Towards a Universal Interactive Theorem Proving Interface

Kaustuv Chaudhuri Inria & IP Paris, France

Reykjavík, Iceland 2025-09-29

Poll: Raise your hand if you have used

Rocq or Lean

Poll: Raise your hand if you have used

Rocq or Lean, Isabelle{/HOL} or HOL{4, -Light}

Poll: Raise your hand if you have used

Rocq or Lean, Isabelle{/HOL} or HOL{4, -Light}, ACL2, Mizar, Agda

Poll: Raise your hand if you have used

Rocq or Lean, Isabelle{/HOL} or HOL{4, -Light}, ACL2, Mizar, Agda, Abella

Poll: Raise your hand if you have used

Rocq or Lean, Isabelle{/HOL} or HOL{4, -Light}, ACL2, Mizar, Agda, Abella, ...

Poll: Raise your hand if you have used

Rocq or Lean, Isabelle{/HOL} or HOL{4, -Light}, ACL2, Mizar, Agda, Abella, ...

Not many people are proficient in multiple systems

Poll: Raise your hand if you have used

Rocq or Lean, Isabelle{/HOL} or HOL{4, -Light}, ACL2, Mizar, Agda, Abella, ...

- Not many people are proficient in multiple systems
- Different logics, proof styles, tactics, solvers, ...

Poll: Raise your hand if you have used

Rocq or Lean, Isabelle{/HOL} or HOL{4, -Light}, ACL2, Mizar, Agda, Abella, ...

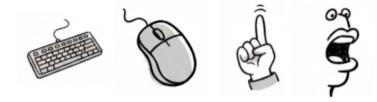
- Not many people are proficient in multiple systems
- Different logics, proof styles, tactics, solvers, ...
- Hard to do interactivity in a system agnostic way

Obstacle 1: No Universal File System

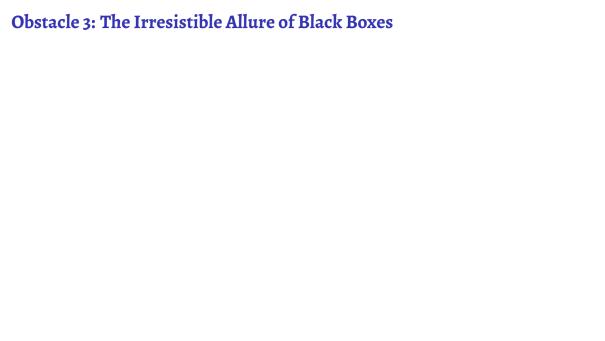
Poll: Raise your hand if you have used

NTFS (Windows), apfs (macOS), ext4 (Linux), NFS, Dropbox, Google Drive, IPFS, ...

- Not many people are proficient in multiple file systems
- Different system calls, libraries, naming conventions, ...
- Hard to do interactivity in a system agnostic way?



- Traditional computer: $\{ \stackrel{\longleftarrow}{-}, \stackrel{\frown}{\mathbb{Z}} \}$
- Mobile computer: $\left\{ \stackrel{d}{\ensuremath{\vartriangle}} , \stackrel{\ensuremath{\Longrightarrow}}{\ensuremath{\lessgtr}} \right\}$



Obstacle 3: The Irresistible Allure of Black Boxes

Claude Can (Sometimes) Prove It

Bv: Mike Dodds

September 16, 2025

Let me get right to the point without any nonsense about aliens:

- 1. Claude Code, the new Al coding agent from Anthropic, is pretty good at interactive theorem proving (ITP).
- 2. I find this very surprising, and you probably should too. $\label{eq:constraint}$

Interactive theorem proving tools such as Lean are the most powerful and trustworthy kind of formal methods tool. They have been used to formally verify important things such as <u>crystographic libraries</u>, compilers, and operating systems. Unfortunately, even experts find ITP proofs time-consuming and error-prone. That's why it's exciting—and very surprising!—to find that Claude Code is so good at ITP. Today, Claude Code can complete many complex proof steps independently, but it still needs a 'project manager' (me) to guide it through the whole formalization. But I think Claude Code points to a world where experts aren't necessary, and theorem provers can be used by many more people.

The rest of this post digs into what Claude Code can actually do. But if you're interested in automated reasoning or formal verification, I recommend you **stop reading**, go sign up for Claude Code, Gennini CLI, Alder, Codex, or some other coding agent, and try it out on a problem you know well. it'll cost about \$20 / month for something useful, and maybe \$100 / month for access to a state-of-the-art model. I reckon you'll be able to get surprising successes (and interesting failures) with about two hours of work.

