

Constraint Learning for Non-confluent Proof Search

Clemens Eisenhofer (TU Wien)

Joint work with

Michael Rawson (U. Southampton) & Laura Kovács (TU Wien)

■ "First calculus towards ATP" [Bibel; Loveland – late 70s]

- "First calculus towards ATP" [Bibel; Loveland late 70s]
- ► Variant of (first-order) tableaux and binary resolution

- "First calculus towards ATP" [Bibel; Loveland late 70s]
- ► Variant of (first-order) tableaux and binary resolution
- Sound & complete

- "First calculus towards ATP" [Bibel; Loveland late 70s]
- ► Variant of (first-order) tableaux and binary resolution
- Sound & complete
- Goal-directed

- "First calculus towards ATP" [Bibel; Loveland late 70s]
- Variant of (first-order) tableaux and binary resolution
- Sound & complete
- Goal-directed
- Unlike "ordinary" tableaux or resolution: Non-confluent
 - Some proof steps are wrong and result in "dead ends"

- "First calculus towards ATP" [Bibel; Loveland late 70s]
- Variant of (first-order) tableaux and binary resolution
- Sound & complete
- Goal-directed
- Unlike "ordinary" tableaux or resolution: Non-confluent
 - Some proof steps are wrong and result in "dead ends"
- Iterative deepening & proof enumeration

(First-Order) Connection Tableaux

- **Given** a set of (first-order) input clauses
- Just 3 kinds of rules (+ first-order unifier)

(First-Order) Connection Tableaux

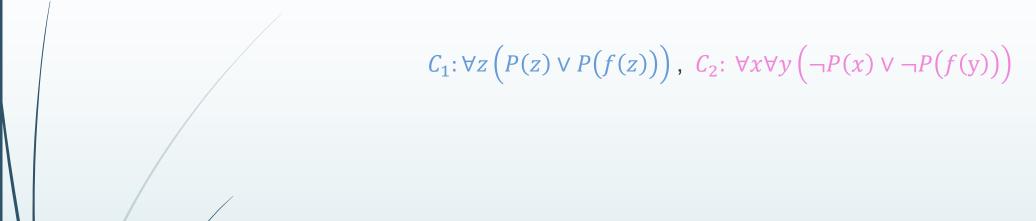
- **Given** a set of (first-order) input clauses
- Just 3 kinds of rules (+ first-order unifier)

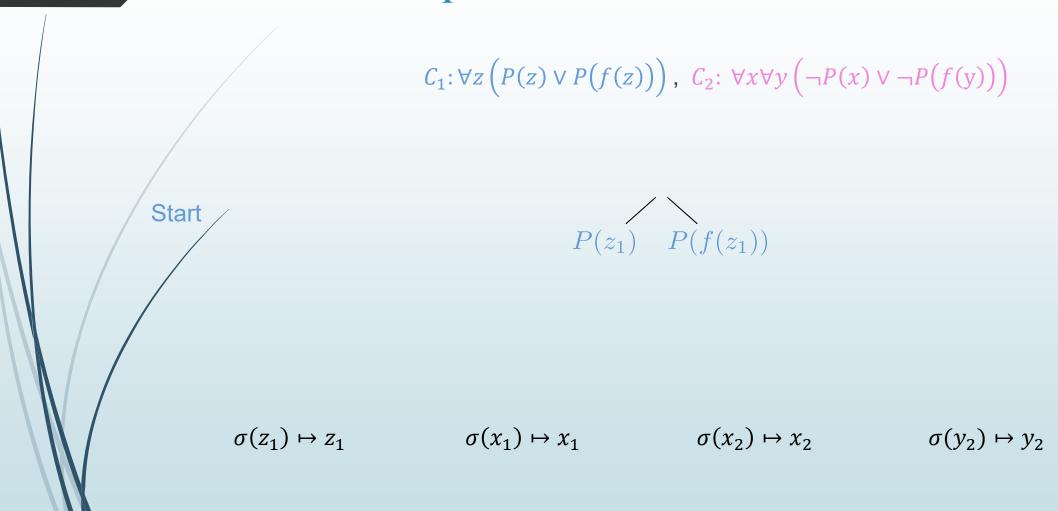
Reduction	Extension
	Reduction

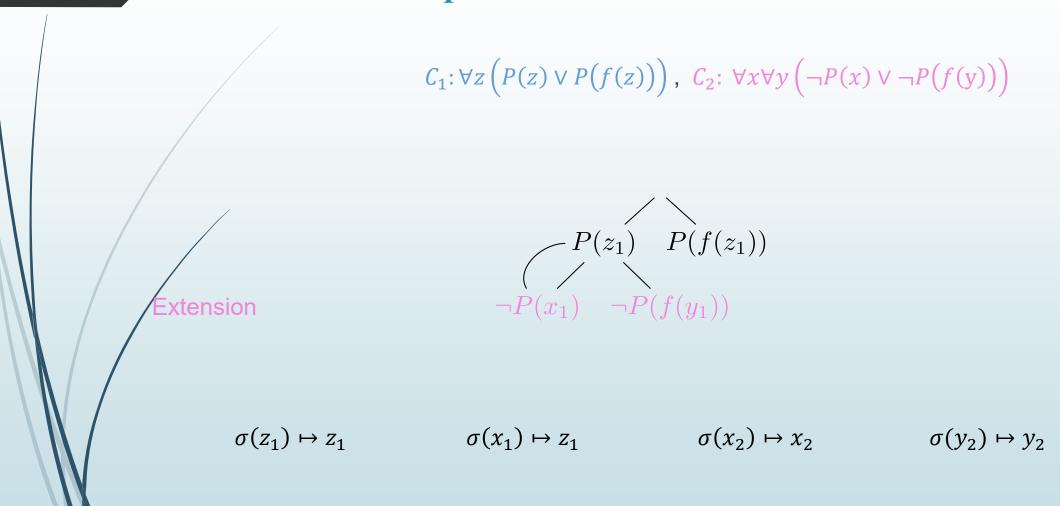
(First-Order) Connection Tableaux

- **Given** a set of (first-order) input clauses
- Just 3 kinds of rules (+ first-order unifier)

