B Informatics &) southampton

Clemens Eisenhofer (TU Wien)
Joint work with

Michael Rawson (U. Southampton) & Laura Kovacs (TU Wien)

(First-Order) Connection Calculus (CC)

(First-Order) Connection Calculus (CC)

» "First calculus towards ATP" [Bibel; Loveland — late 70s]

(First-Order) Connection Calculus (CC)

» "First calculus towards ATP" [Bibel; Loveland — late 70s]

» \ariant of (first-order) tableaux and binary resolution

(First-Order) Connection Calculus (CC)

» "First calculus towards ATP" [Bibel; Loveland — late 70s]
» \ariant of (first-order) tableaux and binary resolution

» Sound & complete

(First-Order) Connection Calculus (CC)

» "First calculus towards ATP" [Bibel; Loveland — late 70s]
» \ariant of (first-order) tableaux and binary resolution
» Sound & complete

=» Goal-directed

(First-Order) Connection Calculus (CC)

» "First calculus towards ATP" [Bibel; Loveland — late 70s]
» \ariant of (first-order) tableaux and binary resolution
» Sound & complete

=» Goal-directed

» Unlike "ordinary" tableaux or resolution: Non-confluent

®» Some proof steps are wrong and result in "dead ends"

(First-Order) Connection Calculus (CC)

» "First calculus towards ATP" [Bibel; Loveland — late 70s]
» \ariant of (first-order) tableaux and binary resolution
» Sound & complete

=» Goal-directed

» Unlike "ordinary" tableaux or resolution: Non-confluent

®» Some proof steps are wrong and result in "dead ends"

» [terative deepening & proof enumeration

(First-Order) Connection Tableaux

» Given a set of (first-order) input clauses

» Just 3 kinds of rules (+ first-order unifier)

(First-Order) Connection Tableaux

» Given a set of (first-order) input clauses

» Just 3 kinds of rules (+ first-order unifier)

/
S Reduction | Extonsion

(First-Order) Connection Tableaux

» Given a set of (first-order) input clauses

» Just 3 kinds of rules (+ first-order unifier)

/
S Reduction | Extonsion

An Example

Ci:Vz (P(Z) Y, P(f(z))) ,

An Example

Ci:Vz (P(z) Y, P(f(z))) ,

Start >/ \

P(z1) P(f(21))

o(z1) » 2, o(x1) » xq a(x3) P x; a(y2) » ¥y

An Example

Ci:Vz (P(z) Y, P(f(z))) ,

AN
P(x) Pif(=)
O N

o(z1) » 2, o(x1) » z4 a(x3) P x; a(y2) » ¥y

An Example

Ci:Vz (P(Z) Y, P(f(z))) ,

Reduction f / \

—|P ZEl _IP)

o(zy) » f(y1) o(xq) » f(y1) a(xy) = x; a(y2) » ¥,

An Example

Ci:Vz (P(Z) Y, P(f(z))) ,

o e
e . \ (X
_'P ZBl _lP)

o(z1) » f(y1) o(x1) = f(y1) o(xz) » f(f()’1)) o(yz) » ¥,

An Example

Ci:Vz (P(Z) \Y; P(f(z))) ,

/\P(f(z)
Reduction // \ e

—P(z1) —P(f(y1)) —P(z2) —P(f(y2))

o(z1) » f(y1) o(x1) = f(y1) o(xz) » f(f()ﬁ)) o(yz) » f(y1)

An Example

Ci:Vz (P(Z) Y, P(f(z))) ,

T~

W &
—P(z1) —P(f(y1)) —P(z2) —P(f(y2))

| P(f(=1))
Reduction // \ e

o(z1) » f(y1) o(x1) = f(y1) o(xz) » f(f()’1)) o(yz) » f(y1)

Contlict learning - A Briel Introduction

Contlict learning - A Briel Introduction

(mAV-BVC)A(=CVD)AN(=AV-BV-D)A (A VB)