Look Just Try Claude Code

As long as I've been in the field, automated reasoning has evolved slowly. We are used to small-% improvements achieved through clever, careful work. Claude Code breaks that pattern. Even with the limitations it has today, it can do things that seemed utterly out of reach even a year ago. Even more surprising, this capability doesn't come from some fancy solver or novel algorithm; Claude Code wasn't designed for theorem proving at all!

I think what Claude Code really points to is the bitter lesson coming for formal methods, just as it did for

image recognition, language translation, and program synthesis. Just as in those fields, in the long run I think formal methods *idea*s will be essential in making Al-driven proof successful. That's because Als will need many of the same tools as humans do to decompose, analyze, and debug proofs. But before that happens, I think we will see much of the clever, careful work we esteem rendered obsolete by Al-driven tools that have no particular domain expertise. The lesson will be bitter indeed, and many people are resisting it.

I think the result will be worth the pain, however. The reason ITP has never been widely adopted is that it is simply too cognitively demanding for most humans. Claude Code points to a future where theorem proving is solved - cheap, abundant, and automatic. I think that would be a good future, and if it happens, we should be ready and know what problem we want to solve next.

Look lust Try Claude Code

As long as I've been in the field, automated reasoning has evolved slowly. We are used to small-% improvements achieved through clever, careful work. Claude Code breaks that pattern. Even with the limitations it has today, it can do things that seemed utterly out of reach even a year ago. Even more surprising, this capability doesn't come from some fancy solver or novel algorithm; Claude Code wasn't designed for theorem proving at all.

I think what Claude Code really points to is the bitter lesson coming for formal methods, just as it did for image recognition, language translation, and program synthesis. Just as in those fields, in the long run I think formal methods *ideas* will be essential in making Al-driven proof successful. That's because Als will need many of the same tools as humans do to decompose, analyze, and debug proofs. But before that happens, I think we will see much of the clever, careful work we esseem rendered obsolete by Al-driven tools that have no

I think the result will be worth the pain, however. The reason ITP has never been widely adopted is that it is simply too cognitively demanding for most humans. Claude Code points to a future where theorem proving is solved - cheap, abundant, and automatic. I think that would be a good future, and if it happens, we should be ready and know what problem we want to solve next.

Summary: Obstacles to Universality in ITP

- Too many languages
- Too few interaction modes
- Too many black boxes

Summary: Obstacles to Universality in ITP

- Too many languages
- Too few interaction modes
- Too many black boxes

Profound

https://dub.sh/profound

Outline

- 1 Level 1: contextual reasoning
- 2 Level 2: proof by linking
- **3** Level 3: quantification
- 4 Level 4: hierarchical detail
- **5** Future work
 - Dealing with dependent types
 - Bidirectional communication with existing systems

Level 1: Contextual Reasoning

Level 1: The Calculus of Structures (CoS)

- Observation: connectives are functors
 - If $A \vdash B$ then $(A \land F) \vdash (B \land F)$
 - If $A \vdash B$ then $(B \Rightarrow F) \vdash (A \Rightarrow F)$

Level 1: The Calculus of Structures (CoS)

- Observation: connectives are functors
 - If $A \vdash B$ then $(A \land F) \vdash (B \land F)$
 - If $A \vdash B$ then $(B \Rightarrow F) \vdash (A \Rightarrow F)$
 - If $A \vdash B$ then $\exists x. A \vdash \exists x. B$
 - If $A \vdash B$ then $\Box A \vdash \Box B$

Level 1: The Calculus of Structures (CoS)

- Observation: connectives are functors
 - If $A \vdash B$ then $(A \land F) \vdash (B \land F)$
 - If $A \vdash B$ then $(B \Rightarrow F) \vdash (A \Rightarrow F)$
- CoS makes use of this functoriality
 - Inference rules can operate in formula contexts:

$$\frac{A}{B} \longrightarrow \frac{\mathscr{C}\{A\}}{\mathscr{C}\{B\}}$$

Contexts:

$$\mathcal{C}\{\} ::= \{\} \mid A * \mathcal{C}\{\} \mid \mathcal{C}\{\} * B \mid A \Rightarrow \mathcal{C}\{\} \mid \mathcal{A}\{\} \Rightarrow B$$

$$\mathcal{A}\{\} ::= A * \mathcal{A}\{\} \mid \mathcal{A}\{\} * B \mid A \Rightarrow \mathcal{A}\{\} \mid \mathcal{C}\{\} \Rightarrow B$$

 $(* \in \{\land, \lor\})$

• $\mathscr{C}\{A\}$ and $\mathscr{A}\{A\}$ replace the unique $\{\}$ in $\mathscr{C}\{\}$ or $\mathscr{A}\{\}$ with A.

