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Interpretability logic IL
o Interpretability logic: a modal logic corresponding to the notion of relative
interpretability between first-order theories.
e Syntax of interpretability logic: given by
pu=plLld—=d| o>
where p ranges over a fixed set of propositional variables

@ We treat other Boolean connectives and modal operators O and < as
abbreviations. In particular, the usual modalities are defined as:

O¢ :=-¢r> 1, Op=(p> L).
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Hilbert axiomatization of IL

The Hilbert-style axiomatization of IL is given by the following axioms:
@ tautologies of classical propositional logic,

(K) B(¢ = ¢) — (O¢ — O9),

4) O¢ — OO¢,

L) O(8¢ — ¢) — 09,

(J1) B¢ = v) = (¢ > ),

(J2) (¢>x)A (x> ) = (9> 1),

(J3) (>IN (x>9) = (9 VX) >V,

(J4) o> = (O — Ov),

(J5) G99,

and inference rules modus ponens and necessitation:

bov o
o 08

Conclusions
[e]e]
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Sasaki’'s work on IL and variations

o Cut-free systems for logics IL and IK4 (axioms of IL without the L axiom):

Katsumi Sasaki, A cut-free sequent system for the smallest interpretability logic,
Studia Logica, 70(3):353—372, 2002.

@ Another cut-free system for the logic IK4:

Katsumi Sasaki, A sequent system for a sublogic of the smallest interpretability
logic, Journal of the Nanzan Academic Society, Mathematical Sciences and
Information Engineering, 3:1—12, 2003.

o Cut-free system for logic IK4P and system for ILP (that is conjectured to be
cut-free):

Katsumi Sasaki, A sequent system for the interpretability logic with the
persistence axiom, Journal of the Nanzan Academic Society, Mathematical
Sciences and Information Engineering, 2:25—34, 2002.



Completeness via cut elimination for provability logics

LSb
IL GIL + Cut G*IL + Cut
Trivial Cut elim
GIL G>IL

Rec



Sequents

@ A sequent is an expression of the form
M= A

where [ and A are finite multisets of formulas

@ We will use the following notation:
r>_1:={¢>L|perl}

b :={oi|icl}

e we write [Sj]m...i..o for the finite sequence of sequents (Spm, Sm—1,-- ., So)



Introduction Wellfounded Calculus Non-wellfounded calculus Non-wellfounded cut elimination Conclusions
0000 0@000 00000000 000000000 [e]e]

Wellfounded sequent calculus GIL

We define the sequent calculus GIL as the wellfounded calculus given by the following
rules:

pT=pA X Tr=a it

M= A0¢ P, = A o, = A1
booT=n Y ToAée—
[Wi, (Y1, Ppo,iys @) > L = Ppo iy, Plm...iv..0

{¢i > ¢i}i<m7 = wm > (ba A

R

>IL

The system GIL + Cut also has the following Cut rule:

M= A, x x,[ = A
M=A

Cut



The rule > - an example

Let m = 2. Then we have

S5 S1 So -
¢o > 1o, o1 > Y1, [ = Yo > ¢, A

where

S2 = P2, (Y2, 0, 1, ¢) > L = ¢o, d1,0
51 = 1/}15 (Qpl?d)O?d)) > 1= ¢07¢
So = vo, (o, 0) > L = ¢
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Proofs in GIL

A wellfounded proof in GIL (+Cut) is a finite tree whose nodes are marked by sequents
and that is constructed to the rules of GIL (+Cut).

5.(60.605 Lo dox X @b Llodx X XugpLlox X

P>, Y>x = d> )

>iL

(00, N> L= 1o AXR
(6.0, )> L= 1,629
ﬁ—.¢,(—|—|¢,¢,J_)DJ_:>J_,¢ J_,(J_,J_)DJ_:>J_
(Ch,d) > L = o, > L

©6,(00.0)>L =6
= o> ¢ -

1L
>

L
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Hilbert style proofs in IL and sequent proofs in GIL + Cut

@ By induction on the length of the Hilbert proof of ¢ we can prove:
if ILF ¢, then GIL + Cut - = ¢.
o Let S be a sequent [ = A. We define the IL-formula S* as the formula

Ar—VA.

IL+ S* if and only if GIL + Cut - S.
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Non-wellfounded calculus

@ Allows proofs with infinite branches.

@ To guarantee that there is no vicious infinite reasoning, it is usual to add a
constraint to the possible infinite paths in the proof, e.g. enforce that any infinite
branch goes through the premise of a rule infinite often

A local-progress sequent calculus is a pair G = (R, L) where:
(i) R is a set of rules, called the rules of C,

(i) L is a function that given a rule R € R and an instance of the rule

So .. S, 1

5 R

returns a subset of {0,...,n— 1}. This subset is the set of premises of the rule
instance that make progress.
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Sequent calculus G*IL

We define the sequent calculus G®IL as the local-progress sequent calculus given by
the following rules:

pT=pA X Troa tt

F=A¢ o.F=A 6.7 = A1)
oo T=>nA " ToAé—d
[¥i; (®po,i), @) > L = P i), Blm...i...0

{¢i > 75bl'}l.<ma I_ = ’l/)m > d)7 A

Progress only occurs at the premises of I>jks. The system with the Cut rule:

—R

>1K4

M= A, x x,[ = A
M= A

Cut

will be denoted as G*°IL + Cut.



An example of a non-wellfounded proof in G*IL

I S I
Drka ———— Ax

lol,~Y>l=¢ 1,00 Gye. =0, ...

Y, Ll L, -Y> 1=, L —L
I>1l, > Ll=0¢, 1,0 R
b L9 L= 1, © L.=1 ;Lm
> 1L =-¢> L
=0y = 0O¢ —R

So we have proved that GIL F Ot — O¢, where ¢ = O¢ — ¢, i.e., axiom L.
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Slicing the proof

We define an equivalence relation ~ between the nodes of a proof such that w ~ v if
in the shortest path between w and v there is no progress.
: -— 1L
g, L> L= L= 1 L= N A
1>l o> L=¢, L, 00 K g =g,

vl L, > L= o L —L
1>l > L=0¢ L, -R
G ib bl 1, © Lo=1 ;Lm
> 1L =-¢p> L
= Oy — O¢ —R

Each element of the partition given by ~ is called a local fragment. The local fragment
of the root is called the main local fragment and its height is called the local height of
the proof. With this structure we can see proofs as corecursive-recursive objects.
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Lob’s rule

Lob’s rule

Y, (N> L =T
o> L=T

Lob

is admissible in GIL + Cut.

Proof. Assume we have 7w 1, (¢,') > L = I'. By weakening we obtain a proof
T, (¢,I, L)> LT, L. We have the following derivation

;
Y G P SR .
P, >l =Tyv>_L IL O, (p,T)> L=T

v,I'>L1L =T

ut

O



Non-wellfounded calculus Non-wellfounded cut elimination Conclusions

Introduction Wellfounded Calculus
[e]e]

0000 00000 00000800 000000000

From GIL + Cut to G*IL + Cut

Let S be a sequent. If GIL + Cut - S, then G*IL + Cut - S.

Proof. Via corecursion we define a function « from proofs in GIL 4+ Cut to proofs in
G*°IL and cases on the shape of the input proof m. The only interesting case is when
the last rule of m is .. We know that 7 has shape

i
|:1;Z)I'v (d}ia (D[O,i)a ¢) > 1= d)[ozi)’ ¢:| m...i...0

>
{QSI' > T;Z)i}i<m7 r = Aa¢m > ¢
Then the desired proof is
[ a(Lob(7;)) ]
Vi, (Ppo,i), @) > L = Py, @], -
IL

{oi>Yiticm T = D pm > @
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The set Sub(¢)

o Let ¢ be a formula. We define the set Sub(¢) recursively as follows:

Sub(p) = {p},
Sub(Ll) ={L},

(L
Sub(¢ — 1) = {¢ — ¥} U Sub(¢) U Sub(v),
Sub(¢ > ¥) = {¢> 1, ¢ > 1,9 > L, L} USub(¢) U Sub(¥).

e If [ is a multiset of formulas, Sub(I') is the set

(J{Sub(¢) | ¢ €T}

o If S=(I' = A) is a sequent, then Sub(S) is simply the set Sub(l' U A).

[Vi, ®po,iy &> L, o> L = Doy, Blm..i0
{¢i > ¢i}i<m7 = wm > ¢a A

>1K4

Conclusions
[e]e]
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From G*IL to GIL

Let m+= S in G®IL and ¢ be a formula occurring in w. Then ¢ € Sub(S).

Proof. By the induction on the length of the node where ¢ appears. []

For any finite set \ of formulas, we have that

GXILET = A impliesGILEAD> L, T = A.

Proof. Let 7= T = A in G*IL. By induction on the lexicographical order
(Isub(r = &)\ Al,Ing(r))

and cases on the last rule of . O
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Admissibility and eliminability

Let G be any kind (wellfounded or non-wellfounded) of sequent calculus and R be a
rule. We say that

@ R is admissible in G if for any instance (So,...,Sn—1,S) of R we have
GFSo,...,GF S, 1 implies G S.

@ R is eliminable in G if G + Cut proves the same sequents as G.

