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Obstacle 1: No Universal File System

Poll: Raise your hand if you have used

NTFS (Windows), apfs (macQOS), ext4 (Linux), NFS, Dropbox, Google Drive, IPFS, ...

e Not many people are proficient in multiple file systems
* Different system calls, libraries, naming conventions, ...

* Hard to do interactivity in a system agnostic way?
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Obstacle 2: Some Human Computer Interfaces

e Traditional computer: {@, @}

¢ Mobile computer: { é? , % }
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Our Work v Tools Vv News & Insights v About Us Vv

Claude Can (Sometimes) Prove It

By: Mike Dodds September 16, 2025

Let me get right to the point without any nonsense about aliens:

1. Claude Code, the new Al coding agent from Anthropic, is pretty good at interactive theorem proving (ITP).

2. | find this very surprising, and you probably should too.

Interactive theorem proving tools such as Lean are the most powerful and trustworthy kind of formal
methods tool. They have been used to formally verify important things such as cryptographic libr S
compilers, and operating systems. Unfortunately, even experts find ITP proofs time-consuming and error-
prone. That's why it's exciting—and very surprising!—to find that Claude Code is so good at ITP. Today, Claude
Code can complete many complex proof steps independently, but it still needs a ‘project manager’ (me) to
guide it through the whole formalization. But | think Claude Code points to a world where experts aren’t
necessary, and theorem provers can be used by many more people.

The rest of this post digs into what Claude Code can actually do. But if you're interested in automated
reasoning or formal verification, | recommend you stop reading, go sign up for Claude Code, Gemini CLI,
Aider, Codex, or some other coding agent, and try it out on a problem you know well. It'll cost about $20 /
month for something useful, and maybe $100 / month for access to a state-of-the-art model. | reckon you'll be
able to get surprising successes (and interesting failures) with about two hours of work.




Look Just Try Claude Code

As long as I've been in the field, automated reasoning has evolved slowly. We are used to small-%
improvements achieved through clever, careful work. Claude Code breaks that pattern. Even with the
limitations it has today, it can do things that seemed utterly out of reach even a year ago. Even more
surprising, this capability doesn't come from some fancy solver or novel algorithm; Claude Code wasn't
designed for theorem proving at all!

| think what Claude Code really points to Is the bitter lesson coming for formal methods, just as it did for
Image recognition, language translation, and program synthesis. Just as in those fields, in the long run | think

formal methods ideas will be essential in making Al-driven proof successful. That's because Als will need many
of the same tools as humans do to decompose, analyze, and debug proofs. But before that happens, | think
we will see much of the clever, careful work we esteem rendered obsolete by Al-driven tools that have no
particular domain expertise. The lesson will be bitter indeed, and many people are resisting it.

| think the result will be worth the pain, however. The reason ITP has never been widely adopted is that it is
simply too cognitively demanding for most humans. Claude Code points to a future where theorem proving is
solved - cheap, abundant, and automatic. | think that would be a good future, and if it happens, we should be
ready and know what problem we want to solve next.




| think what Claude Code really points to Is the bitter lesson coming for formal methods, just as it did for
image recognition, language translation, and program synthesis.

The reason ITP has never been widely adopted is that it is
simply too cognitively demanding for most humans.
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® Too few interaction modes
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Outline

@ Level 1: contextual reasoning
® Level 2: proof by linking
® Level 3: quantification

@ Level 4: hierarchical detail

© Future work

¢ Dealing with dependent types
* Bidirectional communication with existing systems
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Level 1: The Calculus of Structures (CoS)

¢ Observation: connectives are functors

* IfAFBthen(AAF) HF(BAF)
* IfA FBthen(B=>F) H(A=F)

e CoS makes use of this functoriality

* Inference rules can operate in formula contexts:
A €{A}

B B

¢ Contexts:
C{} »={}IA=C{}|C{}*B|A=>F€{}| A{}=>B
A{} i=Ax A{}| A{}xB|A= A{}|€{} =B

* €{A} and A{A} replace the unique { } in €{} or A{ } with A.