Calculus of Structures: Summary

- Linear sequence of formulas in a derivation no branching!
- A formula is derivable if there is a CoS derivation from a trivial theorem such as T.
- Completeness: every true formula is derivable
- A built from immediate subformulas of B

 $a \Rightarrow a \Rightarrow (a \land a \land \top \land \top)$ $a \Rightarrow (a \land a \land \top \land \top)$ $a \Rightarrow (a \land a \land \top \land c \Rightarrow c)$ $a \Rightarrow (a \Rightarrow a \Rightarrow T \Rightarrow c) \Rightarrow c$ $(a \Rightarrow a \Rightarrow T \Rightarrow c) \Rightarrow a \Rightarrow c$ • "Subformula" property: in $\frac{\mathscr{C}\{A\}}{\mathscr{C}\{B\}}$, $(a \Rightarrow a \Rightarrow T \Rightarrow c) \Rightarrow a \Rightarrow c$ $(a \Rightarrow a \Rightarrow b \Rightarrow b \Rightarrow c) \Rightarrow a \Rightarrow c$ $(a \Rightarrow a \Rightarrow (b \Rightarrow c) \land b) \Rightarrow a \Rightarrow c$ $(a \Rightarrow (a \Rightarrow b \Rightarrow c) \land b) \Rightarrow a \Rightarrow c$ $(a \Rightarrow b \Rightarrow c) \land (a \Rightarrow b) \Rightarrow a \Rightarrow c$ $(a \Rightarrow b \Rightarrow c) \Rightarrow (a \Rightarrow b) \Rightarrow a \Rightarrow c$ $(a \Rightarrow b \Rightarrow c) \Rightarrow (a \Rightarrow b) \Rightarrow a \Rightarrow c$

$$\frac{\mathsf{T} \land \mathsf{T} \land \mathsf{T} \land \mathsf{T}}{\mathsf{T} \land \alpha \Rightarrow \alpha \land \mathsf{T} \land \mathsf{T}}$$

$$\frac{\mathsf{a} \Rightarrow (\mathsf{T} \land \alpha \land \mathsf{T} \land \mathsf{T})}{\mathsf{a} \Rightarrow (\mathsf{T} \land \alpha \land \mathsf{T} \land \mathsf{T})}$$

$$\frac{\mathsf{a} \Rightarrow (\mathsf{T} \land \alpha \land \mathsf{T} \land \mathsf{T})}{\mathsf{a} \Rightarrow (\mathsf{a} \Rightarrow \alpha \land \alpha \land \mathsf{T} \land \mathsf{T})}$$

$$\frac{\mathsf{a} \Rightarrow (\mathsf{a} \Rightarrow \alpha \land \alpha \land \mathsf{T} \land \mathsf{T})}{\mathsf{a} \Rightarrow (\mathsf{a} \land \alpha \land \mathsf{T} \land \mathsf{T})}$$

$$\frac{\mathsf{a} \Rightarrow (\mathsf{a} \land \alpha \land \mathsf{T} \land \mathsf{T})}{\mathsf{a} \Rightarrow (\mathsf{a} \land \alpha \land \mathsf{T} \land \mathsf{T})}$$

$$\frac{\mathsf{a} \Rightarrow (\mathsf{a} \land \alpha \land \mathsf{T} \land \mathsf{T})}{\mathsf{a} \Rightarrow (\mathsf{a} \land \alpha \land \mathsf{T} \land \mathsf{T})}$$

$$\frac{\mathsf{a} \Rightarrow (\mathsf{a} \land \alpha \land \mathsf{T} \land \mathsf{T})}{\mathsf{a} \Rightarrow (\mathsf{a} \land \alpha \land \mathsf{T} \land \mathsf{T})}$$

$$\frac{\mathsf{a} \Rightarrow (\mathsf{a} \land \alpha \land \mathsf{T} \land \mathsf{T})}{\mathsf{a} \Rightarrow (\mathsf{a} \land \alpha \land \mathsf{T} \land \mathsf{T})}$$

$$\frac{\mathsf{a} \Rightarrow (\mathsf{a} \land \alpha \land \mathsf{T} \land \mathsf{T})}{\mathsf{a} \Rightarrow (\mathsf{a} \land \alpha \land \mathsf{T} \land \mathsf{T})}$$