Contlict learning - A Briel Introduction

(mAV-BVC)A(=CVD)AN(=AV-BV-D)A (A VB)

» st Guess“A —» T
(mAV-BVC)A(-CVD)A(=AV BV -D)A (A VB)

Contlict learning - A Briel Introduction

(mAV-BVC)A(=CVD)AN(=AV-BV-D)A (A VB)

» st Guess“A —» T
(mAV-BVC)A(-CVD)A(=AV BV -D)A (A VB)

w» 2nd Guess“B —» T
(mAV-BVC)A(RCVD)A(RAV BV -D)A (A VE)

Contlict learning - A Briel Introduction

(mAV-BVC)A(=CVD)AN(=AV-BV-D)A (A VB)

» st Guess“A —» T
(mAV-BVC)A(-CVD)A(=AV BV -D)A (A VB)

w» 2nd Guess“B —» T
(mAV-BVC)A(RCVD)A(RAV BV -D)A (A VE)

» PropagateC » T
(mAV-aBVC)A(=CVD)AN(=AV BV -aD)A (A VE)

Contlict learning - A Briel Introduction

(mAV-BVC)A(=CVD)AN(=AV-BV-D)A (A VB)

» st Guess“A —» T
(mAV-BVC)A(-CVD)A(=AV BV -D)A (A VB)

w» 2nd Guess“B —» T
(mAV-BVC)A(RCVD)A(RAV BV -D)A (A VE)

» PropagateC » T
(mAV-aBVC)A(=CVD)AN(=AV BV -aD)A (A VE)

» Propagate D » T
(mAVAaBVO)A(RCVD)A(=RAV ABVAD)A (A VE)

Contlict learning - A Briel Introduction

(mAV-BVC)A(=CVD)AN(=AV-BV-D)A (A VB)

» st Guess“A —» T
(mAV-BVC)A(-CVD)A(=AV BV -D)A (A VB)

w» 2nd Guess“B —» T
(mAV-BVC)A(RCVD)A(RAV BV -D)A (A VE)

» PropagateC » T
(mAV-aBVC)A(=CVD)AN(=AV BV -aD)A (A VE)

» Propagate D » T
(mAVAaBVO)A(RCVD)A(=RAV ABVAD)A (A VE)

» \Ne backjump and learn the clause: —-A v =B

Contlict learning - A Briel Introduction

(mAV-BVC)A(=CVD)AN(=AV-BV-D)A (A VB)

» st Guess“A —» T
(mAV-BVC)A(-CVD)A(=AV BV -D)A (A VB)

w» 2nd Guess“B —» T
(mAV-BVC)A(RCVD)A(RAV BV -D)A (A VE)

» PropagateC » T
(mAV-aBVC)A(=CVD)AN(=AV BV -aD)A (A VE)

» Propagate D » T
(mAVAaBVO)A(RCVD)A(=RAV ABVAD)A (A VE)

» \Ne backjump and learn the clause: —-A v =B

= \Ve resume with
(—lAV—lBVC)/\(—lCVD)/\(—lAV—lBVﬂD)/\(VB)A(=AV =B)

Summary So Far

Summary So Far

» Theoretical argument for using conflict learning in CC search

Summary So Far

» Theoretical argument for using conflict learning in CC search

» (QOverhead of using SAT core

Summary So Far

» Theoretical argument for using conflict learning in CC search
» (QOverhead of using SAT core

» SAT/SMT solvers are overwhelmed by massive constraints

Summary So Far

» Theoretical argument for using conflict learning in CC search
» (QOverhead of using SAT core

» SAT/SMT solvers are overwhelmed by massive constraints

=» Specialized Learning Engine

Custom Learning Engine tor CC

Fncoding Connection Tableaux

‘ .
\
.

