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Very Easy Rules – CDCL (DPLL) Can Be Very Complicated

E.g.,   ⊨  ((A ⇒  B)  ⇒  (A ⇒  B))?

CNF transformation: ⊢𝐶𝐷𝐶𝐿 ¬𝐴 ∨ 𝐵 ∧ 𝐴 ∧ ¬𝐵
2x BCP: ⊢𝐶𝐷𝐶𝐿 ⊥

⊢𝐻𝐶 (X ⇒ ((X ⇒ X)  ⇒  X)  ⇒ ((X ⇒  (X ⇒  X))  ⇒ (X ⇒ X))
⊢𝐻𝐶 𝑋 ⇒ ((𝑋 ⇒ 𝑋)  ⇒  𝑋)

⊢𝐻𝐶 𝑋 ⇒ 𝑋 ⇒ 𝑋 ⇒ 𝑋 ⇒ 𝑋

…

⊢𝐻𝐶  X ⇒  X and use X ≔  A ⇒ B
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Get to the Point!

 We suggested using SAT-Solvers for doing proof enumeration for 

connection calculus:

 Embedding the Connection Calculus in Satisfiability Modulo Theories 

[AReCCa@TABLEAUX’23]

 We continued on that end and here is what came out…
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 Variant of (first-order) tableaux and binary resolution

 Sound & complete

 Unlike "ordinary" tableaux or resolution: Goal-directed & Non-confluent

 Some proof steps are wrong and result in "dead ends"

 E.g. 

𝑨, (¬A ∨  B), (¬A ∨  C), ¬C

 Resolve A with

 ¬𝐴 ∨ 𝐵  resulting in B or

 ¬𝐴 ∨ C  resulting in C

 However, we cannot do anything with B (dead end)

 Iterative deepening & proof enumeration
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 Set of connections – “the matrix" – is spanning: no open path

 Open path: One literal of each clause instance, 

 such that none of them is connected with each other

𝑂𝑝𝑒𝑛 𝑃 ≡ ∀𝐶∃𝐿 𝐿 ∈ 𝑃 ∧ ∀𝐿1, 𝐿2 𝐿1 ≁ 𝐿2

 Only spanning matrices are correct proofs!

 Set of connections – "the matrix" – is fully connected:

  each literal is connected with at least one other literal
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The CC Encodings

 In the paper we discussed three different encodings

1. CC tableau trees (omitted for this talk)

2. CC matrices with static sizes

3. CC matrices with dynamic sizes
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We want to encode for some fixed number d > 0:

1. The matrix contains exactly d clause instances 

2. The matrix is spanning

Condition 2. cannot be really expressed directly, hence we use instead:

1. The matrix contains exactly d clause instances 

2. The matrix is fully connected

„Fully connected“ is used as an approximation for „spanning“.

➔ We check for spanningness and rule out spurious proofs on-demand
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Basic Matrix Encoding Idea

 Encoding is lazy (SMT style)

 Unification can be expressed using algebraic datatypes (ADT)
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 e.g., 𝑆𝑃 𝑧 ∨𝑃 𝑓 𝑧
1  denotes 𝑃 𝑧1 ∨ 𝑃 𝑓 𝑧1  occurs in the matrix

2. Connectors

 E.g., ⟨𝑃(𝑓(𝑧1)) ∼ ¬𝑃(𝑥1)⟩ denotes that the given literal instances are dual ("connected")

 i.e., enforces 𝑓 𝑧1  unifies with 𝑥1

20
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ሧ

𝐾∈𝐷𝑘

𝑆𝐷
𝑘 ∧ 𝐿 ∼ 𝐾

3. For every open path 𝑈 and set of d selectors ҧ𝑆 we add

ሥ

𝑆∈ ҧ𝑆

𝑆 ⇒ ሧ

{𝐿,𝐾}⊆𝑈

𝐿 ∼ 𝐾

21



The Encoding















22



The Encoding

 Sound













22



The Encoding

 Sound

 For some fixed d

 Terminating

 Complexity Σ2
𝑃-complete [„NP given we have a co-NP oracle“]







22



The Encoding

 Sound

 For some fixed d

 Terminating

 Complexity Σ2
𝑃-complete [„NP given we have a co-NP oracle“]

 Completeness by stepwise incrementing d





22



The Encoding

 Sound

 For some fixed d

 Terminating

 Complexity Σ2
𝑃-complete [„NP given we have a co-NP oracle“]

 Completeness by stepwise incrementing d

 However, incrementing d by one ➔ one more copy of each clause

 Makes it even more explosive
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 We increment only some 𝜇 𝐶  on failed proof attempts

 Decisions are based on conflict analysis (unsat core)

𝑆𝑖 ⇒ ሧ

𝐷

ሧ

1≤𝑘≤𝝁(𝑫)+𝟏

ሧ

𝐾∈𝐷𝑘

𝑆𝐷
𝑘 ∧ 𝐿 ∼ 𝐾

 „Connect to some literal instance of clause 𝐷 or require more instances of 𝐷“
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 Consider the clause set

{ 𝑃 𝑎 , ¬𝑃 𝑥 ∨ 𝑃 𝑓 𝑥 , ¬𝑃 𝑎  }

𝜇 𝑃 𝑎 ↦ 1

𝜇 ¬𝑃 𝑎 ↦ 0

𝜇 𝑃 𝑥 ∨ ¬𝑃 𝑓 𝑥 ↦ 2

➔ Fair incrementation of 

clauses in unsat cores
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 Eliminating open paths is broken now
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Why Broken?

 The at most – instead of exactly – breaks it!

 Let‘s consider a propositional example

{ A ∨ B, ¬A ∨ ¬B, A ∨ ¬B, ¬A ∨ B }

ሥ

𝑆∈ ҧ𝑆

𝑆 ⇒ ሧ

{𝐿,𝐾}⊆𝑈

𝐿 ∼ 𝐾

(𝑆𝐴∨𝐵
1 ∧ 𝑆¬𝐴∨¬𝐵

1 ∧ 𝑆𝐴∨¬𝐵
1 ) ⇒ ⊥
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{ A ∨ B, ¬A ∨ ¬B, A ∨ ¬B, ¬A ∨ B }

(𝑆𝐴∨𝐵
1 ∧ 𝑆¬𝐴∨¬𝐵

1 ∧ 𝑆𝐴∨¬𝐵
1 ) ⇒ 

 (𝑆𝐴∨𝐵
2 ∨ 𝑆¬𝐴∨¬𝐵

2 ∨ 𝑆𝐴∨¬𝐵
2 ∨ 𝑆¬𝐴∨𝐵

1 )
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 e.g., assume term order a ≺ f(a) and some matrix containing 𝑃 𝑥1  and 𝑃 𝑥2

 Having σ(𝑥1) ↦ f(a) forbids 𝜎 𝑥2 ↦ 𝑎

 "Subsumption"

 For any clause instances 𝐶𝑖 and 𝐷𝑗 we have 𝐶𝑖 ≠ 𝐷𝑗 modulo unifier

 ("AVATAR"-like) Clause splitting

 Decision procedure for EPR ("Bernays-Schönfinkel") fragment
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 Prototype UpCoP using both CaDiCal (SAT) and Z3 (SMT) backend

 Compared against meanCoP (complete mode)

Solver UpCoPSMT UpCoPSAT UpCoPSMT UpCoPSAT UpCoPSMT UpCoPSAT meanCoP

Enc. ℰM ℰU ℰH

Solved 928 855 1152 1055 1272 1264 1972

Unique 27 20 109 93 105 76 551

Huch! What went wrong??
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