$$\frac{\mathsf{a} \Rightarrow (\mathsf{a} \land \alpha \land \mathsf{T} \land \mathsf{T})}{\mathsf{a} \Rightarrow (\mathsf{a} \land \alpha \land \mathsf{T} \land \mathsf{T})}$$

$$\frac{\mathsf{a} \Rightarrow (\mathsf{a} \land \alpha \land \mathsf{T} \land \mathsf{T})}{\mathsf{a} \Rightarrow (\mathsf{a} \land \alpha \land \mathsf{T} \land \mathsf{T})}$$

$$\frac{\mathsf{a} \Rightarrow (\mathsf{a} \land \alpha \land \mathsf{T} \land \mathsf{T})}{\mathsf{a} \Rightarrow (\mathsf{a} \land \alpha \land \mathsf{T} \land \mathsf{T})}$$

$$\frac{\mathsf{a} \Rightarrow (\mathsf{a} \land \alpha \land \mathsf{T} \land \mathsf{T})}{\mathsf{a} \Rightarrow \mathsf{a} \Rightarrow$$

CoS: Logical Rules in a Positive Context

Analogous to sequent calculus

• Initial:
$$\frac{\mathscr{C}\{\top\}}{\mathscr{C}\{a\Rightarrow a\}}$$

$$\mathscr{C}\{a\Rightarrow a\}$$

• Conjunctions:
$$\frac{\mathscr{C}\{(A\Rightarrow B)\land C\}}{\mathscr{C}\{A\Rightarrow (B\land C)\}} \qquad \frac{\mathscr{C}\{B\land (A\Rightarrow C)\}}{\mathscr{C}\{A\Rightarrow (B\land C)\}}$$

$$\frac{\mathscr{C}\{A\Rightarrow (B\Rightarrow C)\}}{\mathscr{C}\{(A\land B)\Rightarrow C\}} \qquad \frac{\mathscr{C}\{B\Rightarrow (A\Rightarrow C)\}}{\mathscr{C}\{(A\land B)\Rightarrow C\}}$$

• Implications:
$$\frac{\mathscr{C}\{A \wedge B \Rightarrow C\}}{\mathscr{C}\{A \Rightarrow (B \Rightarrow C)\}} \qquad \frac{\mathscr{C}\{B \Rightarrow (A \Rightarrow C)\}}{\mathscr{C}\{A \Rightarrow (B \Rightarrow C)\}}$$

$$\frac{\mathcal{C}\{A \wedge (B \Rightarrow C)\}}{\mathcal{C}\{(A \Rightarrow B) \Rightarrow C\}}$$

CoS: Logical Rules in a Positive Context (contd.)

Analogous to sequent calculus

• Disjunctions:

$$\frac{\mathscr{C}\{A \Rightarrow B\}}{\mathscr{C}\{A \Rightarrow (B \lor C)\}} \qquad \frac{\mathscr{C}\{A \Rightarrow C\}}{\mathscr{C}\{A \Rightarrow (B \lor C)\}}$$
$$\frac{\mathscr{C}\{(A \Rightarrow C) \land (B \Rightarrow C)\}}{\mathscr{C}\{(A \lor B) \Rightarrow C\}}$$

CoS: Composition Rules in a Negative Context

No shallow analogue

• Conjunctions:
$$\frac{\mathcal{A}\{A \wedge B\}}{\mathcal{A}\{A \wedge (B \wedge C)\}} \frac{\mathcal{A}\{A \wedge C\}}{\mathcal{A}\{A \wedge (B \wedge C)\}}$$

$$\frac{\mathcal{A}\{A \wedge C\}}{\mathcal{A}\{(A \wedge B) \wedge C\}} \frac{\mathcal{A}\{B \wedge C\}}{\mathcal{A}\{(A \wedge B) \wedge C\}}$$
 • Disjunctions:
$$\frac{\mathcal{A}\{(A \wedge B) \vee (A \wedge C)\}}{\mathcal{A}\{A \wedge (B \vee C)\}} \frac{\mathcal{A}\{(A \wedge C) \vee (B \wedge C)\}}{\mathcal{A}\{(A \vee B) \wedge C\}}$$
 • Implications:
$$\frac{\mathcal{A}\{(A \Rightarrow B) \Rightarrow C\}}{\mathcal{A}\{A \wedge (B \Rightarrow C)\}} \frac{\mathcal{A}\{B \Rightarrow (A \wedge C)\}}{\mathcal{A}\{A \wedge (B \Rightarrow C)\}}$$

Example: S-Combinator

https://dub.sh/profound

CoS: Miscellaneous

• Units and Simplification:

Contraction, Cut:

$$\frac{\mathcal{C}\{A\Rightarrow A\Rightarrow C\}}{\mathcal{C}\{A\Rightarrow C\}} \qquad \frac{\mathcal{C}\{A\wedge (A\Rightarrow C)\}}{\mathcal{C}\{C\}}$$

CoS: Meta-Theorems

Soundness

 \boldsymbol{A}

If C then in $A \vdash C$ is provable.

Completeness

$$\text{If } A_1, \dots, A_n \ \vdash C \text{ is provable, then: } \begin{matrix} \vdots \\ A_1 \Rightarrow \dots \Rightarrow A_n \Rightarrow C \end{matrix}$$

Interlude: Exporting CoS to Other Systems

Case of Rocq

• Challenge: Given a CoS derivation \dot{C} , fill in the details of:

```
Goal A -> C. (* A, C : Prop. *)
Proof. (* insert proof here *) Qed.
```

Interlude: Exporting CoS to Other Systems

Case of Rocq

• Challenge: Given a CoS derivation $\frac{\vdots}{C}$, fill in the details of:

```
Goal A -> C. (* A, C : Prop. *)
Proof. (* insert proof here *) Qed.
```

- Two main styles:
 - Shallow embedding: translate CoS proof rules to Rocq tacticals.
 - Deep embedding: represent the CoS proof as a Rocq data structure, and prove (as a meta-theorem in Rocq) it has a sound reflection function.

- Translating the rule instance $\dfrac{\mathscr{C}\{A\}}{\mathscr{C}\{C\}}$ requires:
 - Showing the entailment $A \vdash C$, and
 - Transporting the entailment to $\mathscr{C}\{\}$.

- $\bullet \ \ \text{Translating the rule instance} \frac{\mathscr{C}\{A\}}{\mathscr{C}\{C\}} \text{requires:}$
 - Showing the entailment $A \vdash C$, and
 - Transporting the entailment to $\mathscr{C}\{\}$.
- Transport combinators:

```
Theorem and_l {A B C : Prop} : (A -> B) -> ((A /\ C) -> (B /\ C)).
Theorem imp_r {A B C : Prop} : (A -> B) -> ((C -> A) -> (C -> B)).

Check (imp_r (and_l _)).

(* imp_r (and_l ?y) : (?C1 -> ?A /\ ?C2) -> (?C1 -> ?B /\ ?C2)

where ?y : [ |- ?A -> ?B] *)
```

- Translating the rule instance $\frac{\mathscr{C}\{A\}}{\mathscr{C}\{C\}}$ requires:
 - Showing the entailment $A \vdash C$, and
 - Transporting the entailment to $\mathscr{C}\{\}$.
- Transport combinators:

```
Theorem and_l {A B C : Prop} : (A -> B) -> ((A /\ C) -> (B /\ C)).
Theorem imp_r {A B C : Prop} : (A -> B) -> ((C -> A) -> (C -> B)).

Check (imp_r (and_l _)).
   (* imp_r (and_l ?y) : (?C1 -> ?A /\ ?C2) -> (?C1 -> ?B /\ ?C2)
        where ?y : [ |- ?A -> ?B] *)
```

• Rules:

```
Theorem g_imp_and_l {A B C : Prop} : (A -> B) /\ C -> (A -> B /\ C).

Check (imp_r (and_l g_imp_and_l)).

(* imp_r (and_l g_imp_and_l)

: (?C -> ((?A -> ?B) /\ ?D) /\ ?E) -> ?C -> (?A -> ?B /\ ?D) /\ ?E *)
```

Final assembly

```
Theorem imp r \{A \ B \ C : Prop\} : (A -> B) -> (C -> A) -> (C -> B).
Theorem g imp and \{A B C : Prop\} : (A -> B) / C -> (A -> B / C).
Theorem q imp imp r \{A B C : Prop\} : (B -> A -> C) -> (A -> B -> C).
Theorem q init {A : Prop} : True -> (A -> A).
Theorem s imp true {A : Prop} : True -> (A -> True).
Goal forall (A B : Prop), A -> B -> A.
Proof.
 intros A B.
  refine (g imp imp r ). (* B \rightarrow A \rightarrow A *)
 refine (imp r g init ). (* B -> True *)
  refine (s imp true ). (* True *)
 constructor.
0ed.
```


Level 2: Linking

• CoS rules are more verbose than even sequent rules

Level 2: Linking

- CoS rules are more verbose than even sequent rules
- Goal: use the freedom of CoS and avoid the tedium

Level 2: Linking

- CoS rules are more verbose than even sequent rules
- Goal: use the freedom of CoS and avoid the tedium
- Linking:
 - Each link joins two unrelated subformulas
 - The user indicates the ends of the link
 - The system figures out how to resolve the link

Linking: Indicating and Resolving

$$\frac{(a \Rightarrow a \Rightarrow c) \Rightarrow a \Rightarrow c}{(a \Rightarrow a \Rightarrow T \Rightarrow c) \Rightarrow a \Rightarrow c}$$

$$\frac{(a \Rightarrow a \Rightarrow (b \Rightarrow b) \Rightarrow c) \Rightarrow a \Rightarrow c}{(a \Rightarrow a \Rightarrow (b \Rightarrow c) \land b) \Rightarrow a \Rightarrow c}$$

$$\frac{(a \Rightarrow a \Rightarrow (b \Rightarrow b) \Rightarrow c) \Rightarrow a \Rightarrow c}{(a \Rightarrow a \Rightarrow (b \Rightarrow c) \land b) \Rightarrow a \Rightarrow c}$$

$$\frac{(a \Rightarrow a \Rightarrow (b \Rightarrow b) \Rightarrow a \Rightarrow c}{(a \Rightarrow b \Rightarrow c) \land (a \Rightarrow b) \Rightarrow a \Rightarrow c}$$

$$\frac{(a \Rightarrow a \Rightarrow c) \Rightarrow (a \Rightarrow b) \Rightarrow a \Rightarrow c}{(a \Rightarrow b \Rightarrow c) \Rightarrow (a \Rightarrow b) \Rightarrow a \Rightarrow c}$$

$$\frac{(a \Rightarrow a \Rightarrow c) \Rightarrow (a \Rightarrow b) \Rightarrow a \Rightarrow c}{(a \Rightarrow b \Rightarrow c) \Rightarrow (a \Rightarrow b) \Rightarrow a \Rightarrow c}$$

Linking: Indicating and Resolving

$$\frac{(a \Rightarrow a \Rightarrow c) \Rightarrow a \Rightarrow c}{(a \Rightarrow a \Rightarrow T \Rightarrow c) \Rightarrow a \Rightarrow c}$$

$$\frac{(a \Rightarrow a \Rightarrow (b \Rightarrow b) \Rightarrow c) \Rightarrow a \Rightarrow c}{(a \Rightarrow a \Rightarrow (b \Rightarrow c) \land b) \Rightarrow a \Rightarrow c}$$

$$\frac{(a \Rightarrow a \Rightarrow (b \Rightarrow b) \Rightarrow c) \Rightarrow a \Rightarrow c}{(a \Rightarrow a \Rightarrow (b \Rightarrow c) \land b) \Rightarrow a \Rightarrow c}$$

$$\frac{(a \Rightarrow a \Rightarrow (b \Rightarrow b) \Rightarrow a \Rightarrow c}{(a \Rightarrow b \Rightarrow c) \land (a \Rightarrow b) \Rightarrow a \Rightarrow c}$$

$$\frac{(a \Rightarrow a \Rightarrow c) \Rightarrow (a \Rightarrow b) \Rightarrow a \Rightarrow c}{(a \Rightarrow b \Rightarrow c) \Rightarrow (a \Rightarrow b) \Rightarrow a \Rightarrow c}$$

$$\frac{(a \Rightarrow a \Rightarrow c) \Rightarrow (a \Rightarrow b) \Rightarrow a \Rightarrow c}{(a \Rightarrow b \Rightarrow c) \Rightarrow (a \Rightarrow b) \Rightarrow a \Rightarrow c}$$

Linking: Indicating and Resolving

$$\frac{(a \Rightarrow a \Rightarrow c) \Rightarrow a \Rightarrow c}{(a \Rightarrow a \Rightarrow b) \Rightarrow a \Rightarrow c}$$

$$\frac{(a \Rightarrow a \Rightarrow b) \Rightarrow c}{(a \Rightarrow a \Rightarrow (b \Rightarrow b) \Rightarrow c) \Rightarrow a \Rightarrow c}$$

$$\frac{(a \Rightarrow a \Rightarrow (b \Rightarrow b) \Rightarrow c) \Rightarrow a \Rightarrow c}{(a \Rightarrow a \Rightarrow b) \Rightarrow c}$$

$$\frac{(a \Rightarrow a \Rightarrow (b \Rightarrow b) \Rightarrow a \Rightarrow c}{(a \Rightarrow b \Rightarrow c) \land (a \Rightarrow b) \Rightarrow a \Rightarrow c}$$

$$\frac{(a \Rightarrow a \Rightarrow (b \Rightarrow b) \Rightarrow a \Rightarrow c}{(a \Rightarrow b \Rightarrow c) \land (a \Rightarrow b) \Rightarrow a \Rightarrow c}$$

$$\frac{(a \Rightarrow a \Rightarrow (b \Rightarrow b) \Rightarrow a \Rightarrow c}{(a \Rightarrow b \Rightarrow c) \Rightarrow (a \Rightarrow b) \Rightarrow a \Rightarrow c}$$

$$\frac{(a \Rightarrow a \Rightarrow (b \Rightarrow b) \Rightarrow a \Rightarrow c}{(a \Rightarrow b \Rightarrow c) \Rightarrow (a \Rightarrow b) \Rightarrow a \Rightarrow c}$$

Linking: Indicating

• A linked formula has one of the following two shapes:

$$\mathscr{C}_0\{\mathscr{C}_1\{\textcolor{red}{\underline{A}}\}\Rightarrow\mathscr{C}_2\{\textcolor{red}{\underline{B}}\}\} \qquad \text{or} \qquad \mathscr{A}_0\{\mathscr{C}_1\{\textcolor{red}{\underline{A}}\}\wedge\mathscr{C}_2\{\textcolor{red}{\underline{B}}\}\}$$

Linking: Indicating

• A linked formula has one of the following two shapes:

$$\mathscr{C}_0\{\mathscr{C}_1\{\overset{\mathbf{A}}{\underset{}{\overset{}}{\overset{}}{\overset{}}}\}\Rightarrow\mathscr{C}_2\{\overset{\mathbf{B}}{\underset{}{\overset{}}{\overset{}}{\overset{}}}\}\}\qquad\text{or}\qquad\mathscr{A}_0\{\mathscr{C}_1\{\overset{\mathbf{A}}{\underset{}{\overset{}}{\overset{}}{\overset{}}{\overset{}}}\}\wedge\mathscr{C}_2\{\overset{\mathbf{B}}{\underset{}{\overset{}}{\overset{}}}\}\}$$

• Link inititation can be written as inference rules:

$$\frac{\mathcal{C}_0\{\mathcal{C}_1\{\!\!\!\mbox{\underline{A}}\!\!\}\Rightarrow\mathcal{C}_2\{\!\!\!\mbox{\underline{B}}\!\!\}\}}{\mathcal{C}_0\{\mathcal{C}_1\{\!\!\!\mbox{\underline{A}}\!\!\}\Rightarrow\mathcal{C}_2\{\!\!\!\mbox{\underline{B}}\!\!\}\}} \qquad \frac{\mathcal{A}_0\{\mathcal{C}_1\{\!\!\!\mbox{\underline{A}}\!\!\}\wedge\mathcal{C}_2\{\!\!\!\mbox{\underline{B}}\!\!\}\}}{\mathcal{A}_0\{\mathcal{C}_1\{\!\!\!\mbox{\underline{A}}\!\!\}\wedge\mathcal{C}_2\{\!\!\!\mbox{\underline{B}}\!\!\}\}}$$

Linking: Link Resolution

- Create variants of the CoS rules that operate on linked formulas
- In each case the link is shorter in the premise
- Some cases:

$$\begin{split} & \underbrace{\mathcal{C}_0\{(\mathscr{C}_1\{\textcolor{red}{\textbf{A}}\}\Rightarrow\mathscr{C}_2\{\textcolor{red}{\textbf{B}}\})\land C\}}_{ \mathscr{C}_0\{\{(A\land(\mathscr{C}_1\{\textcolor{red}{\textbf{B}}\}\Rightarrow\mathscr{C}_2\{\textcolor{red}{\textbf{C}}\})\}\}} \\ & \underbrace{\mathcal{C}_0\{(A\Rightarrow\mathscr{C}_1\{\textcolor{red}{\textbf{A}}\}\Rightarrow\mathscr{C}_2\{\textcolor{red}{\textbf{C}}\}\})\Rightarrow\mathscr{C}_2\{\textcolor{red}{\textbf{C}}\}\}}_{ \mathscr{R}_0\{(\mathscr{C}_1\{\textcolor{red}{\textbf{A}}\}\Rightarrow\mathscr{C}_2\{\textcolor{red}{\textbf{B}}\})\Rightarrow C\}} \\ & \underbrace{\mathcal{A}_0\{(\mathscr{C}_1\{\textcolor{red}{\textbf{A}}\}\Rightarrow\mathscr{C}_2\{\textcolor{red}{\textbf{B}}\})\Rightarrow C)\}}_{ \mathscr{R}_0\{\mathscr{C}_1\{\textcolor{red}{\textbf{A}}\}\land(\mathscr{C}_2\{\textcolor{red}{\textbf{B}}\}\Rightarrow C)\}} \end{split}$$

