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» \ariant of (first-order) tableaux and binary resolution
» Sound & complete

=» Goal-directed

» Unlike "ordinary" tableaux or resolution: Non-confluent

®» Some proof steps are wrong and result in "dead ends"

» [terative deepening & proof enumeration
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Ci:Vz (P(Z) Y, P(f(z))) ,
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» st Guess“A —» T
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(mAV-BVC)A(RCVD)A(RAV BV -D)A (A VE)

» PropagateC » T
(mAV-aBVC)A(=CVD)AN(=AV BV -aD)A (A VE)

» Propagate D » T
(mAVAaBVO)A(RCVD)A(=RAV ABVAD)A (A VE)

» \Ne backjump and learn the clause: —-A v =B

= \Ve resume with
(—lAV—lBVC)/\(—lCVD)/\(—lAV—lBVﬂD)/\( VB)A(=AV =B)
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» (QOverhead of using SAT core

» SAT/SMT solvers are overwhelmed by massive constraints
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» Asx - candy ~ dwe need to connect to R(c,d) — but we cannot

» Stuck by union of justification

We learn the clause:

—SpVQ(Y)VR(y)VP(2) V v v v




Observations




Observations

- E;‘(f(c)) is not part of the conflict

» \Ne indeed learn non-trivial stuff




Observations

- E;‘(f(c)) is not part of the conflict

» \Ne indeed learn non-trivial stuff

» | earned clauses are purely negative




Observations

- E;‘(f(c)) is not part of the conflict

» \\e indeed learn non-trivial stuff
» | earned clauses are purely negative
» Decisions are purely positive



Observations

- E;‘(f(c)) is not part of the conflict

» \Ve indeed learn non-trivial stuff
» | earned clauses are purely negative
» Decisions are purely positive
= No unit propagation (only detect violations)

» 1-watched literal schema




Observations

- E;‘(f(c)) is not part of the conflict

» \Ve indeed learn non-trivial stuff
» | earned clauses are purely negative
» Decisions are purely positive
= No unit propagation (only detect violations)

» 1-watched literal schema

=» Sound




Observations

- E;‘(f(c)) is not part of the conflict

» \Ne indeed learn non-trivial stuff

» | earned clauses are purely negative

Decisions are purely positive
= No unit propagation (only detect violations)

» 1-watched literal schema

Sound
» Complete




Observations

- E;‘(f(c)) is not part of the conflict

» \Ne indeed learn non-trivial stuff

» | earned clauses are purely negative

Decisions are purely positive
= No unit propagation (only detect violations)

» 1-watched literal schema

Sound

Complete
» Terminating (for a fixed depth limit)




Observations

- E;‘(f(c)) is not part of the conflict

» \Ne indeed learn non-trivial stuff

» | earned clauses are purely negative

Decisions are purely positive

No unit propagation (only detect violations)

» 1-watched literal schema

» Sound

» Complete

» Terminating (for a fixed depth limit)

» Conflicts inherently depending on precise paths ®
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€]
// \
Q(y‘) [2]\ R(z,y) (3] ‘ [4]

12 -0) [2.1] ~P(f(e)) [4.1]

» Still maintain positions

» \Ne have two kinds of literals
1. Literal at position —e.g., (P(x)@1) or (=P(c)@1.2.2)
2. Variable bindings —e.g., x » worxec

» Major difference: The origin of bindings [extension/reduction] is not tracked
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We learn the clause:
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€]

» More complicated / \

= Express: there is nothing we can reduce to... e —P(x) [1]

P(d) [1.1] - R .

b <y>\[1.2] |
» Given u(x) » d, u(y) »c \
R(c) i1.2.1] P(c) [1.2.2]

» FEither P(c) can be extended or it reduces with anything above
» —(P(c)@1.2.2) V =Ext; V ... V=aExt, V =(=P(x)@1) Va(x ~ c)V =(=R(y)@1.2)
» —(-R(y)@1.2) is unnecessarily specific

=> We use auxiliary "could connect” literals p; ~ p;

» —(P(c)@1.2.2) V—Ext; V ..V —aExt, V =(=P(x)@1) Va(x—c) Vv 1.2.2 ~ 1.2
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» Solved instances
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» [xtension steps for PUZ005-1.p (lower = better)

-

hopCoP 2 309 10 066 48 517
meanCoP 1 4 24 108 535 9 963 6 445 008
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CASC Participation

» hopCoP participated in CASC30 [2025]

» Random restart + random literal selection

» Solved 88 out of 500 inputs

_ Vampire | Vampire | CSI_Enig| iProver E Drodi | CSE E | cve5 |Zipperpid Prover9 [ConnectP] hopCoP | LisaTT [SPASS-S(LastButN]
49 5.0 106 393 33.0 4.1.0 17 1.3.0 2.1.9999 1109a 0.6.1 0.1 0.9.1 0.1 0
Solved/soo 466500 455500 402500 367500 364500 325500 295/500 290500 267500 119500 102500 88500 3500 11500 0rs00
Solutionssseo 466/s500 4551500 402500 367500 364500 3250500 293500 290500 267500 119500 102500 8800 3500 Ors00 0rs00

=» Not bad for a newcomer based on CC!
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Further Work

» \Ne block certain assignments

> eg., a(x ~ d)

» [Enforce unification instead
» X ~ C
1. Harder to track violation

2. Logical additional step: Propagate consequences

» (Getting rid of position:
» e.d., —|(P(X)@111> V mExt; V ... VaExt, V —|<—|P(C)@1> Valx—c)Vv 1.1.1 ~ 1.1

®» Encode there is no parent to reduce
» VpVp' < p: 2P(xP)@p V —Ext; V .. V=Ext, Vp~p'

1. Even harder to track violation
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