Start	Reduction	Extension
L_1 L_2 \ldots L_n	L L_1	L L_1 L_2 L_n







 $C_1: \forall z \left(P(z) \lor P(f(z))\right), C_2: \forall x \forall y \left(\neg P(x) \lor \neg P(f(y))\right)$

Reduction

$$P(z_1) P(f(z_1))$$

$$\neg P(x_1) \neg P(f(y_1))$$

$$\sigma(z_1) \mapsto f(y_1)$$

$$\sigma(x_1) \mapsto f(y_1)$$

$$\sigma(x_2) \mapsto x_2$$

$$\sigma(y_2) \mapsto y_2$$



 $C_1: \forall z \left(P(z) \lor P(f(z))\right), C_2: \forall x \forall y \left(\neg P(x) \lor \neg P(f(y))\right)$

Reduction

$$\begin{array}{c|cccc}
P(z_1) & & P(f(z_1)) \\
\hline
 P(x_1) & \neg P(f(y_1)) & \neg P(x_2) & \neg P(f(y_2))
\end{array}$$

$$\sigma(z_1) \mapsto f(y_1)$$

$$\sigma(x_1) \mapsto f(y_1)$$

$$\sigma(x_2) \mapsto f(f(y_1)) \qquad \sigma(y_2) \mapsto f(y_1)$$

$$\sigma(y_2) \mapsto f(y_1)$$

 $C_1: \forall z \left(P(z) \lor P(f(z))\right), C_2: \forall x \forall y \left(\neg P(x) \lor \neg P(f(y))\right)$

Reduction

$$\begin{array}{c|cccc}
P(z_1) & & & P(f(z_1)) \\
 \hline
 \neg P(x_1) & \neg P(f(y_1)) & \neg P(x_2) & \neg P(f(y_2))
\end{array}$$

$$\sigma(z_1) \mapsto f(y_1)$$

$$\sigma(x_1) \mapsto f(y_1)$$

$$\sigma(x_2) \mapsto f(f(y_1)) \qquad \sigma(y_2) \mapsto f(y_1)$$

$$\sigma(y_2) \mapsto f(y_1)$$

 $(\neg A \lor \neg B \lor C) \land (\neg C \lor D) \land (\neg A \lor \neg B \lor \neg D) \land (A \lor B)$

$$(\neg A \lor \neg B \lor C) \land (\neg C \lor D) \land (\neg A \lor \neg B \lor \neg D) \land (A \lor B)$$

■ 1st "Guess" $A \mapsto T$ $(\neg A \lor \neg B \lor C) \land (\neg C \lor D) \land (\neg A \lor \neg B \lor \neg D) \land (A \lor B)$

$$(\neg A \lor \neg B \lor C) \land (\neg C \lor D) \land (\neg A \lor \neg B \lor \neg D) \land (A \lor B)$$

- 1st "Guess" $A \mapsto T$ $(\neg A \lor \neg B \lor C) \land (\neg C \lor D) \land (\neg A \lor \neg B \lor \neg D) \land (A \lor B)$
- 2nd "Guess" B \mapsto T $(\neg A \lor \neg B \lor C) \land (\neg C \lor D) \land (\neg A \lor \neg B \lor \neg D) \land (A \lor B)$

$$(\neg A \lor \neg B \lor C) \land (\neg C \lor D) \land (\neg A \lor \neg B \lor \neg D) \land (A \lor B)$$

- 1st "Guess" $A \mapsto T$ $(\neg A \lor \neg B \lor C) \land (\neg C \lor D) \land (\neg A \lor \neg B \lor \neg D) \land (A \lor B)$
- 2nd "Guess" B \mapsto T $(\neg A \lor \neg B \lor C) \land (\neg C \lor D) \land (\neg A \lor \neg B \lor \neg D) \land (A \lor B)$
- Propagate C \mapsto T $(\neg A \lor \neg B \lor C) \land (\neg C \lor D) \land (\neg A \lor \neg B \lor \neg D) \land (A \lor B)$

$$(\neg A \lor \neg B \lor C) \land (\neg C \lor D) \land (\neg A \lor \neg B \lor \neg D) \land (A \lor B)$$

- 1st "Guess" $A \mapsto T$ $(\neg A \lor \neg B \lor C) \land (\neg C \lor D) \land (\neg A \lor \neg B \lor \neg D) \land (A \lor B)$
- 2nd "Guess" B \mapsto T $(\neg A \lor \neg B \lor C) \land (\neg C \lor D) \land (\neg A \lor \neg B \lor \neg D) \land (A \lor B)$
- Propagate C \mapsto T $(\neg A \lor \neg B \lor C) \land (\neg C \lor D) \land (\neg A \lor \neg B \lor \neg D) \land (A \lor B)$
- Propagate D \mapsto T $(\neg A \lor \neg B \lor C) \land (\neg C \lor D) \land (\neg A \lor \neg B \lor \neg D) \land (A \lor B)$

$$(\neg A \lor \neg B \lor C) \land (\neg C \lor D) \land (\neg A \lor \neg B \lor \neg D) \land (A \lor B)$$

- 1st "Guess" $A \mapsto T$ $(\neg A \lor \neg B \lor C) \land (\neg C \lor D) \land (\neg A \lor \neg B \lor \neg D) \land (A \lor B)$
- 2nd "Guess" B \mapsto T $(\neg A \lor \neg B \lor C) \land (\neg C \lor D) \land (\neg A \lor \neg B \lor \neg D) \land (A \lor B)$
- Propagate C \mapsto T $(\neg A \lor \neg B \lor C) \land (\neg C \lor D) \land (\neg A \lor \neg B \lor \neg D) \land (A \lor B)$
- Propagate D \mapsto T $(\neg A \lor \neg B \lor C) \land (\neg C \lor D) \land (\neg A \lor \neg B \lor \neg D) \land (A \lor B)$
- We backjump and **learn** the clause: $\neg A \lor \neg B$

$$(\neg A \lor \neg B \lor C) \land (\neg C \lor D) \land (\neg A \lor \neg B \lor \neg D) \land (A \lor B)$$

- 1st "Guess" $A \mapsto T$ $(\neg A \lor \neg B \lor C) \land (\neg C \lor D) \land (\neg A \lor \neg B \lor \neg D) \land (A \lor B)$
- 2nd "Guess" B \mapsto T $(\neg A \lor \neg B \lor C) \land (\neg C \lor D) \land (\neg A \lor \neg B \lor \neg D) \land (A \lor B)$
- Propagate C \mapsto T $(\neg A \lor \neg B \lor C) \land (\neg C \lor D) \land (\neg A \lor \neg B \lor \neg D) \land (A \lor B)$
- Propagate D \mapsto T $(\neg A \lor \neg B \lor C) \land (\neg C \lor D) \land (\neg A \lor \neg B \lor \neg D) \land (A \lor B)$
- We backjump and **learn** the clause: $\neg A \lor \neg B$
- We resume with $(\neg A \lor \neg B \lor C) \land (\neg C \lor D) \land (\neg A \lor \neg B \lor \neg D) \land (A \lor B) \land (\neg A \lor \neg B)$

■ Theoretical argument for using conflict learning in CC search

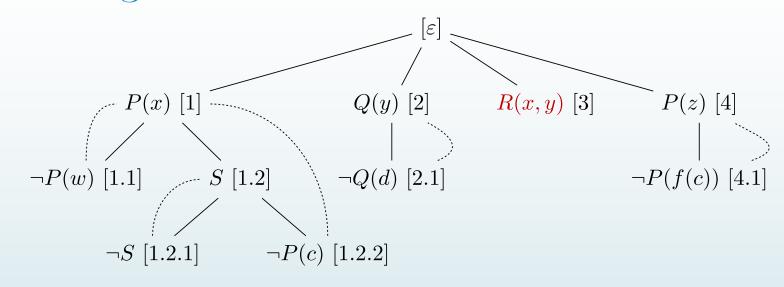
- Theoretical argument for using conflict learning in CC search
- Overhead of using SAT core

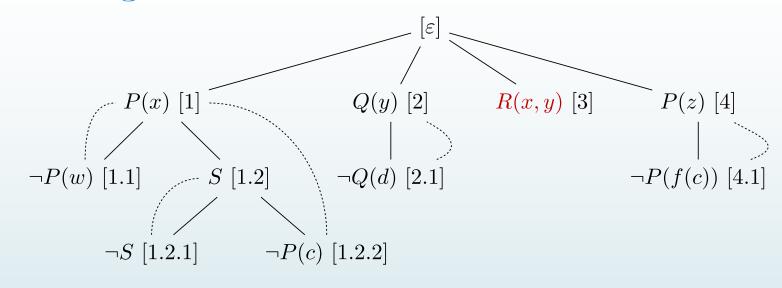
- Theoretical argument for using conflict learning in CC search
- Overhead of using SAT core
- SAT/SMT solvers are overwhelmed by massive constraints

- Theoretical argument for using conflict learning in CC search
- Overhead of using SAT core
- SAT/SMT solvers are overwhelmed by massive constraints

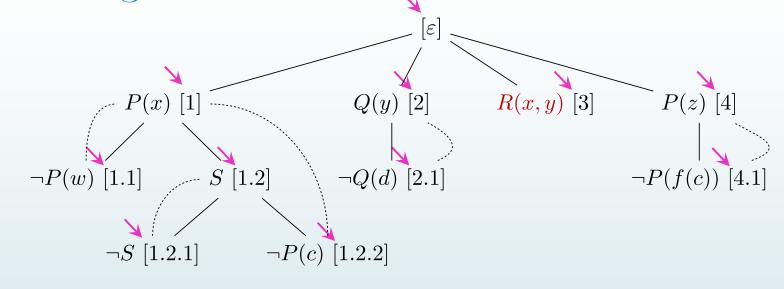
→ Specialized Learning Engine

Custom Learning Engine for CC

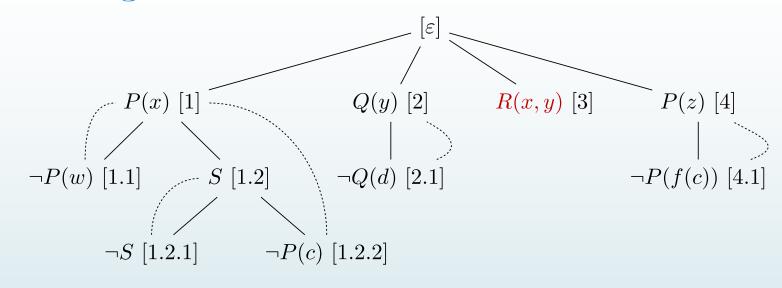




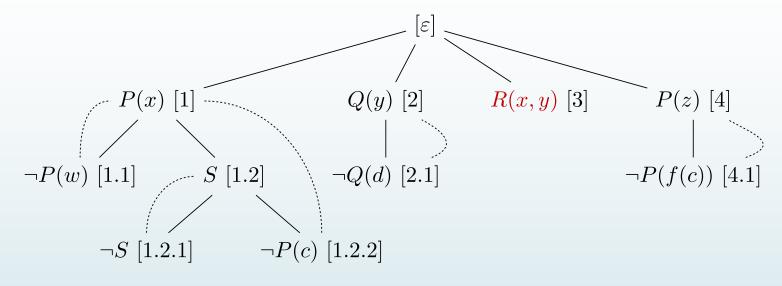
We maintain explicit positions



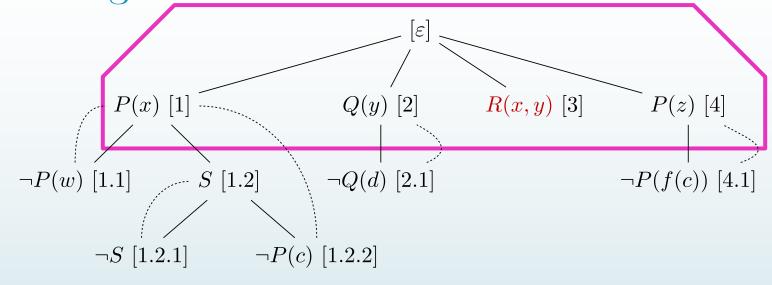
We maintain explicit positions



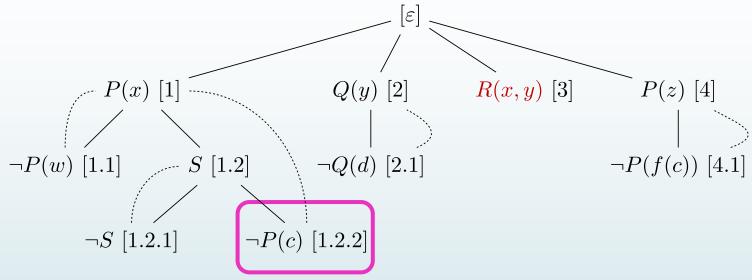
We maintain explicit positions



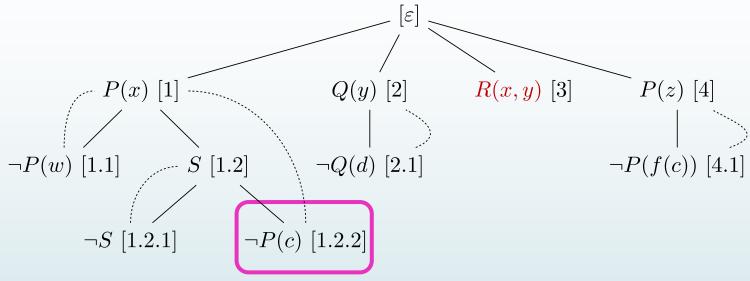
- We maintain explicit positions
- We have three kinds of literals



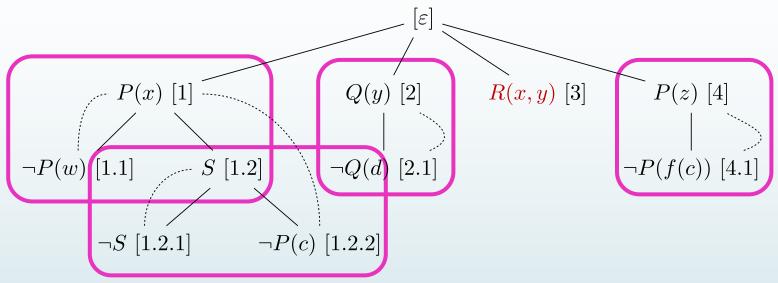
- We maintain explicit positions
- We have three kinds of literals
 - 1. Choose **Start** Clause e.g., $S_{P(x)\vee Q(y)\vee R(x,y)\vee P(z)}$



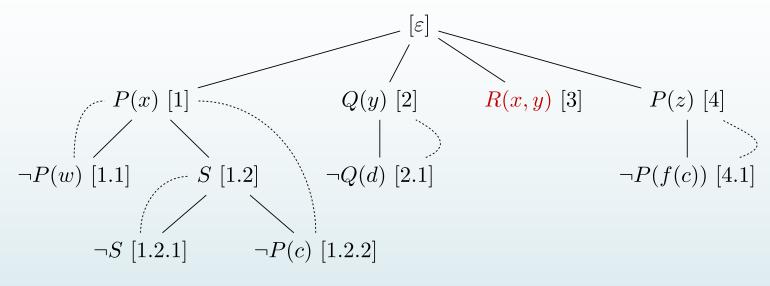
- We maintain explicit positions
- We have three kinds of literals
 - 1. Choose **Start** Clause e.g., $S_{P(x)\vee Q(y)\vee R(x,y)\vee P(z)}$
 - 2. Apply **Reduction** e.g., $R_{1,2,2}^1$



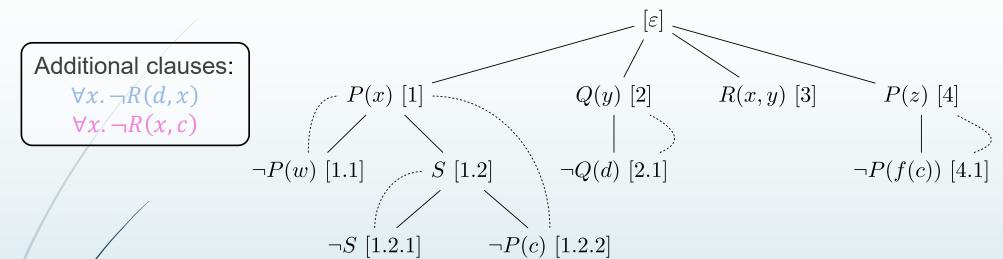
- We maintain explicit positions
- We have three kinds of literals
 - 1. Choose **Start** Clause e.g., $S_{P(x)\vee Q(y)\vee R(x,y)\vee P(z)}$
 - 2. Apply **Reduction** e.g., $R_{1,2,2}^1$
 - 3. Apply **Extension** e.g., $E^1_{\neg P(w) \lor S/1}$



- We maintain explicit positions
- We have three kinds of literals
 - 1. Choose **Start** Clause e.g., $S_{P(x)\vee Q(y)\vee R(x,y)\vee P(z)}$
 - 2. Apply **Reduction** e.g., $R_{1,2,2}^1$
 - 3. Apply **Extension** e.g., $E_{\neg P(w) \lor S/1}^1$
- Position i is **open** iff we have neither R_i^j nor $E_{C/k}^i$

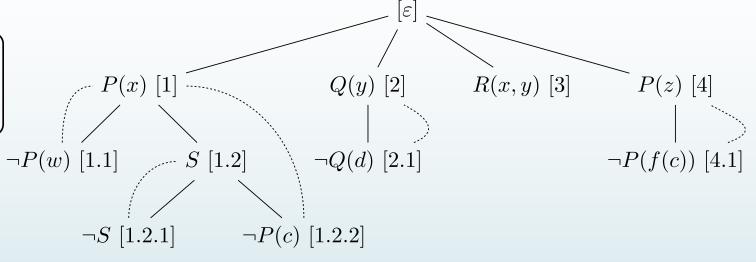


- We maintain explicit positions
- We have three kinds of literals
 - 1. Choose **Start** Clause e.g., $S_{P(x)\vee Q(y)\vee R(x,y)\vee P(z)}$
 - 2. Apply **Reduction** e.g., $R_{1,2,2}^1$
 - 3. Apply **Extension** e.g., $E_{\neg P(w) \lor S/1}^1$
- Position i is **open** iff we have neither R_i^j nor $E_{C/k}^i$



Additional clauses:

 $\forall x. \neg R(d, x)$ $\forall x. \neg R(x, c)$



As $x \mapsto c$ and $y \mapsto d$ we need to connect to R(c, d) – but we cannot

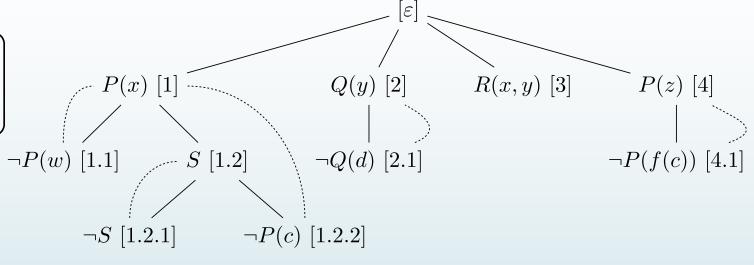
Additional clauses: $\forall x. \neg R(d, x) \\ \forall x. \neg R(x, c)$ P(x) [1] Q(y) [2] R(x, y) [3] P(z) [4] P(x) [1] P(w) [1.1] P(w) [1.1] P(w) [1.1] P(x) [1] P

- As $x \mapsto c$ and $y \mapsto d$ we need to connect to R(c, d) but we cannot
- Stuck by union of justification

$$\{E_{\neg P(x) \lor S/1}^{1}, E_{\neg S \lor \neg P(c)/1}^{1,2}, R_{1.2.2}^{1}\} \cup \{E_{\neg Q(y)/1}^{2}\}$$

Additional clauses:

$$\forall x. \neg R(d, x) \\ \forall x. \neg R(x, c)$$



- As $x \mapsto c$ and $y \mapsto d$ we need to connect to R(c, d) but we cannot
- Stuck by union of justification

$$\{E_{\neg P(x) \lor S/1}^{1}, E_{\neg S \lor \neg P(c)/1}^{1,2}, R_{1.2.2}^{1}\} \cup \{E_{\neg Q(y)/1}^{2}\}$$

We learn the clause:

$$\neg S_{P(\mathbf{x}) \lor Q(\mathbf{y}) \lor R(\mathbf{x}, \mathbf{y}) \lor P(\mathbf{z})} \lor \neg E_{\neg P(\mathbf{x}) \lor S/1}^{1} \lor \neg E_{\neg S \lor \neg P(c)/1}^{1.2} \lor \neg R_{1.2.2}^{1} \lor \neg E_{\neg Q(\mathbf{y})/1}^{2}$$

- $E_{P(f(c))}^4$ is not part of the conflict
 - We indeed learn non-trivial stuff

10

- $E_{P(f(c))}^4$ is not part of the conflict
 - ► We indeed learn non-trivial stuff
- Learned clauses are purely negative

10

- $E_{P(f(c))}^4$ is not part of the conflict
 - ► We indeed learn non-trivial stuff
- Learned clauses are purely negative
- Decisions are purely positive

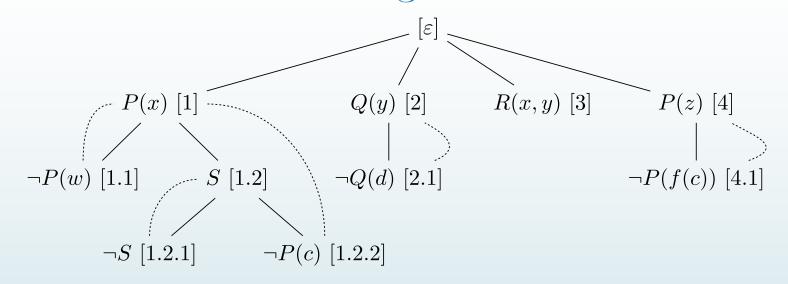
- $E_{P(f(c))}^4$ is not part of the conflict
 - We indeed learn non-trivial stuff
- Learned clauses are purely negative
- Decisions are purely positive
- No unit propagation (only detect violations)
 - 1-watched literal schema

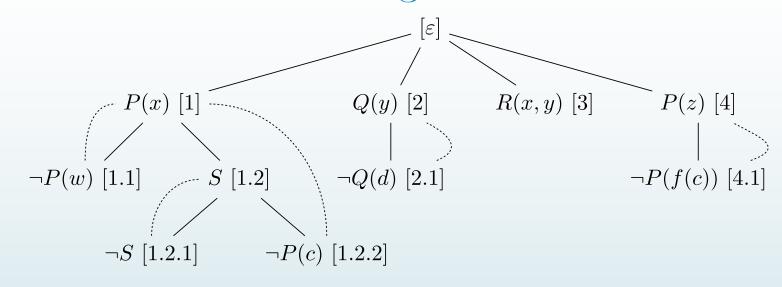
- $E_{P(f(c))}^4$ is not part of the conflict
 - We indeed learn non-trivial stuff
- Learned clauses are purely negative
- Decisions are purely positive
- No unit propagation (only detect violations)
 - 1-watched literal schema
- Sound

- $E_{P(f(c))}^4$ is not part of the conflict
 - We indeed learn non-trivial stuff
- Learned clauses are purely negative
- Decisions are purely positive
- No unit propagation (only detect violations)
 - 1-watched literal schema
- Sound
- Complete

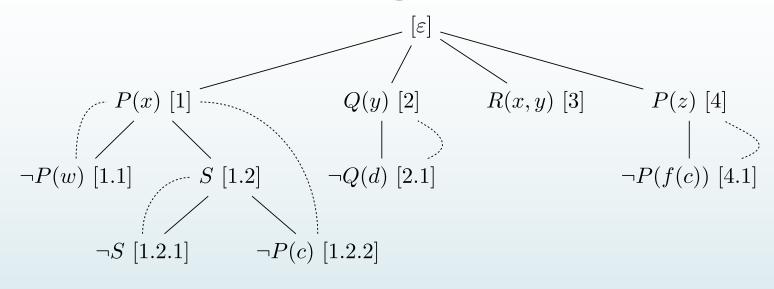
- $E_{P(f(c))}^4$ is not part of the conflict
 - We indeed learn non-trivial stuff
- Learned clauses are purely negative
- Decisions are purely positive
- No unit propagation (only detect violations)
 - 1-watched literal schema
- Sound
- Complete
- Terminating (for a fixed depth limit)

- $E_{P(f(c))}^4$ is not part of the conflict
 - We indeed learn non-trivial stuff
- Learned clauses are purely negative
- Decisions are purely positive
- No unit propagation (only detect violations)
 - 1-watched literal schema
- Sound
- Complete
- Terminating (for a fixed depth limit)
- **■** Conflicts inherently **depending** on **precise paths** ⊗

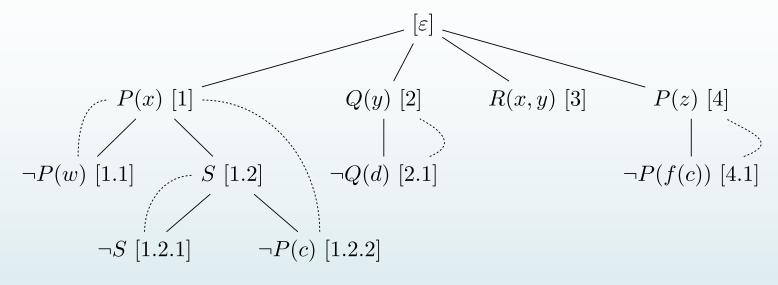




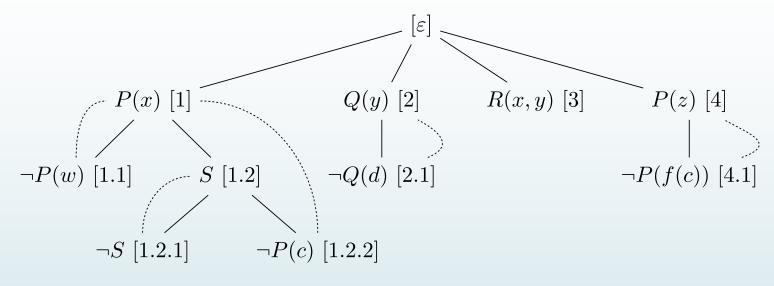
Still maintain positions



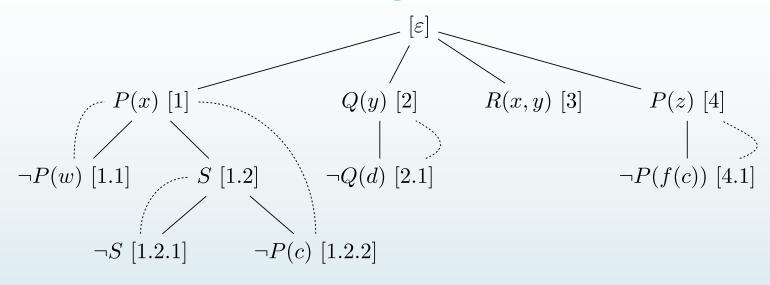
- Still maintain positions
- We have two kinds of literals



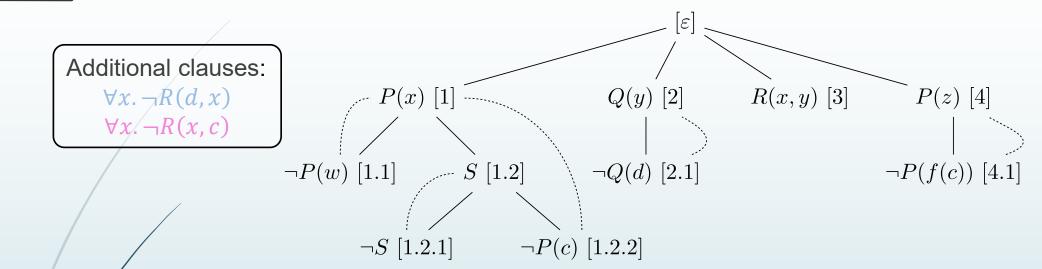
- Still maintain positions
- We have two kinds of literals
 - 1. **Literal** at **position** e.g., $\langle P(x)@1 \rangle$ or $\langle \neg P(c)@1.2.2 \rangle$

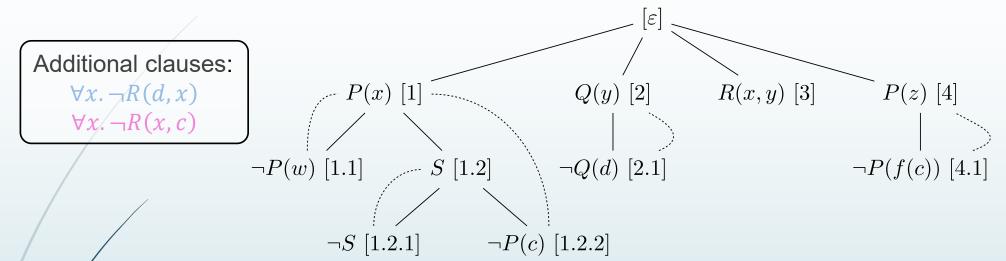


- Still maintain positions
- We have two kinds of literals
 - 1. **Literal** at **position** e.g., $\langle P(x)@1 \rangle$ or $\langle \neg P(c)@1.2.2 \rangle$
 - 2. Variable **bindings** e.g., $x \mapsto w$ or $x \mapsto c$

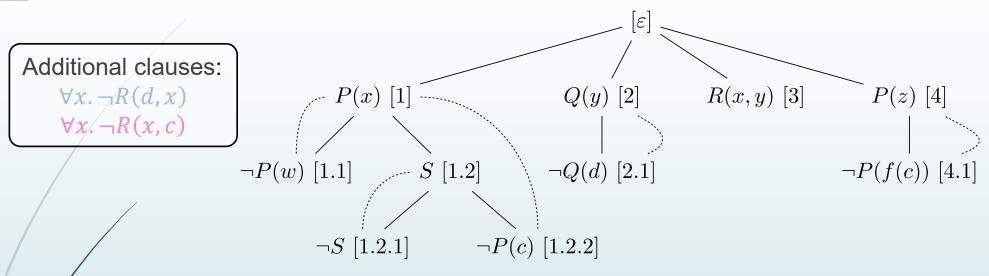


- Still maintain positions
- We have two kinds of literals
 - 1. **Literal** at **position** e.g., $\langle P(x)@1 \rangle$ or $\langle \neg P(c)@1.2.2 \rangle$
 - 2. Variable **bindings** e.g., $x \mapsto w$ or $x \mapsto c$
- Major difference: The origin of bindings [extension/reduction] is not tracked





As $x \mapsto c$ and $y \mapsto d$ we need to connect to R(c, d) – but we cannot



- As $x \mapsto c$ and $y \mapsto d$ we need to connect to R(c, d) but we cannot
- Stuck by union of justification

$$\{x \mapsto c\} \cup \{y \mapsto d\}$$

Additional clauses: $\forall x. \neg R(d, x)$ $\forall x. \neg R(x, c)$ $P(x) [1] \qquad Q(y) [2] \qquad R(x, y) [3] \qquad P(z) [4]$ $\neg P(w) [1.1] \qquad S [1.2] \qquad \neg Q(d) [2.1] \qquad \neg P(f(c)) [4.1]$ $\neg S [1.2.1] \qquad \neg P(c) [1.2.2]$

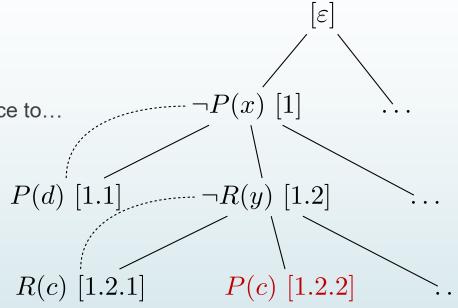
- As $x \mapsto c$ and $y \mapsto d$ we need to connect to R(c, d) but we cannot
- Stuck by union of justification

$$\{x \mapsto c\} \cup \{y \mapsto d\}$$

We learn the clause:

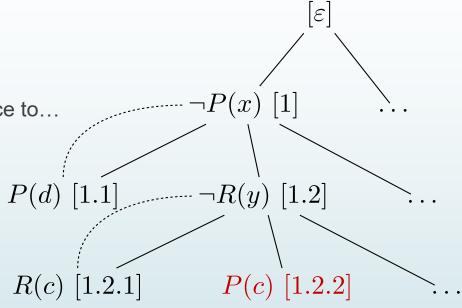
$$\neg \langle R(x,y)@3 \rangle \lor \neg (x \mapsto c) \lor \neg (y \mapsto d)$$

- More complicated
 - Express: there is nothing we can reduce to...



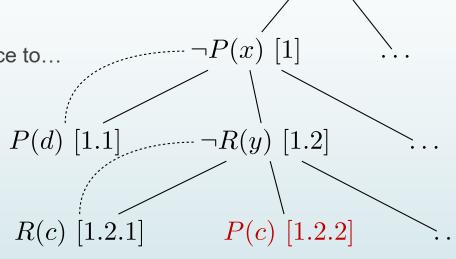
- More complicated
 - Express: there is nothing we can reduce to...

■ Given $\mu(x) \mapsto d$, $\mu(y) \mapsto c$



- More complicated
 - Express: there is nothing we can reduce to...

■ Given $\mu(x) \mapsto d$, $\mu(y) \mapsto c$

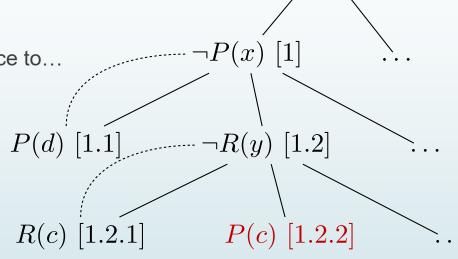


 $[\varepsilon]$

- lacktriangle Either P(c) can be extended **or** it reduces with anything above
 - $\blacksquare \neg \langle P(c)@1.2.2 \rangle \lor \neg Ext_1 \lor ... \lor \neg Ext_n \lor \neg \langle \neg P(x)@1 \rangle \lor \neg (x \mapsto c) \lor \neg \langle \neg R(y)@1.2 \rangle$
 - $\neg \langle \neg R(y)@1.2 \rangle$ is unnecessarily specific

- More complicated
 - Express: there is nothing we can reduce to...

■ Given $\mu(x) \mapsto d$, $\mu(y) \mapsto c$



 $|\varepsilon|$

- \blacksquare Either P(c) can be extended **or** it reduces with anything above
 - $\blacksquare \neg \langle P(c)@1.2.2 \rangle \lor \neg Ext_1 \lor ... \lor \neg Ext_n \lor \neg \langle \neg P(x)@1 \rangle \lor \neg (x \mapsto c) \lor \neg \langle \neg R(y)@1.2 \rangle$
 - $\neg \langle \neg R(y)@1.2 \rangle$ is unnecessarily specific
- ightharpoonup We use auxiliary "could connect" literals $p_i \sim p_j$
 - $\blacksquare \neg \langle P(c)@1.2.2 \rangle \lor \neg Ext_1 \lor ... \lor \neg Ext_n \lor \neg \langle \neg P(x)@1 \rangle \lor \neg (x \mapsto c) \lor \mathbf{1.2.2} \sim \mathbf{1.2}$

Results - I

- Prototype hopCoP
- Compared against *meanCoP*

14

Results - I

- Prototype hopCoP
- Compared against meanCoP
- Solved instances

	M2k	Miz40	MPTP - bushy	MPTP - chainy	ТРТР
hopCoP	1 050	13 040	589	203	4 026
meanCoP	795	7 592	480	157	3 578
meanCoP %	878	9 748	562	337	3 283

14

Results - I

- Prototype hopCoP
- Compared against meanCoP

■ Solved instances

Sounds way better than before!

	M2k	Miz40	MPTP - bushy	MPTP - chainy	TPTP
hopCoP	1 050	13 040	589	203	4 026
meanCoP	795	7 592	480	157	3 578
meanCoP %	878	9 748	562	337	3 283

Results - II

Results - II

■ Extension steps for *PUZ005-1.p* (lower = better)

	Lvl. 1	Lvl. 2	Lvl. 3	Lvl. 4	Lvl. 5	Lvl. 6	Lvl. 7
hopCoP	1	4	89	495	2 309	10 066	48 517
meanCoP	1	4	24	108	535	9 963	6 445 008

CASC Participation

CASC Participation

► hopCoP participated in CASC30 [2025]

CASC Participation

- ► hopCoP participated in CASC30 [2025]
 - Random restart + random literal selection
 - Solved 88 out of 500 inputs

First-order Theorems	<u>Vampire</u>	Vampire	CSI Enig	<u>iProver</u>	<u>E</u>	<u>Drodi</u>	CSE E	cvc5	Zipperpin	Prover9	ConnectP	<u>hopCoP</u>	LisaTT	SPASS-SO	LastButN
	4.9	5.0	1.0.6	3.9.3	3.3.0	4.1.0	1.7	1.3.0	2.1.9999	1109a	0.6.1	0.1	0.9.1	0.1	0
Solved/500	466/500	455/500	402/500	367/500	364/500	325/500	295/500	290/500	267/500	119/500	102/500	88/500	3/500	11/500	0/500
Solutions/500	466/500	455/500	402/500	367/500	364/500	325/500	293/500	290/500	267/500	119/500	102/500	88/500	3/500	0/500	0/500

■ Not bad for a newcomer based on CC!

- We block certain assignments
 - ightharpoonup e.g., $\neg(x \mapsto d)$

- We block certain assignments
 - ightharpoonup e.g., $\neg(x \mapsto d)$
 - Enforce unification instead
 - **■** x ~ c
 - 1. Harder to track violation
 - 2. Logical additional step: Propagate consequences

- We block certain assignments
 - ightharpoonup e.g., $\neg(x \mapsto d)$
 - Enforce unification instead
 - **■** x ~ c
 - 1. Harder to track violation
 - 2. Logical additional step: Propagate consequences

- Getting rid of position:
 - e.g., $\neg \langle P(\mathbf{x})@1.1.1 \rangle \lor \neg Ext_1 \lor \dots \lor \neg Ext_n \lor \neg \langle \neg P(c)@1 \rangle \lor \neg (x \mapsto c) \lor 1.1.1 \sim 1.1$

- We block certain assignments
 - ightharpoonup e.g., $\neg(x \mapsto d)$
 - Enforce unification instead
 - **■** x ~ c
 - 1. Harder to track violation
 - 2. Logical additional step: Propagate consequences

- Getting rid of position:
 - e.g., $\neg \langle P(\mathbf{x})@1.1.1 \rangle \vee \neg Ext_1 \vee ... \vee \neg Ext_n \vee \neg \langle \neg P(\mathbf{c})@1 \rangle \vee \neg (x \mapsto c) \vee 1.1.1 \sim 1.1$
 - Encode there is no parent to reduce

 - 1. Even harder to track violation

- Introduced two "languages"
 - ► Learning from conflicts during CC tableaux search
 - Strongly influenced by CDCL (SAT)
 - Justifications by "position" in the tableau

- Introduced two "languages"
 - ► Learning from conflicts during CC tableaux search
 - Strongly influenced by CDCL (SAT)
 - Justifications by "position" in the tableau
- **Prototype** hopCoP

- Introduced two "languages"
 - ► Learning from conflicts during CC tableaux search
 - Strongly influenced by CDCL (SAT)
 - Justifications by "position" in the tableau
- Prototype hopCoP
- Initial empirical results: **Promising** ②

Finally done!

- Introduced two "languages"
 - ► Learning from conflicts during CC tableaux search
 - Strongly influenced by CDCL (SAT)
 - Justifications by "position" in the tableau
- Prototype hopCoP
- Initial empirical results: Promising ☺

Finally done!

- Introduced two "languages"
 - ► Learning from conflicts during CC tableaux search
 - Strongly influenced by CDCL (SAT)
 - Justifications by "position" in the tableau
- Prototype hopCoP
- Initial empirical results: **Promising** ②