Note that eliminability implies admissibility. However, if G is a wellfounded sequent
calculus we also have the inverse direction, but not in the non-wellfounded case.
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Coalgebraic Proof Translations of Non-Wellfounded Proofs

Borja Sierra Miranda, Thomas Studer and Lukas Zenger, “Coalgebraic Proof Translations of
Non-Wellfounded Proofs”. In Agata Ciabattoni, David Gabelaia and Igor Sedlar (eds). (2024)
Advances in Modal Logic, Vol. 15. College Publications

v 1w

On the left: non-wellfounded proof and local fragment without cuts;
on the right: non-wellfounded proof and local fragment that can contain cuts



(1) local admissibility

gy

M= Ax x, [ = A



(2) step (local eliminability)

= A



Coalgebraic Proof Translations of Non-Wellfounded Proofs

(3) applying step (eliminability)
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Local cut admissibility

If 7 is a non-wellfounded proof, we denote by lhg() its local height.

Assume we have proofs m =T = A, x and 7 F x, T = A in G®IL + Cut which are
locally cut-free. Then there is p=T = A in G®IL + Cut which is locally cut-free.

Proof. By induction on the lexicographic order of the pairs (|x|,lhg(m) + lhg(7)) and
cases on the shape of the cut. Let us see the modal case. Assume we have proofs

i
|:1/}i7 (q)[ovi)’ (b) >1= CD[Ovi)7 ¢:| m...i...0 >
IK4
{6i & Viticm &) > Vj}jcnjzi T = Ym > 6,0, > ¢ A,

Ti
|: J/ ( [04) ’¢,)I>J‘:>¢[Oj ’¢,:|n...j...0 > where wml>¢2¢,kl>¢;<
1K4,
{qu > ¢J/'}j<n7 {¢I > ¢i}i<m7 r = QIZ):, > ¢,a A
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We are going to define a proof

Pn " Pher Pm-1 PO Phii P
{Qﬁj > w}}j<n7j7ék7 {(,bl > 1/’i}i<ma r = % > ¢,7 A

>1K4

where >4 has been applied with order

Conclusions
[e]e]

¢6 > ¢67 . 'ad)lkfl > 7[);&17% > wo, s 7¢m71 > ¢m717¢2+1 > ¢;<+1> . '7¢ln—1 > @%_1

and principal formula ¢}, > ¢’. We need to define pis and pjs such that

l_ w_,’ ( [0,k)U(k.j) cl)[0 m)> ¢/) > 1= q’io K)U(k) ¢[0,m)7 ¢, forje (k, n];

pll_wh( Ok)?q)[OI7¢)‘>J—:>¢[Ok)7¢[01)7¢7 forie[oam);
pLE A (Dl . @) B L= Ol o ¢, for j € [0, k).

Then we can define pj’- = 7j for j € [0, k), let us see the other definitions.



We notice that the necessitation rule

o, x> 1 =%
Y1, M=¢> 1A

Nec

is admissible in G®IL(+Cut). Let us define p;, first let ¢ := (Dio,k)’ Ppo,i)-

Tk T
Vies (Ploiys @) > L = Vg 4y, ¢ _1£i,_(43, ?,?/2 > L=, ¢_7/ _W
wf9(¢a¢,)[>J-=>¢7w;<a¢/7¢Il<[>J— ¢i7(¢7w;<,¢/)‘>J-:¢a¢llm¢, C Tk W
¢i7(¢a¢l)[>l=>¢7¢ll<1¢/ ¢i7¢27(¢7¢l)>i=>¢’a¢/ C

i, (¢>¢I) >1= ¢7¢/
The definition of p’ for j € (k, n] is similar but more involved

Tm 7
—N
Tk s s C
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Cut elimination for G*°IL

By just applying the previous lemma corecursively to local proof fragments we get the
desired result about the cut elimination for G*™IL.

If G®IL+ Cut = S, then G=IL - S.

And as a corollary of all our previous results, we can obtain cut elimination in the
original system.

IfGIL+ Cut = S, then GILF S.
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Conclusions and Future Work

Conclusions:

@ The “amount of non-wellfoundedness” needed to treat provability logics is quite
low. In addition, it can be used to provide new results.

@ A system for ILP is easy to derive from the system of ILP.
@ Also a system for il (unary interpretability logic) is easy to derive.
Future work:
@ Exploit the absence of diagonal formulas to provide Lyndon uniform interpolation.
@ Uniform interpolation in provability logics with bad repetitions e.g. Grz.
© Extensions of IL and il.
o

Using the uniformity of the methodology, provide an abstract theory of
“cyclic/non-wellfounded companions”.
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