right)$

Unifier

$$\sigma(z_1) \mapsto f(y_1), \qquad \sigma(x_1) \mapsto f(y_1),$$

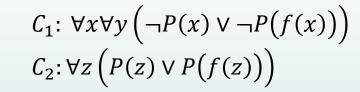
 $\sigma(x_2) \mapsto f(f(y_1)), \qquad \sigma(y_2) \mapsto f(y_1)$



$$C_1$$
: $\forall x \forall y \left(\neg P(x) \lor \neg P(f(x)) \right)$
 C_2 : $\forall z \left(P(z) \lor P(f(z)) \right)$

$$\sigma(z_1) \mapsto f(y_1), \qquad \sigma(x_1) \mapsto f(y_1),$$

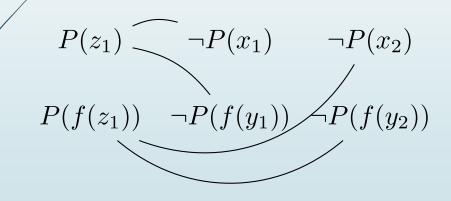
 $\sigma(x_2) \mapsto f(f(y_1)), \qquad \sigma(y_2) \mapsto f(y_1)$



$$P(z_1)$$
 $\neg P(x_1)$ $\neg P(x_2)$ $P(f(z_1))$ $P(f(y_2))$

$$\sigma(z_1) \mapsto f(y_1), \qquad \sigma(x_1) \mapsto f(y_1),$$

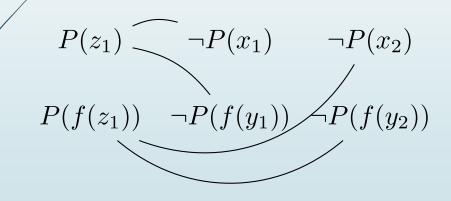
 $\sigma(x_2) \mapsto f(f(y_1)), \qquad \sigma(y_2) \mapsto f(y_1)$



$$C_1$$
: $\forall x \forall y \left(\neg P(x) \lor \neg P(f(x)) \right)$
 C_2 : $\forall z \left(P(z) \lor P(f(z)) \right)$

$$\sigma(z_1) \mapsto f(y_1), \qquad \sigma(x_1) \mapsto f(y_1),$$

 $\sigma(x_2) \mapsto f(f(y_1)), \qquad \sigma(y_2) \mapsto f(y_1)$



$$C_1$$
: $\forall x \forall y \left(\neg P(x) \lor \neg P(f(x)) \right)$
 C_2 : $\forall z \left(P(z) \lor P(f(z)) \right)$

$$\sigma(z_1) \mapsto f(y_1), \qquad \sigma(x_1) \mapsto f(y_1),$$

 $\sigma(x_2) \mapsto f(f(y_1)), \qquad \sigma(y_2) \mapsto f(y_1)$

SAT/SMT Encodings for CC

Finding Connections via Satisfiability Solving

The CC Encodings

The CC Encodings

■ In the paper we discussed three different encodings

The CC Encodings

- In the paper we discussed three different encodings
- 1. CC tableau trees (omitted for *this* talk)
- 2. CC matrices with static sizes
- 3. CC matrices with dynamic sizes

We want to encode for some fixed number d > 0:

- 1. The matrix contains **exactly** *d* **clause instances**
- 2. The matrix is spanning

We want to encode for some fixed number d > 0:

- 1. The matrix contains **exactly** *d* **clause instances**
- 2. The matrix is spanning

Condition 2. cannot be really expressed directly, hence we use instead:

- 1. The matrix contains **exactly** *d* **clause instances**
- 2. The matrix is **fully connected**

We want to encode for some fixed number d > 0:

- 1. The matrix contains **exactly** *d* **clause instances**
- 2. The matrix is spanning

Condition 2. cannot be really expressed directly, hence we use instead:

- 1. The matrix contains **exactly** *d* **clause instances**
- 2. The matrix is **fully connected**

"Fully connected" is used as an approximation for "spanning".

We want to encode for some fixed number d > 0:

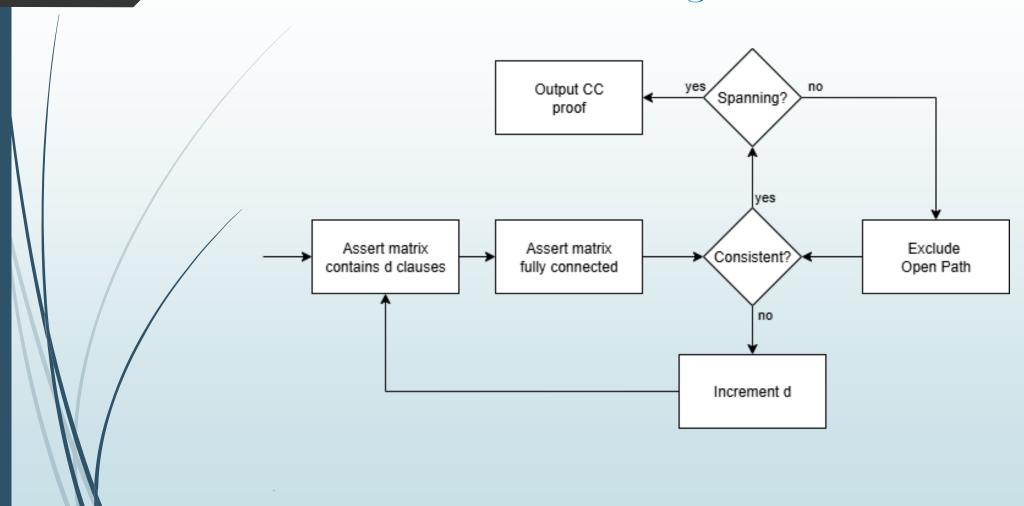
- 1. The matrix contains **exactly** *d* **clause instances**
- 2. The matrix is spanning

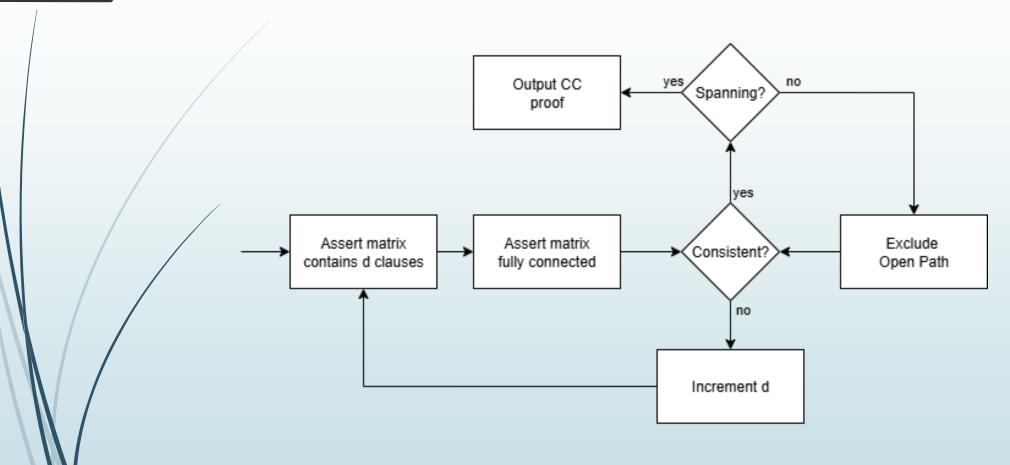
Condition 2. cannot be really expressed directly, hence we use instead:

- 1. The matrix contains **exactly** *d* **clause instances**
- 2. The matrix is **fully connected**

"Fully connected" is used as an approximation for "spanning".

→ We check for spanningness and rule out spurious proofs on-demand





- **Encoding is lazy** (SMT style)
- Unification can be expressed using algebraic datatypes (ADT)

We have two kinds of literals:

- We have two kinds of literals:
 - 1. Selectors
 - e.g., $S^1_{P(z)\vee P(f(z))}$ denotes $P(z_1)\vee P(f(z_1))$ occurs in the matrix

- We have two kinds of literals:
 - 1. Selectors
 - e.g., $S^1_{P(z)\vee P(f(z))}$ denotes $P(z_1)\vee P(f(z_1))$ occurs in the matrix
 - 2. Connectors
 - **■** E.g., $\langle P(f(z_1)) \sim \neg P(x_1) \rangle$ denotes that the given literal instances are dual ("connected")

- We have two kinds of literals:
 - 1. Selectors
 - e.g., $S^1_{P(z)\vee P(f(z))}$ denotes $P(z_1)\vee P(f(z_1))$ occurs in the matrix
 - 2. Connectors
 - **■** E.g., $\langle P(f(z_1)) \sim \neg P(x_1) \rangle$ denotes that the given literal instances are dual ("connected")
 - lacktriangle i.e., enforces $f(z_1)$ unifies with x_1

1. There are *d* clause instance in the matrix:

$$|\{S^i_C \mid C, 1 \leq i \leq d\}| = d$$

1. There are *d* clause instance in the matrix:

$$|\{S_C^i \mid C, 1 \le i \le d\}| = d$$

2. For each literal S^i in the matrix there is a connected one (fully connected)

$$S^{i} \Rightarrow \bigvee_{D} \bigvee_{1 \le k \le d} \bigvee_{K \in D^{k}} \left(S_{D}^{k} \wedge \langle L \sim K \rangle \right)$$

1. There are *d* clause instance in the matrix:

$$|\{S_C^i \mid C, 1 \le i \le d\}| = d$$

2. For each literal S^i in the matrix there is a connected one (fully connected)

$$S^{i} \Rightarrow \bigvee_{D} \bigvee_{1 \le k \le d} \bigvee_{K \in D^{k}} \left(S_{D}^{k} \wedge \langle L \sim K \rangle \right)$$

3. For every open path U and set of d selectors \bar{S} we add

$$\bigwedge_{S \in \bar{S}} S \Rightarrow \bigvee_{\{L,K\} \subseteq U} \langle L \sim K \rangle$$

Sound

- Sound
- ► For some fixed *d*
 - **■** Terminating
 - Complexity Σ_2^P -complete ["NP given we have a co-NP oracle"]

- Sound
- ► For some fixed *d*
 - **■** Terminating
 - Complexity Σ_2^P -complete ["NP given we have a co-NP oracle"]
- **Completeness** by stepwise incrementing *d*

- Sound
- For some fixed d
 - **■** Terminating
 - Complexity Σ_2^P -complete ["NP given we have a co-NP oracle"]
- Completeness by stepwise incrementing d
- However, incrementing d by one → one more copy of each clause
 - Makes it even more explosive

Dynamic Matrix Sizing Idea

Dynamic Matrix Sizing Idea

- One counter $\mu(C)$ for each clause C
 - So far, we had for all C that $\mu(C) := d$
 - **■** Thus, we have S_C^i for any $1 \le i \le \mu(C)$
 - Literals $S_C^{\mu(C)+1}$ are **assumed** to be false

- One counter $\mu(C)$ for each clause C
 - So far, we had for all C that $\mu(C) := d$
 - **■** Thus, we have S_C^i for any $1 \le i \le \mu(C)$
 - Literals $S_C^{\mu(C)+1}$ are **assumed** to be false
- We **increment only some** $\mu(C)$ on failed proof attempts

- lacktriangle One counter $\mu(C)$ for each clause C
 - So far, we had for all C that $\mu(C) := d$
 - Thus, we have S_C^i for any $1 \le i \le \mu(C)$
 - Literals $S_C^{\mu(C)+1}$ are **assumed** to be false
- We **increment only some** $\mu(C)$ on failed proof attempts
- Decisions are based on conflict analysis (unsat core)

$$S^{i} \Rightarrow \bigvee_{D} \bigvee_{1 \leq k \leq \mu(\mathbf{D}) + 1} \bigvee_{K \in D^{k}} \left(S_{D}^{k} \wedge \langle L \sim K \rangle \right)$$

- lacktriangle One counter $\mu(C)$ for each clause C
 - So far, we had for all C that $\mu(C) := d$
 - Thus, we have S_C^i for any $1 \le i \le \mu(C)$
 - Literals $S_C^{\mu(C)+1}$ are **assumed** to be false
- ▶ We **increment only some** $\mu(C)$ on failed proof attempts
- Decisions are based on conflict analysis (unsat core)

$$S^{i} \Rightarrow \bigvee_{D} \bigvee_{1 \leq k \leq \mu(\mathbf{D}) + 1} \bigvee_{K \in D^{k}} \left(S_{D}^{k} \wedge \langle L \sim K \rangle \right)$$

lacktriangle "Connect to some literal instance of clause D or require more instances of D"

$$\{P(a), \neg P(x) \lor P(f(x)), \neg P(a)\}$$

$$\mu(P(a)) \mapsto 1$$

$$\mu(P(x) \lor \neg P(f(x))) \mapsto 0$$

$$\mu(\neg P(a)) \mapsto 0$$

$$\{P(a), \neg P(x) \lor P(f(x)), \neg P(a)\}$$

$$\mu(P(a)) \mapsto 1$$

$$\mu(P(x) \lor \neg P(f(x))) \mapsto 0$$

$$\mu(\neg P(a)) \mapsto 0$$

$$S^{1}_{P(a)} \Rightarrow \left(S^{1}_{\neg P(x) \lor P(f(x))} \land \langle P(a) \sim \neg P(x_{1}) \rangle\right) \lor S^{1}_{\neg P(a)}$$

Consider the clause set

P(a)

$$\{P(a), \neg P(x) \lor P(f(x)), \neg P(a)\}$$

$$\mu(P(a)) \mapsto 1$$

$$\mu(P(x) \lor \neg P(f(x))) \mapsto 0$$

$$\mu(\neg P(a)) \mapsto 0$$

$$\{S_{\neg P(x) \lor P(f(x))}^{1}, S_{\neg P(a)}^{1}\}$$

$$S^{1}_{P(a)} \Rightarrow \left(S^{1}_{\neg P(x) \lor P(f(x))} \land \langle P(a) \sim \neg P(x_{1}) \rangle\right) \lor S^{1}_{\neg P(a)}$$

Consider the clause set

$$P(a) \longrightarrow \neg P(x_1)$$

$$\mu(P(a)) \mapsto 1$$

$$\mu(P(x) \lor \neg P(f(x))) \mapsto 1$$

$$\mu(\neg P(a)) \mapsto 0$$

 $\{P(a), \neg P(x) \lor P(f(x)), \neg P(a)\}$

$$S^{1}_{P(a)} \Rightarrow \left(S^{1}_{\neg P(x) \lor P(f(x))} \land \langle P(a) \sim \neg P(x_{1}) \rangle\right) \lor S^{1}_{\neg P(a)}$$

$$S^{1}_{\neg P(x) \lor P(f(x))} \Rightarrow \left(S^{2}_{\neg P(x) \lor P(f(x))} \land \langle P(f(x_{1})) \sim P(x_{2}) \rangle\right)$$

$$\{P(a), \neg P(x) \lor P(f(x)), \neg P(a)\}$$

$$P(a) \longrightarrow \neg P(x_1)$$

$$\mu(P(a)) \mapsto 1$$

$$\mu(P(x) \lor \neg P(f(x))) \mapsto 1$$

$$\mu(\neg P(a)) \mapsto 0$$

$$\{S_{\neg P(x) \lor P(f(x))}^2, S_{\neg P(a)}^1\}$$

$$S_{\neg P(x) \lor P(f(x))}^1 \land \langle P(a) \sim \neg P(x_1) \rangle) \lor S_{\neg P(a)}^1$$

$$S_{\neg P(x) \lor P(f(x))}^1 \Rightarrow \left(S_{\neg P(x) \lor P(f(x))}^2 \land \langle P(f(x_1)) \sim P(x_2) \rangle \right)$$

$$\{P(a), \neg P(x) \lor P(f(x)), \neg P(a)\}$$

$$P(a) \longrightarrow \neg P(x_1) \neg P(x_2) \qquad \mu(P(a)) \mapsto 1$$

$$\mu(P(x) \lor \neg P(f(x))) \mapsto 2$$

$$\mu(\neg P(a)) \mapsto 0$$

→ Fair incrementation of clauses in unsat cores

$$\{P(a), \neg P(x) \lor P(f(x)), \neg P(a)\}$$

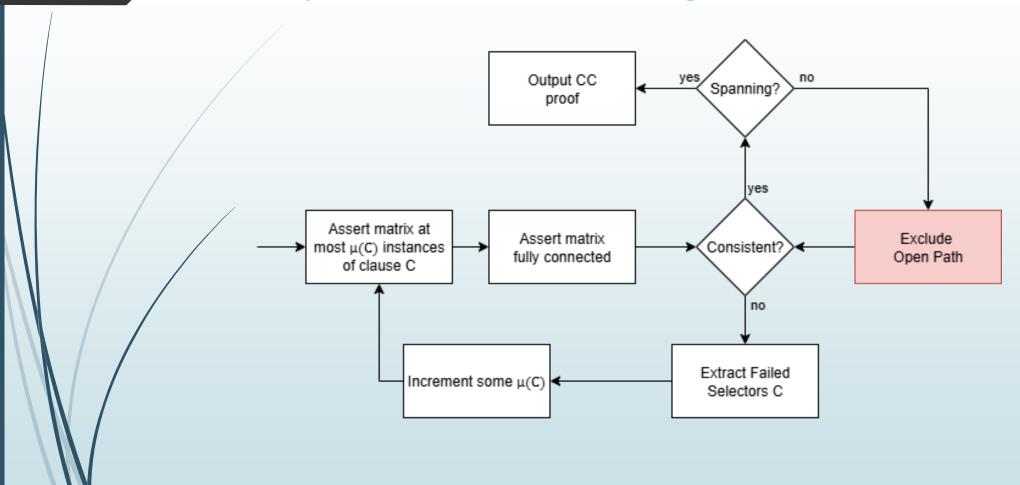
$$P(a) \longrightarrow \neg P(x_1) \qquad \neg P(x_2)$$

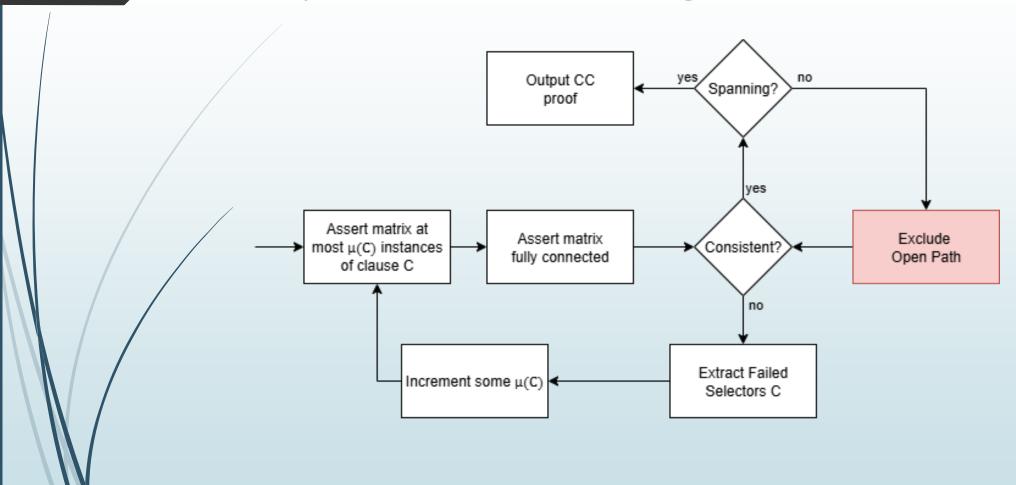
$$P(f(x_1)) \qquad P(f(x_2))$$

$$\mu(P(a)) \mapsto 1$$

$$\mu(P(x) \lor \neg P(f(x))) \mapsto 2$$

$$\mu(\neg P(a)) \mapsto 0$$





■ Eliminating open paths is **broken** now

■ The at most – instead of exactly – breaks it!

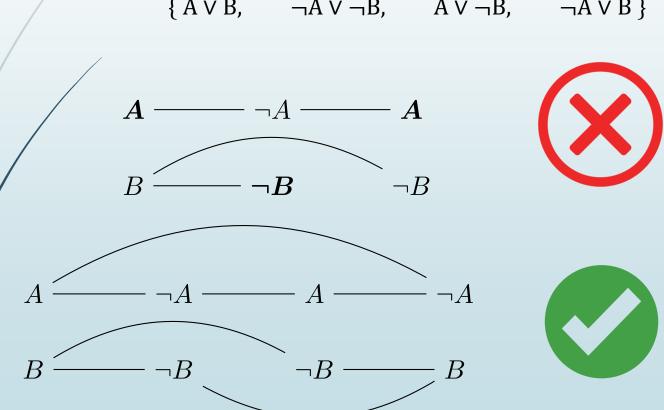
- ► The at most instead of exactly breaks it!
- Let's consider a propositional example

- The at most instead of exactly breaks it!
- Let's consider a propositional example

```
\{ A \lor B, \neg A \lor \neg B, A \lor \neg B, \neg A \lor B \}
```

- The at most instead of exactly breaks it!
- ► Let's consider a propositional example

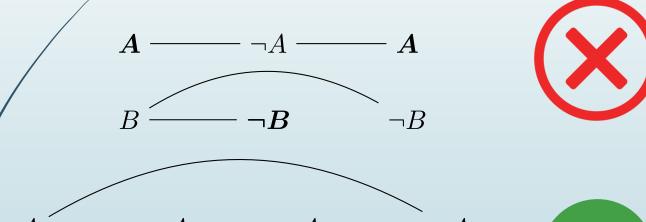
$$\{ A \lor B, \neg A \lor \neg B, A \lor \neg B, \neg A \lor B \}$$



 $\bigwedge_{S \in \bar{S}} S \Rightarrow \bigvee_{\{L,K\} \subseteq U} \langle L \sim K \rangle$

- The at most instead of exactly breaks it!
- Let's consider a propositional example

$$\{ A \lor B, \neg A \lor \neg B, A \lor \neg B, \neg A \lor B \}$$

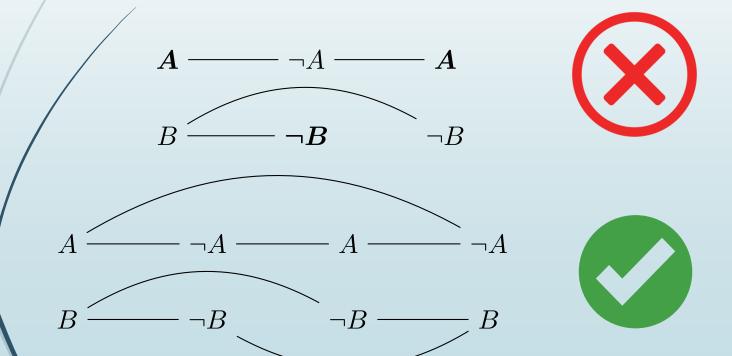


$$B \longrightarrow \neg B \longrightarrow B$$

 $\bigwedge_{S \in \bar{S}} S \Rightarrow \bigvee_{\{L,K\} \subseteq U} \langle L \sim K \rangle$

- The at most instead of exactly breaks it!
- ► Let's consider a propositional example

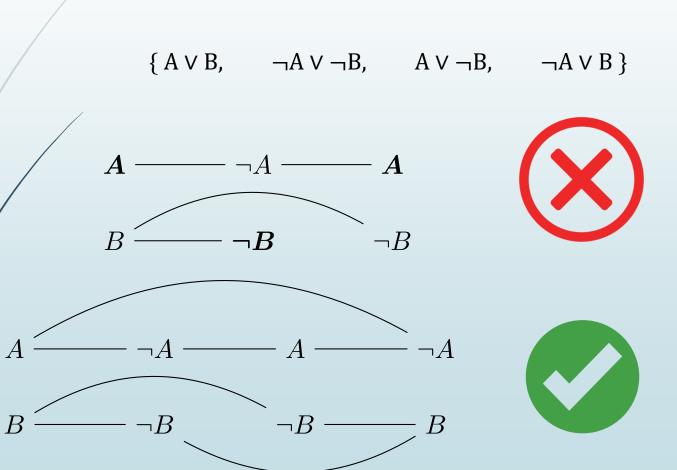
$$\{ A \lor B, \neg A \lor \neg B, A \lor \neg B, \neg A \lor B \}$$



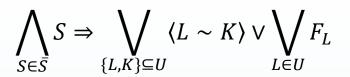
$$(S^1_{A \vee B} \wedge S^1_{\neg A \vee \neg B} \wedge S^1_{A \vee \neg B}) \Rightarrow \bot$$

Solution

Solution



Solution

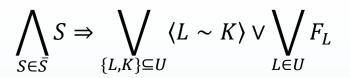


$$\{ A \lor B, \neg A \lor \neg B, A \lor \neg B, \neg A \lor B \}$$

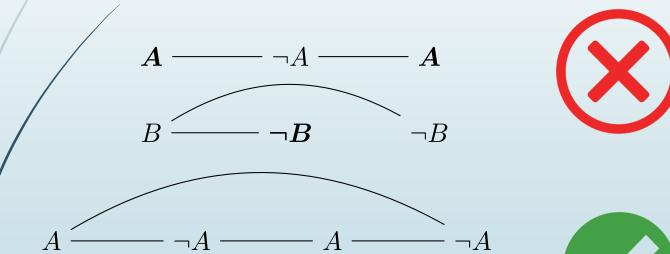


B

Solution



$$\{ A \lor B, \neg A \lor \neg B, A \lor \neg B, \neg A \lor B \}$$



$$(S_{A \lor B}^{1} \land S_{\neg A \lor \neg B}^{1} \land S_{A \lor \neg B}^{1}) \Rightarrow$$

$$(S_{A \lor B}^{2} \lor S_{\neg A \lor \neg B}^{2} \lor S_{A \lor \neg B}^{2} \lor S_{\neg A \lor B}^{1})$$

■ Monotonicity of selectors of some clause C

$$S_C^{i+1} \Rightarrow S_C^i$$

■ Monotonicity of selectors of some clause C

$$S_C^{i+1} \Rightarrow S_C^i$$

- Term Ordering
 - If i < j then $C^i < C^j$ modulo unifier
 - lacktriangledown e.g., assume term order a \prec f(a) and some matrix containing $P(x_1)$ and $P(x_2)$
 - Having $\sigma(x_1) \mapsto f(a)$ forbids $\sigma(x_2) \mapsto a$

■ Monotonicity of selectors of some clause C

$$S_C^{i+1} \Rightarrow S_C^i$$

- Term Ordering
 - If i < j then $C^i < C^j$ modulo unifier
 - lacktriangledown e.g., assume term order a \prec f(a) and some matrix containing $P(x_1)$ and $P(x_2)$
 - Having $\sigma(x_1) \mapsto f(a)$ forbids $\sigma(x_2) \mapsto a$
- "Subsumption"
 - ► For any clause instances C^i and D^j we have $C^i \neq D^j$ modulo unifier

Monotonicity of selectors of some clause C

$$S_C^{i+1} \Rightarrow S_C^i$$

- Term Ordering
 - If i < j then $C^i < C^j$ modulo unifier
 - lacktriangledown e.g., assume term order a \prec f(a) and some matrix containing $P(x_1)$ and $P(x_2)$
 - Having $\sigma(x_1) \mapsto f(a)$ forbids $\sigma(x_2) \mapsto a$
- "Subsumption"
 - For any clause instances C^i and D^j we have $C^i \neq D^j$ modulo unifier
- ("AVATAR"-like) Clause splitting

Monotonicity of selectors of some clause C

$$S_C^{i+1} \Rightarrow S_C^i$$

- Term Ordering
 - If i < j then $C^i < C^j$ modulo unifier
 - lacktriangle e.g., assume term order a \prec f(a) and some matrix containing $P(x_1)$ and $P(x_2)$
 - Having $\sigma(x_1) \mapsto f(a)$ forbids $\sigma(x_2) \mapsto a$
- "Subsumption"
 - For any clause instances C^i and D^j we have $C^i \neq D^j$ modulo unifier
- ("AVATAR"-like) Clause splitting
- Decision procedure for EPR ("Bernays-Schönfinkel") fragment

Results

- Prototype UpCoP using both CaDiCal (SAT) and Z3 (SMT) backend
- **■** Compared against *meanCoP* (complete mode)

Results

- Prototype UpCoP using both CaDiCal (SAT) and Z3 (SMT) backend
- **■** Compared against *meanCoP* (complete mode)

Solver	UpCoP _{SMT}	UpCoP _{SAT}	UpCoP _{SMT}	UpCoP _{SAT}	UpCoP _{SMT}	UpCoP _{SAT}	meanCoP
Enc.	\mathcal{E}_{M}		\mathcal{E}_{U}		\mathcal{E}_{H}		
Solved	928	855	1152	1055	1272	1264	1972
Unique	27	20	109	93	105	76	551

Results

- Prototype UpCoP using both CaDiCal (SAT) and Z3 (SMT) backend
- Compared against *meanCoP* (complete mode)

Solver	UpCoP _{SMT}	UpCoP _{SAT}	UpCoP _{SMT}	UpCoP _{SAT}	UpCoP _{SMT}	UpCoP _{SAT}	meanCoP
Enc.	\mathcal{E}_{M}		\mathcal{E}_{U}		\mathcal{E}_{H}		
Solved	928	855	1152	1055	1272	1264	1972
Unique	27	20	109	93	105	76	551

Huch! What went wrong??

Several Reasons for Bad Performance

Several Reasons for Bad Performance

Overhead of delegating reasoning to SAT core

Several Reasons for Bad Performance

- Overhead of delegating reasoning to SAT core
- ► Learned conflicts often unhelpful/very specific

Several Reasons for Bad Performance

- Overhead of delegating reasoning to SAT core
- Learned conflicts often unhelpful/very specific
- The SAT solver "builds" independent matrix parts

Several Reasons for Bad Performance

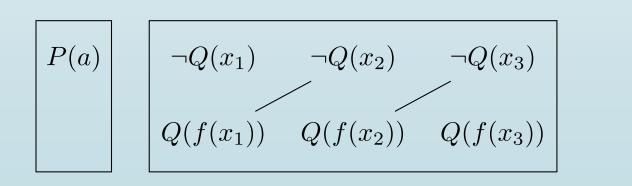
- Overhead of delegating reasoning to SAT core
- Learned conflicts often unhelpful/very specific
- The SAT solver "builds" independent matrix parts

$$\{P(a), \neg Q(x) \lor Q(f(x)), \neg P(a)\}$$

Several Reasons for Bad Performance

- Overhead of delegating reasoning to SAT core
- Learned conflicts often unhelpful/very specific
- The SAT solver "builds" independent matrix parts

$$\{P(a), \neg Q(x) \lor Q(f(x)), \neg P(a)\}$$



- Encoded the **existence of a spanning matrix** as a SAT problem
 - Usually: propositionally unsatisfiable → FO proof

- Encoded the **existence of a spanning matrix** as a SAT problem
 - Usually: propositionally unsatisfiable → FO proof
- Evaluated our prototype using a SAT and SMT backend

- Encoded the **existence of a spanning matrix** as a SAT problem
 - Usually: propositionally unsatisfiable → FO proof
- Evaluated our prototype using a SAT and SMT backend
 - Experimental results are rather modest

- Encoded the existence of a spanning matrix as a SAT problem
 - Usually: propositionally unsatisfiable → FO proof
- Evaluated our prototype using a SAT and SMT backend
 - Experimental results are rather modest

In-depth investigation of SAT for CC reasoning

- Encoded the existence of a spanning matrix as a SAT problem
 - Usually: propositionally unsatisfiable → FO proof
- Evaluated our prototype using a SAT and SMT backend
 - Experimental results are rather modest

In-depth investigation of SAT for CC reasoning

- what is definitely unhelpful towards a closed tableaux Encoded the existence of a opanning matrix as a "SAT" problem
 - Usually: propositionally unsatisfiable → FO proof
- Evaluated our prototype using a SAT and SMT backend
 - Experimental results are rather modest

In-depth investigation of SAT for CC reasoning

In-depth

CC

Summary

what is definitely unhelpful towards a closed tableaux Encoded the existence of a opanning matrix as a "SAT" problem Stay tuned for the next lecture © investigation of SAT for reasoning

what is definitely unhelpful towards a closed tableaux
■ Encoded the existence of a opanning matrix as a "SAT" pro

Stay tuned for the next lecture ©

In-depth investigation of SAT for CC reasoning

Thanks for your attention!

what is definitely unhelpful towards a closed tableaux
Encoded the existence of a epanning matrix as a "SAT" pro

Stay tuned for the next lecture ©

In-depth investigation of SAT for CC reasoning

Thanks for

your

attention!