(x € {A,V})



Calculus of Structures: Summary

¢ Linear sequence of formulas in a derivation —
no branching!

¢ Aformulaisderivableif thereis a CoS
derivation from a trivial theorem such as T.

e Completeness: every true formula is

derivable
€{A}

€{B}
A built from immediate subformulas of B

e “Subformula” property: in

TATATAT
TAa=aATAT
a=(TAaATAT)
a=(TAaATAT)

a=(a=>aANaATAT)

a=a=(@AaATAT)

a=a=>(a@aANaATAT)

a=(@NaANTAT)
a=(a@aNaANTAc=c)

a=(@a=>a=>T=c)=>c

(a=a=>T=c)=>a=c

(a=a=T=c)=>a=c

(a=a=>b=>b=>c)=>a=c

(a=a=((b=>c)Ab)=a=c

(a=>(@=>b=>c)Ab)=>a=>c

(a=b=c)AN(a=>b)=>a=c

(a=>b=c)=>(a=b)=a=c

(a=>b=c)=>(a>b)=>a=c



CoS: Logical Rules in a Positive Context

Analogous to sequent calculus

e{T}

e [nitial: m

€{(A=B) AC} E{BN(A=>0C)}
C{A= (BANC)} €{A= (BANC)}
€{A= (B=>0C)} €{B=>A=0C)}
E{(ANB)=C} E{(ANB)=C}

e Conjunctions:

¢{ANB=C} ¢{B= A=0C)}

¢{A= (B=0C)} ¢{A= B=0C)}
E{ANB=0C)}
€{(A=B)=C}

e Implications:




CoS: Logical Rules in a Positive Context (contd.)

Analogous to sequent calculus

€ {A = B} €{A = C}
C{A=BvVvC(C)} €{A= (BVvV(C)}
C{A=>C)ANB=0C)}
€{(AVB)=C}

¢ Disjunctions:




CoS: Composition Rules in a Negative Context

No shallow analogue

. . A{A N\ B} A{A N C}
e Conjunctions:
A{AN(BAC)} A{AN(BAC)}
A{ANC} A{B N\ C}

A{(ANB) AC} A{(ANB) AC}

A{AAB)VAAC)Y  A{AAC)VBAC))

¢ Disjunctions:
A{ANBVC)} A{(AVv B) ANC}

A{(A = B) = C} A{B=(ANC)}

e Implications:
mplications AN BSC)) JANB=C))




Example: S-Combinator
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CoS: Miscellaneous

e Units and Simplification:

e{T} €{B} {T}
C{A=>T} €{T = B} €{L = B}
C{A} C{A} AA{A} A{A}
C{T NA} E{AANT} A{LVA} A{AvV L}
HA{L} HA{L} E{T} €{T}
A{LNA}Y A{ANL} E{TVA} E{AVT}

e Contraction, Cut:

C{A=>A=C} C{ANA=C)}
€{A=C} €{C}




CoS: Meta-Theorems

A

If C theninA F Cis provable.

Completeness
T

IfAq,...,A, F Cisprovable, then:

1=2-=2A,=>C
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Interlude: Exporting CoS to Other Systems

Case of Rocq
A
¢ Challenge: Given a CoS derivation C fill in the details of:
Goal A -> C. (* A, C : Prop. *)

Proof. (* insert proof here *) Qed.

* Two main styles:
¢ Shallow embedding: translate CoS proof rules to Rocq tacticals.
* Deep embedding: represent the CoS proof as a Rocq data structure,
and prove (as a meta-theorem in Rocq) it has a sound reflection function.
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Interlude: Shallow Embedding of CoS Rules

* Translating the rule instance

%EC} requires:
* Showing the entailmentA + C, and
* Transporting the entailment to € {}.