$$\frac{\mathscr{C}_0\{B\Rightarrow\mathscr{C}_1\{\stackrel{\blacktriangle}{A}\}\Rightarrow(\mathscr{C}_2\{\stackrel{\complement}{C}\}\wedge D)\}}{\mathscr{C}_0\{(\mathscr{C}_1\{\stackrel{\blacktriangle}{A}\}\wedge B)\Rightarrow(\mathscr{C}_2\{\stackrel{\complement}{C}\}\wedge D)\}}\quad\text{or}\quad \frac{\mathscr{C}_0\{((\mathscr{C}_1\{\stackrel{\blacktriangle}{A}\}\wedge B)\Rightarrow\mathscr{C}_2\{\stackrel{\complement}{C}\})\wedge D\}}{\mathscr{C}_0\{(\mathscr{C}_1\{\stackrel{\blacktriangle}{A}\}\wedge B)\Rightarrow(\mathscr{C}_2\{\stackrel{\complement}{C}\}\wedge D)\}}\quad?$$

$$\frac{\mathscr{C}_0\{B\Rightarrow\mathscr{C}_1\{\textcolor{red}{A}\}\Rightarrow(\mathscr{C}_2\{\textcolor{red}{C}\}\land D)\}}{\mathscr{C}_0\{(\mathscr{C}_1\{\textcolor{red}{A}\}\land B)\Rightarrow(\mathscr{C}_2\{\textcolor{red}{C}\}\land D)\}} \quad \text{or} \quad \frac{\mathscr{C}_0\{((\mathscr{C}_1\{\textcolor{red}{A}\}\land B)\Rightarrow\mathscr{C}_2\{\textcolor{red}{C}\})\land D\}}{\mathscr{C}_0\{(\mathscr{C}_1\{\textcolor{red}{A}\}\land B)\Rightarrow(\mathscr{C}_2\{\textcolor{red}{C}\}\land D)\}}$$

- Most of the time there is a reasonable choice
 - One of the rules is invertible, in which case do it first
 - If both rules are invertible, the choice does not matter
 - If both rules are non-invertible and in positively signed contexts, the choice turns out not to matter

$$\frac{\mathscr{C}_0\{B\Rightarrow\mathscr{C}_1\{\stackrel{\blacktriangle}{A}\}\Rightarrow(\mathscr{C}_2\{\stackrel{\complement}{C}\}\wedge D)\}}{\mathscr{C}_0\{(\mathscr{C}_1\{\stackrel{\blacktriangle}{A}\}\wedge B)\Rightarrow(\mathscr{C}_2\{\stackrel{\complement}{C}\}\wedge D)\}} \quad \text{or} \quad \frac{\mathscr{C}_0\{((\mathscr{C}_1\{\stackrel{\blacktriangle}{A}\}\wedge B)\Rightarrow\mathscr{C}_2\{\stackrel{\complement}{C}\})\wedge D\}}{\mathscr{C}_0\{(\mathscr{C}_1\{\stackrel{\blacktriangle}{A}\}\wedge B)\Rightarrow(\mathscr{C}_2\{\stackrel{\complement}{C}\}\wedge D)\}} \quad ?$$

- Most of the time there is a reasonable choice
 - One of the rules is invertible, in which case do it first
 - If both rules are invertible, the choice does not matter
 - If both rules are non-invertible and in positively signed contexts, the choice turns out not to matter
- There are critical pairs for negatively signed contexts, i.e., compositions

$$\frac{\mathscr{C}_0\{B\Rightarrow\mathscr{C}_1\{\textcolor{red}{A}\}\Rightarrow(\mathscr{C}_2\{\textcolor{red}{C}\}\land D)\}}{\mathscr{C}_0\{(\mathscr{C}_1\{\textcolor{red}{A}\}\land B)\Rightarrow(\mathscr{C}_2\{\textcolor{red}{C}\}\land D)\}} \quad \text{or} \quad \frac{\mathscr{C}_0\{((\mathscr{C}_1\{\textcolor{red}{A}\}\land B)\Rightarrow\mathscr{C}_2\{\textcolor{red}{C}\})\land D\}}{\mathscr{C}_0\{(\mathscr{C}_1\{\textcolor{red}{A}\}\land B)\Rightarrow(\mathscr{C}_2\{\textcolor{red}{C}\}\land D)\}}$$

- