B Informatics &) southampton

Clemens Eisenhofer (TU Wien)
Joint work with

Michael Rawson (U. Southampton) & Laura Kovacs (TU Wien)

The Two Worlds

The Two Worlds

The Two Worlds

The Two Worlds

The Two Worlds

The Two Worlds

The Two Worlds

One Step back: Why Combine them?

Limmat (2002)
Zchaff (2002)

Op
L}

»

)

- -
I ff t Berkmin (2002)
SAT Solvers are efficien . Berknin 2002 . s @ #
. Siege (2003) Sy o &
Zchaff (2004) o = ‘o & ®
SatELite (2005) 5 L . " &
Minisat 2 (2006) g S, 8
4 Picosat (2007) g F o ¥ &
 Rsat (2007) « g 5 - Vo ' og
= ¥ Minisat 2.1 (2008) B St owsf &,
Precosat (2009) " f &° o &
Glucose (2009) ~ ‘A“ 84 N 4 olo

Clasp (2009) m ath .
* Cryptominisat (2010) y “~ w7 y
© Lingeling (2010) x @ A w ‘ 0&
© Minisat 2.2 (2010) ol ¢ R

© Glucose 2 (2011) ‘
® Glueminisat (2011) ‘ﬁl

© contrasat (2011)

One Step back: Why Combine them?

Limmat 2002) o wp = v =
. . Zchaff (2002) o o o, © &
SAT Solvers are efficient Berknin (2002) I ©
O Forklift (2003) o A ¥ v 4?0 &
_ W Siege (2003) A 8 O
Zchaff (2004) o ; AV é? ®
SatELite (2005) B v
Minisat 2 (2006) 5}] v ﬁfo &
A Picosat (2007) o ’ 4 o 'O g
¥ Rsat (2007) " [5] . ‘“ "0 . °£
¥ Minisat 2.1 (2008) o 2 o wise &
Precosat (2009) Fd j. (]
Glucose (2009) & o P °&
P ©
Clasp (2009) m - - * o0
* Cryptominisat (2010) Py - y
® b 2 & &f
& = y Ao

O Lingeling (2010) X

® Minisat 2.2 (2010) :

© Glucose 2 (2011) .

® Glueminisat (2011) ‘ﬁl
© contrasat (2011)

... and get more efficient every year

Get to the Point!

Get to the Point!

» \\Ne suggested using SAT-Solvers for doing proof enumeration for
connection calculus:

Embedding the Connection Calculus in Satisfiability Modulo Theories
[AReCCa@TABLEAUX’23]

Get to the Point!

» \\Ne suggested using SAT-Solvers for doing proof enumeration for
connection calculus:

Embedding the Connection Calculus in Satisfiability Modulo Theories
[AReCCa@TABLEAUX’23]

=» \Ve continued on that end and here is what came out...

First-Order Connection Calculus (CC)

First-Order Connection Calculus (CC)

» "First calculus towards ATP" [Bibel; Loveland — late 70s]

First-Order Connection Calculus (CC)

» "First calculus towards ATP" [Bibel; Loveland — late 70s]

» \ariant of (first-order) tableaux and binary resolution

First-Order Connection Calculus (CC)

» "First calculus towards ATP" [Bibel; Loveland — late 70s]
» \ariant of (first-order) tableaux and binary resolution

=» Sound & complete

First-Order Connection Calculus (CC)

» "First calculus towards ATP" [Bibel; Loveland — late 70s]
» \ariant of (first-order) tableaux and binary resolution
=» Sound & complete

» Unlike "ordinary" tableaux or resolution: Goal-directed & Non-confluent

®» Some proof steps are wrong and result in "dead ends"

First-Order Connection Calculus (CC)

» "First calculus towards ATP" [Bibel; Loveland — late 70s]
» \ariant of (first-order) tableaux and binary resolution
=» Sound & complete

» Unlike "ordinary" tableaux or resolution: Goal-directed & Non-confluent

®» Some proof steps are wrong and result in "dead ends"

» F Q.
A, (=A v B), (=A v 0), -C

First-Order Connection Calculus (CC)

» "First calculus towards ATP" [Bibel; Loveland — late 70s]
» \ariant of (first-order) tableaux and binary resolution
=» Sound & complete

» Unlike "ordinary" tableaux or resolution: Goal-directed & Non-confluent

®» Some proof steps are wrong and result in "dead ends"

» F Q.
A, (=A v B), (=A v 0), -C

= Resolve A with
®» (A V B) resulting in B or

®» (1A VC) resulting in C

First-Order Connection Calculus (CC)

» "First calculus towards ATP" [Bibel; Loveland — late 70s]
» \ariant of (first-order) tableaux and binary resolution
=» Sound & complete

» Unlike "ordinary" tableaux or resolution: Goal-directed & Non-confluent

®» Some proof steps are wrong and result in "dead ends"

» F Q.
A, (=A v B), (=A v 0), -C

= Resolve A with
®» (A V B) resulting in B or
» (=AVC) resulting in C

» However, we cannot do anything with B (dead end)

First-Order Connection Calculus (CC)

» "First calculus towards ATP" [Bibel; Loveland — late 70s]
» \ariant of (first-order) tableaux and binary resolution
=» Sound & complete

» Unlike "ordinary" tableaux or resolution: Goal-directed & Non-confluent

®» Some proof steps are wrong and result in "dead ends"

» F Q.

A, (=A Vv B), (mA v O), —C
= Resolve A with
®» (A V B) resulting in B or
® (=A Vv C) resulting in C

» However, we cannot do anything with B (dead end)

» |terative deepening & proof enumeration

‘The Matrix Representation

‘The Matrix Representation

» Alternative way of presenting CC proofs

‘The Matrix Representation

» Alternative way of presenting CC proofs

» (Clause copies are "written" vertically

‘The Matrix Representation

» Alternative way of presenting CC proofs
» (Clause copies are "written" vertically

®» | ines are drawn between dual literals

» The literals are "connected"

‘The Matrix Representation

» Alternative way of presenting CC proofs
» (Clause copies are "written" vertically

®» | ines are drawn between dual literals

= The literals are "connected" Ci: VxVy (—.P(x) Vv —.P(f(x)))

P(Zl) —|P(5131) —lp(ilfg)

P(f(z1)) | ~P(f(y1)) | ~P(f(y2))

‘The Matrix Representation

» Alternative way of presenting CC proofs
» (Clause copies are "written" vertically

®» | ines are drawn between dual literals

= The literals are "connected" Ci: VxVy (—.P(x) Vv —.P(f(x)))

—lP(xl) —|P($2)

\ / a(z1) = f(y1), o(x1) » f(y1),
P(f(21)) |~P(f)LAP(F(12)) o) > f(fOn). 002 = fOn)

|

‘The Matrix Representation

‘The Matrix Representation

» Set of connections — “the matrix" — is spanning: no open path

‘The Matrix Representation

» Set of connections — “the matrix" — is spanning: no open path
» Open path: One literal of each clause instance,

such that none of them is connected with each other

‘The Matrix Representation

» Set of connections — “the matrix" — is spanning: no open path
» Open path: One literal of each clause instance,

such that none of them is connected with each other

Open(P) = (VC3AL(L € P)) AVLy, Ly(Ly + Ly)

‘The Matrix Representation

» Set of connections — “the matrix" — is spanning: no open path
» Open path: One literal of each clause instance,

such that none of them is connected with each other
Open(P) = (VC3AL(L € P)) AVLy, Ly(Ly + Ly)

» Only spanning matrices are correct proofs!

‘The Matrix Representation

» Set of connections — “the matrix" — is spanning: no open path
» Open path: One literal of each clause instance,

such that none of them is connected with each other
Open(P) = (VC3AL(L € P)) AVLy, Ly(Ly + Ly)

» Only spanning matrices are correct proofs!

» Set of connections — "the matrix" — is fully connected:

‘The Matrix Representation

» Set of connections — “the matrix" — is spanning: no open path
» Open path: One literal of each clause instance,

such that none of them is connected with each other
Open(P) = (VC3AL(L € P)) AVLy, Ly(Ly + Ly)

» Only spanning matrices are correct proofs!

» Set of connections — "the matrix" — is fully connected:

each literal is connected with at least one other literal

Another Example

Another Example

N

P(z1) _ —P(z1) —P(x2)

~

P(f(z1)) =P (f(y1)) ~P(f(y2))

~_ -

Another Example

N

P(z1) _ —P(z1) —P(x2)

~

P(f(z1)) =P (f(y1)) ~P(f(y2))

‘The Matrix Representation - Deflinitions

Ci: VxVy (_IP(X) Y, —|P(f(x)))
C,:vz (P(2) v P(f(2)))

o(z1) » f(y1), o(x1) » f(y),
(f(yl)) P(f(y2)) o(xy) » f(f()ﬁ))» a(yz) » f(y1)

&

‘The Matrix Representation - Deflinitions

Clauses

Ci: VxVy (_IP(X) Y, —|P(f(x)))
C,:vz (P(2) v P(f(2)))

o(z1) » f(y1), o(x1) » f(y),
(f(yl)) P(f(y2)) o(xy) » f(f()ﬁ))» a(yz) » f(y1)

&

‘The Matrix Representation - Deflinitions

Ci: VxVy (_IP(X) Y, —|P(f(x)))
C,:vz (P(2) v P(f(2)))

Unifier

o(z1) » f(y1), o(x1) » f(y),
(f(yl)) P(f(y2)) o(xy) » f(f()ﬁ))» a(yz) » f(y1)

&

‘The Matrix Representation - Deflinitions

Clause Instances

Ci: VxVy (_IP(X) Y, —|P(f(x)))
C,:vz (P(2) v P(f(2)))

_ 0(z1) = f(y1), a(x1) = f(y1),
P<f(Z1)) P(f(y2)) o(xy) » f(f()ﬁ))» a(yz) » f(y1)

&

‘The Matrix Representation - Deflinitions

Ci: VxVy (_IP(X) Y, —|P(f(x)))
C,:vz (P(2) v P(f(2)))

o(z1) » f(y1), o(x1) » f(y),
P<f(Z1)) P(f(y2)) o(xy) » f(f()ﬁ))» a(yz) » f(y1)

Connections 0

‘The Matrix Representation - Deflinitions

Ci: VxVy (_IP(X) Y, —|P(f(x)))
C,:vz (P(2) v P(f(2)))

)\P 1)) P (f(y2)) o(z) = () o(x1) = f (),

v o(xy) » f(f()ﬁ))» a(yz) » f(y1)

Depth/Size = 3 0

P(f

‘The Matrix Representation - Deflinitions

Ci: VxVy (_IP(X) Y, —|P(f(x)))
C,:vz (P(2) v P(f(2)))

)\P 1)) P (f(y2)) o(z) = () o(x1) = f (),

v o(xy) » f(f()ﬁ))» a(yz) » f(y1)

Depth/Size = 3 0

P(f

SAT/SMT Encodings tor CC

The CC Encodings

The CC Encodings

» |n the paper we discussed three different encodings

The CC Encodings

» |n the paper we discussed three different encodings
1. CC tableau trees (omitted for this talk)
2. CC matrices with static sizes

3. CC matrices with dynamic sizes

Basic Matrix Encoding Idea

Basic Matrix Encoding Idea

We want to encode for some fixed number d > 0:
1. The matrix contains exactly d clause instances

2. The matrix is spanning

Basic Matrix Encoding Idea

We want to encode for some fixed number d > 0:
1. The matrix contains exactly d clause instances

2. The matrix is spanning

Condition 2. cannot be really expressed directly, hence we use instead:
1. The matrix contains exactly d clause instances

2. The matrix is fully connected

Basic Matrix Encoding Idea

We want to encode for some fixed number d > 0:
1. The matrix contains exactly d clause instances

2. The matrix is spanning
Condition 2. cannot be really expressed directly, hence we use instead:
1. The matrix contains exactly d clause instances

2. The matrix is fully connected

,Fully connected" is used as an approximation for ,spanning”.

Basic Matrix Encoding Idea

We want to encode for some fixed number d > 0:
1. The matrix contains exactly d clause instances

2. The matrix is spanning

Condition 2. cannot be really expressed directly, hence we use instead:
1. The matrix contains exactly d clause instances

2. The matrix is fully connected

,Fully connected" is used as an approximation for ,spanning”.

=>» We check for spanningness and rule out spurious proofs on-demand

Basic Matrix Encoding Idea

Spanning?

Qutput CC
proof
Assert matrix Assert matrix
contains d clauses fully connected

k4

FY

Exclude
Cpen Path

Increment d

Basic Matrix Encoding Idea

Qutput CC .
ook Spanning
h J
N Assert matrix N Assert matrix Exclude
contains d clauses fully connected Cpen Path
A

Increment d

» Encoding is lazy (SMT style)

» Unification can be expressed using algebraic datatypes (ADT)

More Precisely

More Precisely

» \\e have two kinds of literals:

More Precisely

» \\e have two kinds of literals:

1. Selectors

» eg., S}

P(2)vp(f(z)) denotes P(z) v P(f(z,)) occurs in the matrix

More Precisely

» \\e have two kinds of literals:

1. Selectors

» eg.,S5,) denotes P(z,) v P(f(z1)) occurs in the matrix

(2)VP(f(2)

2. Connectors

» E. g, (P(f(z1)) ~ =P(x,)) denotes that the given literal instances are dual ("connected")

More Precisely

» \\e have two kinds of literals:

1. Selectors

» eg.,S5,) denotes P(z,) v P(f(z1)) occurs in the matrix

(2)VP(f(2)
2. Connectors

» E. g, (P(f(z1)) ~ =P(x,)) denotes that the given literal instances are dual ("connected")

®» i.e., enforces f(z;) unifies with x;

'The Whole Encoding

'The Whole Encoding

1. There are d clause instance in the matrix:

(St1C,1<i<d}=d

'The Whole Encoding

1. There are d clause instance in the matrix:
(St1C,1<i<d}=d

2. For each literal St in the matrix there is a connected one (fully connected)

si=\/\/ \/Ghne~0)

D 1<k<d KkeDk

'The Whole Encoding

1. There are d clause instance in the matrix:
(St1C,1<i<d}=d

2. For each literal St in the matrix there is a connected one (fully connected)

si=\/\/ \/Ghne~0)

D 1<k<d KkeDk

3. For every open path U and set of d selectors S we add

/\5: v (L ~ K)

SEeS {LK}<U

The Encoding

The Encoding

=» Sound

The Encoding

=» Sound

» [For some fixed d
» Terminating

» Complexity 2¥-complete [,NP given we have a co-NP oracle‘]

The Encoding

=» Sound

» [or some fixed d

» Terminating

» Complexity 2¥-complete [,NP given we have a co-NP oracle‘]

» Completeness by stepwise incrementing d

The Encoding

Sound
For some fixed d

» Terminating

» Complexity 2¥-complete [,NP given we have a co-NP oracle‘]
Completeness by stepwise incrementing d

However, incrementing d by one =» one more copy of each clause

» Makes it even more explosive

Dynamic Matrix Sizing Idea

Dynamic Matrix Sizing Idea

= One counter u(C) for each clause C
» So far, we had for all C that u(C) =d
» Thus, we have S: forany 1 < i < u(C)

= Literals Sé‘(c)“ are assumed to be false

Dynamic Matrix Sizing Idea

= One counter u(C) for each clause C
» So far, we had for all C that u(C) =d
» Thus, we have S: forany 1 < i < u(C)

= Literals Sé‘(c)“ are assumed to be false

= \Ne increment only some u(C) on failed proof attempts

Dynamic Matrix Sizing Idea

= One counter u(C) for each clause C
» So far, we had for all C that u(C) =d

» Thus, we have S: forany 1 < i < u(C)

(O)+1

= Literals S are assumed to be false

= \Ne increment only some u(C) on failed proof attempts

» Decisions are based on conflict analysis (unsat core)

Si=>\/ \/ V(5§A<L~K))

D 1<ksu(D)+1 kepk

Dynamic Matrix Sizing Idea

= One counter u(C) for each clause C
» So far, we had for all C that u(C) =d

» Thus, we have S: forany 1 < i < u(C)

Sét(C)+1

» | jterals are assumed to be false

= \Ne increment only some u(C) on failed proof attempts

» Decisions are based on conflict analysis (unsat core)

Si=>\/ \/ V(5§A<L~K))

D 1<ksu(D)+1 kepk

» Connect to some literal instance of clause D or require more instances of D

Incrementing Capacity

Incrementing Capacity

®» (Consider the clause set

{(P(@), —POVP(f(x), -Pa)}

,u(P(a)) - 1
7 (P(x) Y, —.P(f(x))) -0
u(ﬂP(a)) - 0

Incrementing Capacity

®» (Consider the clause set

{(P(@), —POVP(f(x), -Pa)}

P(a) ,u(P(a)) -1
7 (P(x) Y, —.P(f(x))) -0
u(ﬂP(a)) - 0

1 1
$tpa) = (SﬂP(x)VP(f(x)) A(P(a) ~ —'P(x1))) VS)

Incrementing Capacity

®» (Consider the clause set

{(P(@), —POVP(f(x), -Pa)}

P(a) ,u(P(a)) -1
7 (P(x) Y, —.P(f(x))) -0
u(ﬂP(a)) - 0

1 1
{S—lP(x)VP(f(x))’ S-p(a) }

1 1
$tpa) = (SﬂP(x)VP(f(x)) A(P(a) ~ —'P(x1))) VS)

Incrementing Capacity

®» (Consider the clause set

{(P(@), —POVP(f(x), -Pa)}

P(a) —P(z1) ,u(P(a)) - 1
7 (P(x) Y, —.P(f(x))) - 1
P(f(z1)) u(~P(@) 0

Slpgy = (sip(x)vp(o) AP(@) ~ ~P(x))) V Sipi
S}.P(x)VP(f(x)) = (SE.P(x)VP(f(x)) A (P(f(xl)) ~ P(xz)))

Incrementing Capacity

®» (Consider the clause set

{(P(@), —POVP(f(x), -Pa)}

P(a) —P(z1) ,u(P(a)) - 1
7 (P(x) Y, —.P(f(x))) - 1
P(f(z1)) u(~P(@) 0

2 1
{ S—lP(x)VP(f(x))’ S—|P(a) }

Slpgy = (sip(x)vp(o) AP(@) ~ ~P(x))) V Sipi
S}.P(x)VP(f(x)) = (SE.P(x)VP(f(x)) A (P(f(xl)) ~ P(xz)))

Incrementing Capacity

®» (Consider the clause set

{(P(@), —POVP(f(x), -Pa)}

—P(z1) —P(z2) u(P(a)) » 1

/ k(PG V =P(f()) - 2
P(f(x1)) P(f(x2)) u(~P(a)) » 0

Incrementing Capacity

®» (Consider the clause set

{(P(@, —P@VP(f(x), -P(@)}

—P(z1) —P(z2) u(P(a)) - 1

/ k(PG V =P(f()) - 2
P(f(z1)) P(f(z2)) u(~P(@) - 0

Dynamic Matrix Sizing Idea

Spanning?

of clause

Qufput CC
proof
Assert matrix at '
' Assert matrix
—» most licy instances fully connected

Increment some w(C) [«

Exclude
Open Path

Extract Failed

Selectors C

Dynamic Matrix Sizing Idea

Spanning?

of clause

Qufput CC
proof
Assert matrix at '
' Assert matrix
—» most licy instances fully connected

Increment some w(C) [«

Exclude
Open Path

Extract Failed

Selectors C

» FEliminating open paths is broken now

Why Broken?

Why Broken?

» The at most — instead of exactly — breaks it!

Why Broken?

» The at most — instead of exactly — breaks it!

» | et's consider a propositional example

Why Broken?

» The at most — instead of exactly — breaks it!

» | et's consider a propositional example

{AVB, —AV =B, AV =B, —|AVB}

Why Broken?

» The at most — instead of exactly — breaks it!

» | et's consider a propositional example

{AVB, —AV =B, AV =B, —|AVB}

Why Broken? Ns=\/ e~x

Ses (LK}SU

» The at most — instead of exactly — breaks it!

» | et's consider a propositional example

{AVB, —AV =B, AV =B, —|AVB}

Why Broken? Ns=\/ e~x

Ses (LK}SU

» The at most — instead of exactly — breaks it!

» | et's consider a propositional example

{AVB, —AV =B, AV =B, —|AVB}

A—A—F A (Save N Siav-p A Siv-p) = L

Solution

» \Ne have to choose another element not yet in the matrix

Solution

» \Ne have to choose another element not yet in the matrix

{AVB, —AV =B, AV =B, —|AVB}

Solution Ns=\/ «~ov\/5

SEeS (LK}CU LEU

» \Ne have to choose another element not yet in the matrix

{AVB, —AV =B, AV =B, —|AVB}

Solution /\Sﬁ \/ w~K)v\/

SES LeU
» \Ne have to choose another element not yet in the matrix
{AVB, —AV =B, AV =B, —|AVB}
A—-A——A (Save A S2av-p A Sdv-p) =
/—\ (Sive V SZav-p V Sav-p V SSavp)

Optmisations

Optmisations

» Monotonicity of selectors of some clause C
SPr =5

Optmisations

» Monotonicity of selectors of some clause C
Sttt = St
» Term Ordering

» |fi < jthen C' < C) modulo unifier

®» ¢.g., assume term order a < f(a) and some matrix containing P(x;) and P(x,)

®» Having o(x;) = f(a) forbids a(x,) » a

Optmisations

» Monotonicity of selectors of some clause C
SPr =5
» Term Ordering
» |fi < jthen C' < C) modulo unifier

®» ¢.g., assume term order a < f(a) and some matrix containing P(x;) and P(x,)

®» Having o(x;) = f(a) forbids a(x,) » a
» "Subsumption”

» For any clause instances C' and D’ we have C! # D/ modulo unifier

Optmisations

» Monotonicity of selectors of some clause C
SPr =5

» Term Ordering

» |fi < jthen C' < C) modulo unifier

®» ¢.g., assume term order a < f(a) and some matrix containing P(x;) and P(x,)
®» Having o(x;) = f(a) forbids a(x,) » a

» "Subsumption”
» For any clause instances C' and D’ we have C! # D/ modulo unifier

» ("AVATAR"-like) Clause splitting

Optmisations

» Monotonicity of selectors of some clause C
SPr =5
» Term Ordering
» |fi < jthen C' < C) modulo unifier

®» ¢.g., assume term order a < f(a) and some matrix containing P(x;) and P(x,)

®» Having o(x;) = f(a) forbids a(x,) » a
» "Subsumption”
» For any clause instances C' and D’ we have C! # D/ modulo unifier

» ("AVATAR"-like) Clause splitting

» Decision procedure for EPR ("Bernays-Schonfinkel") fragment

Results

» Prototype UpCoP using both CaDiCal (SAT) and Z3 (SMT) backend

» Compared against meanCoP (complete mode)

Results

» Prototype UpCoP using both CaDiCal (SAT) and Z3 (SMT) backend

» Compared against meanCoP (complete mode)

UpCoPgyr | UpCoPgyr | UpCoPgyr | UpCoPgyyr | UpCoPgyy | UpCoPgy;

Solved 928 855 1152 1055 1272 1264 1972
Unique 27 20 109 93 105 76 551

Results

» Prototype UpCoP using both CaDiCal (SAT) and Z3 (SMT) backend

» Compared against meanCoP (complete mode)

UpCoPgyr | UpCoPgyr | UpCoPgyr | UpCoPgyyr | UpCoPgyy | UpCoPgy;

Solved 928 855 1152 1055 1272 1264 1972
Unique 27 20 109 93 105 76 551

Huch! What went wrong??

Several Reasons for Bad Performance

Several Reasons for Bad Performance

» (QOverhead of delegating reasoning to SAT core

Several Reasons for Bad Performance

» (QOverhead of delegating reasoning to SAT core

» | earned conflicts often unhelpful/very specific

Several Reasons for Bad Performance

» (QOverhead of delegating reasoning to SAT core

» | earned conflicts often unhelpful/very specific

» The SAT solver "builds" independent matrix parts

Several Reasons for Bad Performance

» (QOverhead of delegating reasoning to SAT core
» | earned conflicts often unhelpful/very specific

» The SAT solver "builds" independent matrix parts

Several Reasons for Bad Performance

» (QOverhead of delegating reasoning to SAT core
» | earned conflicts often unhelpful/very specific

» The SAT solver "builds" independent matrix parts

P(a) —Q(z1) —Q(w2) —Q(z3)

Summary

Summary

» Encoded the existence of a spanning matrix as a SAT problem

» Usually: propositionally unsatisfiable = FO proof

Summary

» Encoded the existence of a spanning matrix as a SAT problem

» Usually: propositionally unsatisfiable = FO proof

» [Fvaluated our prototype using a SAT and SMT backend

Summary

» Encoded the existence of a spanning matrix as a SAT problem
» Usually: propositionally unsatisfiable = FO proof
» [Fvaluated our prototype using a SAT and SMT backend

®» Experimental results are rather modest

Summary

» Encoded the existence of a spanning matrix as a SAT problem
» Usually: propositionally unsatisfiable = FO proof

» [Fvaluated our prototype using a SAT and SMT backend

®» Experimental results are rather modest

Summary

» Encoded the existence of a spanning matrix as a SAT problem
» Usually: propositionally unsatisfiable = FO proof

» [Fvaluated our prototype using a SAT and SMT backend

®» Experimental results are rather modest

Summary

what is definitely unhelpful towards a closed tableaux

®» [ncodee=tre=giotence-of-a-opamning=-medrix as a "SAT" problem

» Usually: propositionally unsatisfiable = FO proof

» [Fvaluated our prototype using a SAT and SMT backend

®» Experimental results are rather modest

ummary

what is definitely unhelpful towards a closed tableaux

®» [ncodee=tre=giotence-of-a-opamning=-medrix as a "SAT" problem
- E=d

ummary
what is definitely unhelpful towards a closed tableaux
®» [ncodee=tre=gidotence-oi-a-opamning-metrix as a "SAT" pr
- E=d

Summary

what is definitely unhelpful towards a closed tableaux

®» [ncodee=He-aitotence-oia-apamnirg=-meadrix as a "SAT" pro

	Folie 1: Finding Connections via Satisfiability Solving
	Folie 2: The Two Worlds
	Folie 3: The Two Worlds
	Folie 4: The Two Worlds
	Folie 5: The Two Worlds
	Folie 6: The Two Worlds
	Folie 7: The Two Worlds
	Folie 8: The Two Worlds
	Folie 9: One Step back: Why Combine them?
	Folie 10: One Step back: Why Combine them?
	Folie 11: Get to the Point!
	Folie 12: Get to the Point!
	Folie 13: Get to the Point!
	Folie 14: First-Order Connection Calculus (CC)
	Folie 15: First-Order Connection Calculus (CC)
	Folie 16: First-Order Connection Calculus (CC)
	Folie 17: First-Order Connection Calculus (CC)
	Folie 18: First-Order Connection Calculus (CC)
	Folie 19: First-Order Connection Calculus (CC)
	Folie 20: First-Order Connection Calculus (CC)
	Folie 21: First-Order Connection Calculus (CC)
	Folie 22: First-Order Connection Calculus (CC)
	Folie 23: The Matrix Representation
	Folie 24: The Matrix Representation
	Folie 25: The Matrix Representation
	Folie 26: The Matrix Representation
	Folie 27: The Matrix Representation
	Folie 28: The Matrix Representation
	Folie 29: The Matrix Representation
	Folie 30: The Matrix Representation
	Folie 31: The Matrix Representation
	Folie 32: The Matrix Representation
	Folie 33: The Matrix Representation
	Folie 34: The Matrix Representation
	Folie 35: The Matrix Representation
	Folie 36: Another Example
	Folie 37: Another Example
	Folie 38: Another Example
	Folie 39: The Matrix Representation - Definitions
	Folie 40: The Matrix Representation - Definitions
	Folie 41: The Matrix Representation - Definitions
	Folie 42: The Matrix Representation - Definitions
	Folie 43: The Matrix Representation - Definitions
	Folie 44: The Matrix Representation - Definitions
	Folie 45: The Matrix Representation - Definitions
	Folie 46: SAT/SMT Encodings for CC
	Folie 47: The CC Encodings
	Folie 48: The CC Encodings
	Folie 49: The CC Encodings
	Folie 50: Basic Matrix Encoding Idea
	Folie 51: Basic Matrix Encoding Idea
	Folie 52: Basic Matrix Encoding Idea
	Folie 53: Basic Matrix Encoding Idea
	Folie 54: Basic Matrix Encoding Idea
	Folie 55: Basic Matrix Encoding Idea
	Folie 56: Basic Matrix Encoding Idea
	Folie 57: More Precisely
	Folie 58: More Precisely
	Folie 59: More Precisely
	Folie 60: More Precisely
	Folie 61: More Precisely
	Folie 62: The Whole Encoding
	Folie 63: The Whole Encoding
	Folie 64: The Whole Encoding
	Folie 65: The Whole Encoding
	Folie 66: The Encoding
	Folie 67: The Encoding
	Folie 68: The Encoding
	Folie 69: The Encoding
	Folie 70: The Encoding
	Folie 71: Dynamic Matrix Sizing Idea
	Folie 72: Dynamic Matrix Sizing Idea
	Folie 73: Dynamic Matrix Sizing Idea
	Folie 74: Dynamic Matrix Sizing Idea
	Folie 75: Dynamic Matrix Sizing Idea
	Folie 76: Incrementing Capacity
	Folie 77: Incrementing Capacity
	Folie 78: Incrementing Capacity
	Folie 79: Incrementing Capacity
	Folie 80: Incrementing Capacity
	Folie 81: Incrementing Capacity
	Folie 82: Incrementing Capacity
	Folie 83: Incrementing Capacity
	Folie 84: Dynamic Matrix Sizing Idea
	Folie 85: Dynamic Matrix Sizing Idea
	Folie 86: Why Broken?
	Folie 87: Why Broken?
	Folie 88: Why Broken?
	Folie 89: Why Broken?
	Folie 90: Why Broken?
	Folie 91: Why Broken?
	Folie 92: Why Broken?
	Folie 93: Solution
	Folie 94: Solution
	Folie 95: Solution
	Folie 96: Solution
	Folie 97: Optimisations
	Folie 98: Optimisations
	Folie 99: Optimisations
	Folie 100: Optimisations
	Folie 101: Optimisations
	Folie 102: Optimisations
	Folie 103: Results
	Folie 104: Results
	Folie 105: Results
	Folie 106: Several Reasons for Bad Performance
	Folie 107: Several Reasons for Bad Performance
	Folie 108: Several Reasons for Bad Performance
	Folie 109: Several Reasons for Bad Performance
	Folie 110: Several Reasons for Bad Performance
	Folie 111: Several Reasons for Bad Performance
	Folie 112: Summary
	Folie 113: Summary
	Folie 114: Summary
	Folie 115: Summary
	Folie 116: Summary
	Folie 117: Summary
	Folie 118: Summary
	Folie 119: Summary
	Folie 120: Summary
	Folie 121: Summary