* Transport combinators:

Theorem and_1 {A B
Theorem imp r {A B

[aNal

: Prop} : (A ->B) -> ((A /\ C) -> (
: Prop} : (A ->B) -> ((C -> A) -> (

Check (imp r (and 1 )).

(* imp_r (and_1 ?y) : (?C1 -> ?A /\ ?C2) -> (?C1 -> 7B /\ 7C2)
where ?y : [ |- ?A -> ?B] *)

* Rules:

Theorem g_imp and 1 {A B C : Prop} : (A ->B) /\ C -> (A ->B /\ ().

Check (imp_r (and_1 g_imp_and 1)).
(* imp_r (and 1 g imp and 1)
: (?C -> ((?A -> ?B) /\ ?D) /\ ?E) -> ?C -> (?A -> ?B /\ 7?D) /\ ?E *)



Interlude: Shallow Embedding of CoS Rules

Final assembly

Theorem imp r {A B C : Prop} : (A ->B) -> (C ->A) -> (C -> B).
Theorem g imp and 1 {A B C : Prop} : (A ->B) /\ C -> (A ->B /\ Q).
Theorem g imp imp r {AB C : Prop} : (B ->A ->C) -> (A ->B -> ().
Theorem g _init {A : Prop} : True -> (A -> A).

Theorem s _imp true {A : Prop} : True -> (A -> True).

Goal forall (A B : Prop), A -> B -> A.
Proof.
intros A B.
refine (g _imp imp r ). (* B -> A -> A *)
refine (imp r g init ). (* B -> True *)
refine (s _imp true ). (* True *)
constructor.
Qed.
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Level 2: Linking

e CoSrules are more verbose than even sequent rules
e Goal: use the freedom of CoS and avoid the tedium
e Linking:

¢ Each link joins two unrelated subformulas

* The user indicates the ends of the link
* The system figures out how to resolve the link



Linking: Indicating and Resolving

(a=a=>c)=>a>c
(a=>a=>T=c)=>a=c
(a=a=(b=>b)>c)=>a>c
(a=a=>(b=>c)ANb)=>a=>c
(a=>(a@=>b=>c)ANb)=>a=>c
(@a=b=>c)AN(a=>b)=a=>c
(a@a=>b=>c)=(a=>b)=>a=c
a@=b=>c)=(@=>b)=>a=c




Linking: Indicating and Resolving

(a=a=>c)=>a>c
(a=>a=>T=c)=>a=c
(a=a=(b=>b)>c)=>a>c
(a=a=>(b=>c)ANb)=>a=>c
(a=>(a@=>b=>c)ANb)=>a=>c
(@a=b=>c)AN(a=>b)=a=>c
(a@a=>b=>c)=(a=>b)=>a=c
(a=b=c)= (a=]b) 2a=c




Linking: Indicating and Resolving

(a=a=>c)=>a>c
(a=a=>I=c)=>a=c
(a=oa=o(b=o\19\)\$c) =a=c
(a=a= (b=c) Ab) >a=c
(a=>(@=2b=>c)ANb)=>a=c
(a@a=2b=c)N(a=>b)=>a=>c
(a@a=>b=>c)=>(a=>b)=>a=c
(a=b=c)= (a=]b) 2a=c
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Linking: Indicating

¢ Alinked formula has one of the following two shapes:
Co{€1{A €o{B Hoo{C1{A} A €o{B
01€1{A} = €2{B}} or o1€1{A} 2{B}}
¢ Linkinititation can be written as inference rules:
€o{€{A €o{B Hoo{C1{A} N €2{B
016 1{A} = €2(B}} o{€1{A} 2{B}}
Co{€1{A} = €2(B}}  A{C1{A} N C2{B}}




Linking: Link Resolution

¢ Create variants of the CoS rules that operate on linked formulas
¢ |neach case the link is shorter in the premise
* Some cases:

Cof{(€1{A} = €2{B}) NC}  Co{AA (€1{B} = F2{C})}

HAo{(€1{A} = €2{B}) = C}
HAo{C1{A} N (€2{B}=C)}




Link Resolution: Choices

Co{B=€1{A} = (€2{C} AD)} (50{((%1{1‘&} AB) = ng{?}) AD}
e or ?
(50{(‘61{6} AB) = (‘62{)0} AD)} i50{(%1{1%} AB) = (ng{)c} AD)}
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>

¢ Most of the time there is a reasonable choice
* Oneof therulesis invertible, in which case do it first
e |f both rules are invertible, the choice does not matter
* If both rules are non-invertible and in positively signed contexts, the choice turns
out not to matter
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Link Resolution: Choices

Co{B=€1{A} = (€2{C} AD)} (50{(((@01{1‘&} AB) = %2{9}) AD}
) or
(50{(‘61{6} AB) = (‘52{)0} AD)} i50{(%1{1%} AB) = (%”2{)0} AD)}

>

¢ Most of the time there is a reasonable choice
* Oneof therulesis invertible, in which case do it first
e |f both rules are invertible, the choice does not matter
* If both rules are non-invertible and in positively signed contexts, the choice turns
out not to matter

e There are critical pairs for negatively signed contexts, i.e., compositions

A{(A= (BAC)) Vv D} A{A= ((BAC)VD)}
__J __J

A{((A=B) AC) v D} A{A= (BA (CVvD))}
__J __J

J{A=SB ACVD)] ~ A{A=B) ACVD)}
) )



Link Resolution: Directional Links

¢ The situation is even more complicated with quantifiers
e Use the order of links to determine the nesting order

Co{€1{A} = €2{B}} or A {C1{A} A C2{B}}
____“5 ___“

¢ |ntuition is to insert the source into the destination

%0{%2{%1{14&1}9}}}
(%27 1{A) = B))

A) B
Co{€1{A} = €2(B}}



Link Resolution: Directional Links

A{(A= (BAC)) vD} A{A= (BAC) Vv D)}
_r )

A{((A=B) AC) v D} A{A= (BA (CVD))}
__r )

J{A=B ACVD)]) © A{A=B) ACVD)
__ )



Link Resolution: Finishing

* When alink has length O, it can be removed

€ (T} €{A=>B}  A{AAB)

C€{A=>A} €{A=>B} A{ANB) “+5
[ —_r _r

* The formula can be simplified with respect to T.

€{A} G{T}
CANT) C{A=>T)

etc.
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Level 3: First-Order Quantification

¢ |tis common to see quantification done carelessly:

AB,..:=-|Vx.A|dx.A
E{} = |Vx.E{}|Ix. €{}
A} = | Vx. AL} | Ix. A{}

* Problem: ¥{A} interpreted as capturing the free variables of A
* Problematic to implement, formalize the meta-theory, export



First-Order Quantification

e Alternative: raising

(gf,x{} By | V. %I‘{} | Jx. %QP{}
A} = o | Ve Ap{ | 3x Ap ()

* Intuition: if I' A : propthen € {A} is well-formed:

Vu. €p{A} = Vu. €p{[u/x]A}



Interlude: Representing Contexts

In Rocq

Inductive cx :

|
|
|
|
|
|
|
|
d

115t Type -> Type :=

-> CX
-> CX
-> CX
-> CX
-> CX
-> CX

-> cx (A ::
-> cx (A ::

Hole cx nil

C AndL Ts cx Ts -> Prop
C AndR Ts Prop -> cx Ts
C OrL Ts cx Ts -> Prop
C OrR Ts Prop -> cx Ts
C ImpL Ts : ax Ts -> Prop
C ImpR Ts Prop -> cx Ts
C ALWD A Ts (A -> cx Ts)

C ExD A Ts (A -> cx Ts)

ax : list Type -> Type := ...

Ts
Ts
Ts
Ts
Ts
Ts

Ts)
Ts).



Interlude: Representing Raised Formulas
In Rocq

Fixpoint raise (Ts : list Type) (U : Type) : Type :=
match Ts with

| nil => U
| A :: Ts == A -> raise Ts U
end.

Notation "Ts > U” := (raise Ts U).



Interlude: Representing Raised Formulas
In Rocq

Fixpoint raise (Ts : list Type) (U : Type) : Type :=
match Ts with

| nil => U
| A :: Ts == A -> raise Ts U
end.

Notation "Ts > U” := (raise Ts U).

Fixpoint cx place Ts (cx : ¢x Ts) : (Ts > Prop) -> Prop :
match cx with
| Hole => fun p => p
| AndL  cx g => fun p == cx{{ p }} /\ ¢

3}

| AiiD A cx => fun p => forall (x : A), (cx x){{ X
0 {{ p x}}

| ExXD A cx => fun p => exists (x : A), (cx x)
end

where "Cx {{ P }}" := (@cx place _ Cx P).

p
p



Interlude: Building Raised Formulas
In Rocq

Fixpoint raised and (Ts : list Type)
: (Ts > Prop) -> (Ts > Prop) -> (Ts > Prop) :=
match Ts with
| nil = (fun p g =>p /\ q)
| A:: Ts => (fun (pq : A -> (Ts > Prop)
raised and Ts (p x) (q x)

) (x : A) =>
)

end.
Notation "f A g” := (raised and _f g).



Interlude: Building Raised Formulas
In Rocq

Fixpoint raised and (Ts : list Type)
(Ts > Prop) -> (Ts > Prop) -> (Ts > Prop) :=
match Ts with
| nil => (fun pgq=>p /\ q)
| A :: Ts => (fun (pq : A -> (Ts > Prop)) (x : A) =>
raised and Ts (p x) (g x))
end.
Notation "f A g” := (raised and f g).

Fixpoint raised forall (A : Type) (Ts : list Type)
: (A -> (Ts > Prop)) -> (Ts > Prop) :=
match Ts with
| nil => (fun p => forall (x : A), p x)
| B :: Ts => (fun p (x : B) =>
raised forall A Ts (fun u => p u x))

end.
Notation "V x .. y , p” :=
(raised forall @ (fun x => .. (raised forall all @ (fun y => p))

(x binder).

=)



Linking: Quantifier Rules
 Extrusion:

Co{Vx. (¢1{A} = €2{B})}

Ho{Vx. (€1{A} N €2{B})}

A V. B
€o{€1{A} = Vx. €5{B}}

etc.

A Vx. B
HAo{€ 1{A} A Vx. €2{B}}



Linking: Quantifier Rules
 Extrusion:

Co{Vx. (¢1{A} = €2{B})}

Ho{Vx. (€1{A} N €2{B})}

0 { 1 { } 2 {B} }
etc.

¢ |nstantiation:
C{[t/x]A}

A Vx. B
HAo{€ 1{A} A Vx. €2{B}}

A{[t/x]A}

€{Ix.A}

AA{Vx. A}



Linking: Quantifier Rules

e Extrusion:
Eo{Vx. (€1{A €o{B Ao {Vx. (€1{A €-{B
o{Vx. (¢1{A} = €o{B})} o{Vx. (¢1{A} A €2{B})}
A Vx. B A Vx. B
€o{€1{A} = Vx. €5{B}} HAo{€ 1{A} A Vx. €2{B}}
etc.

¢ |nstantiation:

C{lt/x]A}  A{[t/x]A}
€{Ix.A} AA{Vx. A}

e Simplification:

C{T}
€{Vx. T}



Linking: Predicates

e |nitial:

(6{81 =N NS, = tn}
€{asy - s, =>aty - t,}
(R
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e |nitial:

‘5{81 =N NS, = tn}
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e Equality simplification:
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Linking: Predicates

e |nitial:

‘5{81 =N NS, = tn}
€{asy - s, =>aty - t,}
(R

e Equality simplification:

C{s1=t1 A Nsp=tp} C{T}
C{fsy -+ s, =ft] - t,} € {s=s}

e Rewriting:

C{A{t}} C{A{s}}
€{s=t=A{s}} C{s=t=A{t}}
.  » __ _»




Linking: Instantiation Heuristics

e Guessinstances:

C{Vx. €1{x =t} = [t/x]A} E{Ix. €1{x =t} A [t/x]A}
C{Vx.€1{x =t} =>A} E{Ix. C1{x =t} NA}




Linking: Instantiation Heuristics

e Guessinstances:

C{Vx. €1{x =t} = [t/x]A}

E{Ix. €1{x =t} A [t/x]A}

C{Vx. €1{x =t} = A}

e Other approaches are possible
¢ Unification
* Theory reasoning
* |ssue: export to other provers

E{Ix. C1{x =t} NA}



Level 4: Clutter Management



T

Vi Vy:i. =tyy
(Va:i. Vyii. Vtyz) = (Vai. Vi tyy)
(Voi.Vyi.tzy Vtyz) = (V. Vyi. =tzy)
(Vi Vyi.tzy V tyz) = (Vai. V. ( =Sz=y) = ayr=tzy)
(Vai.Vyi.tzy Vtyz) = (Vi Vyi. =Sayz=z=y) = Vzi.Vyiazy=ayz=tzy)
teyVtyz) = (Voi.Vyiazy=ayzr= z=y) = (Vai. Vyi. =azy) = (Vzi.Vyi.azy=tyz

7yii. Vtyz) = (Vzi.Vyiazy=ayz=z=y) = (Vzi.Vyi.tzy=azy) = (Vzi.Vyi.azy =t



Open Deduction

¢ We actually use open deduction instead of CoS
e Combined syntax for formulas, sequents, and proofs

2, |21]
P2| 2]

@:::Al@l*@2|

e Contexts are suitably generalized as well



Open Deduction as a Hierarchy

T
-stuff2- A ltxy = txy
|

-stuff- = | (Vxy. txy Viyx) = (Vxy.axy=txy)
L >

(Vxy. txy Vityx) = -stuff-= (Vxy. axy=txy)
{ >




Zooming

stuff2- A T

-stuff- = | (Vxy. txy Viyx) = (Vxy.axy=txy)
L >

(Vxy. txy Vityx) = -stuff-= (Vxy. axy =txy)
C >

)

-stuffe- A T

(Vxy. txyViyx) = (Vxy.axy=txy)
L >




Zooming into Scopes

T
Vx. -stuff2- A Jy. [txy > txy
(N

-stuff- = | (Vxy. toiy Viyx) =>'(‘v’x. dy. axy=txy)
>

(Vxy. txy Vityx) = -stuff-= (Vx. Jy. axy=>txy)
C >
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T
Vx. -stuff2- A Jy. [txy =txy
(N

-stuff- = | (Vxy. toiy Viyx) =>'(‘v’x. dy. axy=txy)
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Zooming into Scopes

T
Vx. -stuff2- A Jy. [txy =txy
(N

-stuff- = | (Vxy. toiy Viyx) =>'(‘v’x. dy. axy=txy)
>

(Vxy. txy Vityx) = -stuff-= (Vx. Jy. axy=>txy)
{ >

)

Va. dy. |[txy=>txy
-2
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Launching and Linking

-stuff-= | (Vxy. txy Viyx) = (Vxy. axy=txy)

(Vxy. txy Viyx) = -stuff-= (Vxy. axy =txy)




Launching and Linking

-stuff- /\F:o‘ (Vxy. txyViyx) = (Vxy.axy=txy) ‘

(Vxy. txyViyx) = -stuff-AF = (Vxy.axy=txy)




Launching and Linking

-stuff- /\F:o‘ (Vxy. txyViyx) = (Vxy.axy=txy) ‘

(Vxy. txyViyx) = -stuff-AF = (Vxy.axy=txy)




Launching and Linking

-stuff- ﬁ‘F=> (Vxy. txyVityx) = (Vxy.axy=txy) ‘

(Vxy. txyViyx) = -stuff-AF = (Vxy.axy=txy)




Launching, Stopping, and Linking

-stuff-=F = (Vxy. txy Viyx) = (Vxy. axy =txy)

(Vxy.txyViyx) = -stuff-AF = (Vxy.axy=txy)



Future Work
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Additional Universal Interactions

e Additional structural operations
* Deepre-organization: splitting
¢ Refactoring using substitutions
¢ Dealing with lemmas
* Explicit cuts
* Appealing to previously proved theorems
* Searching for lemmas

e History and persistence

* Forking histories
* Linking to the past
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Linking for Type Theory

Highly speculative

ILoc:i. IIf: (Iui.bu) . bx
- »



Linking for Type Theory

Highly speculative

TLoc:i. IIf: (i ((x:i? = (u:i)) =>bu).bx

Macsi. TIf: (Husi.bu).bx
2



Linking for Type Theory: via Realizability

la]M = (M:a)
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Linking for Type Theory: via Realizability

la]M = (M:a)
[IIx:A.B] M £ Vx. [A] x = [B] (M x)

V. (x:i) = VF. (Vu. (u:i) = ((fu):bu)) = Jz. (z:bx)



Linking for Type Theory: via Realizability

[a]M = (M:a)
[IIx:A.B] M £ Vx. [A] x = [B] (M x)

Vx.Vf.3z. (fx) =z A (bx) = (bx)
Vx. V. ((f x) :k(bx)) = Jz. (zt})x)

Vx. Vf. ((fx):(bx)) = Jz. (z:bx)
Va.Vf. (Vu.x=u Ai=i= ((fu):bu)) = Jz. (z:bx)
Vx. Vf. (Vu. ({x:i) = (u:i)) : ((fu):bu)) = Jz. (z:bx)

V. <ku> = Vf. (Vu. (u}l) : ((fu):bu)) = Jz. (z:bx)
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Linking for Type Theory: Future

e Unfortunately, the “realizability interpretation” is unsound
except for canonical terms
e Better alternative: try to do it within type theory itself

* Might need to generalize the syntax of “types”

* Would need to split II into a binder and a type assumption
* The binder would stay put

* The type assumption would move via linking

* Proposed system

* Easy to show completeness
* Hard to prove sound - generalized “type” derivations very hard to map to ordinary
typing derivations via natural deduction, e.g.
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Definitions and Notations

¢ Definition unfolding: double click

¢ Notations: if they are functorial, can be incorporated automatically
e Eg,-A=A=1
* IfA -Bthen—-B F-A

* This means — has an A{ }-style CoS/linking rule
* Also need to specify what =T and — L simplify as

* Sometimes notations are not functorial
* Simpleexample:A=B = (A=>B) A (B=A)
* A -BdoesnotmeanA=C WHB=C
* Probably beter here to consider rewrite-stye linking, as with =
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Induction and Circular Reasoning

¢ |nduction:

¢ Abella-style sized relations reasonably simple
* Induction invariants in CoS: open problem?

e Circular reasoning:

* Easy: indicating cycles with pointing devices
* Hard: making sense of back edges crossing context boundaries

A9 Lj
vX.ARX
vX.ARX
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Bidirectional Communication with Verifiers

e Exporting proofs: already covered
e Importing proofs?

* Every shallow proof is (easily converted to) a deep proof
* But: too many proof languages!

Related problem: adding a new verifier?
Dedukti?



Conclusion



The Future of Interactive Theorem Proving Interfaces?

https://dub.sh/profound/slides
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