[1.2] -Q(d) [2.1]

€]
// \
Qy) 2] | R(z,y) [3]

Fncoding Connection Tableaux

€]
// \
Qy) 2] | R(z,y) [3]

o P@) (1] P(z) [4
ﬁP(w:) [1.1] S [1.2] -Q(d) [2.1'1’ -P(f(c)) [4.1]
-S [1.2.1] ﬂP(c)E[1.2.2]

» \\e maintain explicit positions

Encoding Connection "L ableaux

€]
P(z) [1] - Q) [2]\ R(z,y) [3] P(z) [4]\
¢ <N K | N
~Pw) [11] S [L2 Q) [21] ~P(f(c)) [4-]
N 4
S [1.2.1] ~P(c) [1.2.2]

» \\e maintain explicit positions

Fncoding Connection Tableaux

€]
// \
Qy) 2] | R(z,y) [3]

o P@) (1] P(z) [4
ﬁP(w:) [1.1] S [1.2] -Q(d) [2.1'1’ -P(f(c)) [4.1]
-S [1.2.1] ﬂP(c)E[1.2.2]

» \\e maintain explicit positions

Fncoding Connection Tableaux

€]
// \
Qy) 2] | R(z,y) [3]

o P@) (1] P(z) [4
ﬁP(w:) [1.1] S [1.2] -Q(d) [2.1'1’ -P(f(c)) [4.1]
-S [1.2.1] ﬂP(c)E[1.2.2]

» \\e maintain explicit positions

=» \Ne have three kinds of literals

Fncoding Connection Tableaux

/ } \
P@ N~ QWE Ry
| |
~P(w) [1.1] S % -Q) 21
-8 [1.2.1] ﬁp(c)lE 1.2.2]

» \\e maintain explicit positions
=» \Ne have three kinds of literals

1. Choose Start Clause — e.9., Spx)vqQy)vRxy)vP(2)

Fncoding Connection Tableaux

P(z) (1] - Qy) 2] R(z,y) [3]
~P(w) [L1] .- S[L2] ~Q(d) [2.1]

-3 [1.2.1] [ﬂp(c)%u.z.z]]

» \\e maintain explicit positions

=» \Ne have three kinds of literals

1. Choose Start Clause — e.9., Spx)vqQy)vRxy)vP(2)

2. Apply Reduction —e.g., Ri,,

Fncoding Connection Tableaux

// \
P(x) [1] - Qy) [2]\ R(x,y) (3]
VAN |
~Pw) [11] - S [1.2] ~Q(d) [2.1]

-3 [1.2.1] [ﬂp(c)%u.z.z]]

» \\e maintain explicit positions

» \Ve have three kinds of literals
1. Choose Start Clause — e.9., Spx)vqQy)vRxy)vP(2)
2. Apply Reduction —e.g., R{,,
3. Apply Extension —e.g., EX,(,yvs/1

Fncoding Connection Tableaux

[e]
- %/ \\\Q 2
o P M e, Qw2 | R@w B | Pk A
[P) =6 [12)]K \CQ@ 21], ~P(f(e) 4.1],
-5 [121] ﬂP(c):[1.2.2]
\\ y,

» \\e maintain explicit positions

» \Ne have three kinds of literals
1. Choose Start Clause — e.9., Spx)vqQy)vRxy)vP(2)
2. Apply Reduction —e.g., R{,,
3. Apply Extension —e.g., EX,(,yvs/1

» Position i is open iff we have neither Rl.j nor Eé/k

Fncoding Connection Tableaux

‘ .
\
.

[1.2] -Q(d) [2.1]

» \\e maintain explicit positions

» \Ne have three kinds of literals
1. Choose Start Clause — e.9., Spx)vqQy)vRxy)vP(2)
2. Apply Reduction —e.g., R{,,
3. Apply Extension —e.g., EX,(,yvs/1

» Position i is open iff we have neither Rij nor Eé/k

€]
// \
Qy) 2] | R(z,y) [3]

Contlict Learning

{Additional clauses: }

Contlict Learning

{Additional clauses: } // \

P) [1] - Q) RwylE PG
~P(w) . 4 S0 Q) [21] ~P(f(0)) [41]
S [1.2.1] .22

» Asx - candy ~ dwe need to connect to R(c,d) — but we cannot

Contlict Learning

{Additional clauses: } // \

P(x) 1] Q) Rew B PEM
~P(w) 1 4 502 ~Q() 21] ~P(f(e)) [41]
S [1.2.1] .22

» Asx - candy ~ dwe need to connect to R(c,d) — but we cannot

» Stuck by union of justification

Contlict Learning

{Additional clauses: } // \

P) [1] - Q) RwylE PG
~P(w) . 4 S0 Q) [21] ~P(f(0)) [41]
S [1.2.1] .22

» Asx - candy ~ dwe need to connect to R(c,d) — but we cannot

» Stuck by union of justification

We learn the clause:

—SpVQ(Y)VR(y)VP(2) V v v v

Observations

Observations

- E;‘(f(c)) is not part of the conflict

» \Ne indeed learn non-trivial stuff

Observations

- E;‘(f(c)) is not part of the conflict

» \Ne indeed learn non-trivial stuff

» | earned clauses are purely negative

Observations

- E;‘(f(c)) is not part of the conflict

» \\e indeed learn non-trivial stuff
» | earned clauses are purely negative
» Decisions are purely positive

Observations

- E;‘(f(c)) is not part of the conflict

» \Ve indeed learn non-trivial stuff
» | earned clauses are purely negative
» Decisions are purely positive
= No unit propagation (only detect violations)

» 1-watched literal schema

Observations

- E;‘(f(c)) is not part of the conflict

» \Ve indeed learn non-trivial stuff
» | earned clauses are purely negative
» Decisions are purely positive
= No unit propagation (only detect violations)

» 1-watched literal schema

=» Sound

Observations

- E;‘(f(c)) is not part of the conflict

» \Ne indeed learn non-trivial stuff

» | earned clauses are purely negative

Decisions are purely positive
= No unit propagation (only detect violations)

» 1-watched literal schema

Sound
» Complete

Observations

- E;‘(f(c)) is not part of the conflict

» \Ne indeed learn non-trivial stuff

» | earned clauses are purely negative

Decisions are purely positive
= No unit propagation (only detect violations)

» 1-watched literal schema

Sound

Complete
» Terminating (for a fixed depth limit)

Observations

- E;‘(f(c)) is not part of the conflict

» \Ne indeed learn non-trivial stuff

» | earned clauses are purely negative

Decisions are purely positive

No unit propagation (only detect violations)

» 1-watched literal schema

» Sound

» Complete

» Terminating (for a fixed depth limit)

» Conflicts inherently depending on precise paths ®

More Retined Encoding

‘ .
\
.

[1.2] ~Q(d) [2.1]

€]
// \
Qy) 2] | R(z,y) (3]

More Retined Encoding

€]
// \
Qy) 2] | R(z,y) (3]

P [P(z) [
~P@) L) - S12 ~QU) [21] ~P(f(0)) 41
S [1.24] ﬂp(c)%u.z.z]

» Still maintain positions

More Retined Encoding

€]
// \
Qy) 2] | R(z,y) (3]

P [P(z) [
~P@) L) - S12 ~QU) [21] ~P(f(0)) 41
S [1.24] ﬂp(c)%u.z.z]

» Still maintain positions

» \Ne have two kinds of literals

More Retined Encoding
]
// \

QB ey Bl

~P@ 1T

NN TS

~Pw) [11] - S[2) Q@ [21
LS 121] —P(e) [12.2

» Still maintain positions

=» \Ne have two kinds of literals
1. Literal at position —e.g., (P(x)@1) or (=P(c)@1.2.2)

More Retined Encoding

€]
// \
Qy) 2] | R(z,y) (3]

P [P(z) [
~P@) L) - S12 ~QU) [21] ~P(f(0)) 41
S [1.2.1] _P(e) [1.2.9]

» Still maintain positions

=» \Ne have two kinds of literals
1. Literal at position —e.g., (P(x)@1) or (=P(c)@1.2.2)

2. Variable bindings —e.g., x » worxec

More Retined Encoding

€]
// \
Q(y‘) [2]\ R(z,y) (3] ‘ [4]

12 -0) [2.1] ~P(f(e)) [4.1]

» Still maintain positions

» \Ne have two kinds of literals
1. Literal at position —e.g., (P(x)@1) or (=P(c)@1.2.2)
2. Variable bindings —e.g., x » worxec

» Major difference: The origin of bindings [extension/reduction] is not tracked

Retined Contlict Learning

€]
Additional clauses: // \
- Q) 2] R(z,y) 3]

o P@ M
-P(w) [1.1] .~ S[1.2] % -Q(d) [2.1]
N

12u —-P(c) [1.2.2]

Retined Contlict Learning

€]
Additional clauses: // \
Q(y) 2] R(z,y) 3]

oo P@) e , P(2) [4]
-P(w) [1.1] .- S[12] % —Q(d) [2.1] ~P(£(c)) [4.1]
L \
S [12.1] 1.2.2]

» Asx - candy ~ dwe need to connect to R(c,d) — but we cannot

Retined Contlict Learning

€]
Additional clauses: // \
Q(y) 2] R(z,y) 3]

oo P U e , P(2) [4]
-P(w) [1.1] .- S[12] % —Q(d) [2.1] ~P(£(c)) [4.1]
L \
S [12.1] 1.2.2]

» Asx - candy ~ dwe need to connect to R(c,d) — but we cannot

» Stuck by union of justification

V)

Retined Contlict Learning

€]
Additional clauses: // \
Q(y) 2] R(z,y) 3]

oo P@) e , P(2) [4]
-P(w) [1.1] .- S[12] % —Q(d) [2.1] ~P(£(c)) [4.1]
L \
S [12.1] 1.2.2]

» Asx - candy ~ dwe need to connect to R(c,d) — but we cannot

» Stuck by union of justification

V)

We learn the clause:
—(R(x,y)@3) vV

Wait a Minute! What about Reduction?

Wait a Minute! What about Reduction?

» More complicated / \

= Express: there is nothing we can reduce to... .- —P(x) [1]

Wait a Minute! What about Reduction?

» More complicated / \

= Express: there is nothing we can reduce to... .- —P(x) [1]

= Given u(x) »d, u(y) »c \
R(c) 1.2.1 [1.2.2] .

Wait a Minute! What about Reduction?
€]

» More complicated / \

= Express: there is nothing we can reduce to... e —P(x) [1]

P(d) [1-11/R<y>\m .
» Given u(x) » d, u(y) »c \
R(c) i1.2.1] P(c) [1.2.2]

» FEither P(c) can be extended or it reduces with anything above

» —(P(c)@1.2.2) V =Ext; V ... V=aExt, V =2(=P(x)@1) V =(x » c)V =(=R(y)@1.2)

» —(-R(y)@1.2) is unnecessarily specific

Wait a Minute! What about Reduction?
€]

» More complicated / \

= Express: there is nothing we can reduce to... e —P(x) [1]

P(d) [1.1] - R .

b <y>\[1.2] |
» Given u(x) » d, u(y) »c \
R(c) i1.2.1] P(c) [1.2.2]

» FEither P(c) can be extended or it reduces with anything above
» —(P(c)@1.2.2) V =Ext; V ... V=aExt, V =(=P(x)@1) Va(x ~ c)V =(=R(y)@1.2)
» —(-R(y)@1.2) is unnecessarily specific

=> We use auxiliary "could connect” literals p; ~ p;

» —(P(c)@1.2.2) V—Ext; V ..V —aExt, V =(=P(x)@1) Va(x—c) Vv 1.2.2 ~ 1.2

Results - 1

» Prototype hopCoP

» Compared against meanCoP

Results - 1

» Prototype hopCoP

» Compared against meanCoP

» Solved instances

hopCoP 1 050 13 040 4 026
meanCoP 795 7 592 480 157 3578

meanCoP & 878 9748 562 337 3283

Results - 1

» Prototype hopCoP

» Compared against meanCoP

» Solved instances

hopCoP 1 050 13 040 4 026
meanCoP 795 7 592 480 157 3578

meanCoP & 878 9748 562 337 3283

Results - I1

Results - I1

» [xtension steps for PUZ005-1.p (lower = better)

-

hopCoP 2 309 10 066 48 517
meanCoP 1 4 24 108 535 9 963 6 445 008

CASC Participation

CASC Participation

» hopCoP participated in CASC30 [2025]

4

CASC Participation

» hopCoP participated in CASC30 [2025]

» Random restart + random literal selection

» Solved 88 out of 500 inputs

_ Vampire | Vampire | CSI_Enig| iProver E Drodi | CSE E | cve5 |Zipperpid Prover9 [ConnectP] hopCoP | LisaTT [SPASS-S(LastButN]
49 5.0 106 393 33.0 4.1.0 17 1.3.0 2.1.9999 1109a 0.6.1 0.1 0.9.1 0.1 0
Solved/soo 466500 455500 402500 367500 364500 325500 295/500 290500 267500 119500 102500 88500 3500 11500 0rs00
Solutionssseo 466/s500 4551500 402500 367500 364500 3250500 293500 290500 267500 119500 102500 8800 3500 Ors00 0rs00

=» Not bad for a newcomer based on CC!

Further Work

Further Work

» \Ne block certain assignments

> eg., a(x ~ d)

Further Work

» \Ne block certain assignments

> eg., a(x ~ d)

» [Enforce unification instead
» ¥ ~ C
1. Harder to track violation

2. Logical additional step: Propagate consequences

Further Work

» \Ne block certain assignments

> eg., a(x ~ d)

» [Enforce unification instead
» ¥ ~ C
1. Harder to track violation

2. Logical additional step: Propagate consequences

» (Getting rid of position:
» e.d., —|(P(X)@111> V mExt; V ... VaExt, V —|<—|P(C)@1) Valx—c)Vv 1.1.1 ~ 1.1

Further Work

» \Ne block certain assignments

> eg., a(x ~ d)

» [Enforce unification instead
» X ~ C
1. Harder to track violation

2. Logical additional step: Propagate consequences

» (Getting rid of position:
» e.d., —|(P(X)@111> V mExt; V ... VaExt, V —|<—|P(C)@1> Valx—c)Vv 1.1.1 ~ 1.1

®» Encode there is no parent to reduce
» VpVp' < p: 2P(xP)@p V —Ext; V .. V=Ext, Vp~p'

1. Even harder to track violation

Summary

Summary

» |ntroduced two "languages”

» | earning from conflicts during CC tableaux search
» Strongly influenced by CDCL (SAT)

» Justifications by "position" in the tableau

Summary

» |ntroduced two "languages”

» | earning from conflicts during CC tableaux search
» Strongly influenced by CDCL (SAT)

» Justifications by "position" in the tableau

» Prototype hopCoP

Summary

» |ntroduced two "languages”
» | earning from conflicts during CC tableaux search
» Strongly influenced by CDCL (SAT)

» Justifications by "position" in the tableau

» Prototype hopCoP

» |nitial empirical results: Promising ©

Summary

» |ntroduced two "languages”
» | earning from conflicts during CC tableaux search
» Strongly influenced by CDCL (SAT)

» Justifications by "position" in the tableau

» Prototype hopCoP

» |nitial empirical results: Promising ©

- -

» |ntroduced two "languages”

» | earning from conflicts during CC tableaux search
» Strongly influenced by CDCL (SAT)

» Justifications by "position" in the tableau
» Prototype hopCoP

» |nitial empirical results: Promising ©

	Folie 1: Constraint Learning for Non-confluent Proof Search
	Folie 2: (First-Order) Connection Calculus (CC)
	Folie 3: (First-Order) Connection Calculus (CC)
	Folie 4: (First-Order) Connection Calculus (CC)
	Folie 5: (First-Order) Connection Calculus (CC)
	Folie 6: (First-Order) Connection Calculus (CC)
	Folie 7: (First-Order) Connection Calculus (CC)
	Folie 8: (First-Order) Connection Calculus (CC)
	Folie 9: (First-Order) Connection Tableaux
	Folie 10: (First-Order) Connection Tableaux
	Folie 11: (First-Order) Connection Tableaux
	Folie 12: An Example
	Folie 13: An Example
	Folie 14: An Example
	Folie 15: An Example
	Folie 16: An Example
	Folie 17: An Example
	Folie 18: An Example
	Folie 19: Conflict learning – A Brief Introduction
	Folie 20: Conflict learning – A Brief Introduction
	Folie 21: Conflict learning – A Brief Introduction
	Folie 22: Conflict learning – A Brief Introduction
	Folie 23: Conflict learning – A Brief Introduction
	Folie 24: Conflict learning – A Brief Introduction
	Folie 25: Conflict learning – A Brief Introduction
	Folie 26: Conflict learning – A Brief Introduction
	Folie 27: Summary So Far
	Folie 28: Summary So Far
	Folie 29: Summary So Far
	Folie 30: Summary So Far
	Folie 31: Summary So Far
	Folie 32: Custom Learning Engine for CC
	Folie 33: Encoding Connection Tableaux
	Folie 34: Encoding Connection Tableaux
	Folie 35: Encoding Connection Tableaux
	Folie 36: Encoding Connection Tableaux
	Folie 37: Encoding Connection Tableaux
	Folie 38: Encoding Connection Tableaux
	Folie 39: Encoding Connection Tableaux
	Folie 40: Encoding Connection Tableaux
	Folie 41: Encoding Connection Tableaux
	Folie 42: Encoding Connection Tableaux
	Folie 43: Conflict Learning
	Folie 44: Conflict Learning
	Folie 45: Conflict Learning
	Folie 46: Conflict Learning
	Folie 47: Observations
	Folie 48: Observations
	Folie 49: Observations
	Folie 50: Observations
	Folie 51: Observations
	Folie 52: Observations
	Folie 53: Observations
	Folie 54: Observations
	Folie 55: Observations
	Folie 56: More Refined Encoding
	Folie 57: More Refined Encoding
	Folie 58: More Refined Encoding
	Folie 59: More Refined Encoding
	Folie 60: More Refined Encoding
	Folie 61: More Refined Encoding
	Folie 62: Refined Conflict Learning
	Folie 63: Refined Conflict Learning
	Folie 64: Refined Conflict Learning
	Folie 65: Refined Conflict Learning
	Folie 66: Wait a Minute! What about Reduction?
	Folie 67: Wait a Minute! What about Reduction?
	Folie 68: Wait a Minute! What about Reduction?
	Folie 69: Wait a Minute! What about Reduction?
	Folie 70: Wait a Minute! What about Reduction?
	Folie 71: Results - I
	Folie 72: Results - I
	Folie 73: Results - I
	Folie 74: Results - II
	Folie 75: Results - II
	Folie 76: CASC Participation
	Folie 77: CASC Participation
	Folie 78: CASC Participation
	Folie 79: Further Work
	Folie 80: Further Work
	Folie 81: Further Work
	Folie 82: Further Work
	Folie 83: Further Work
	Folie 84: Summary
	Folie 85: Summary
	Folie 86: Summary
	Folie 87: Summary
	Folie 88: Summary
	Folie 89: Summary

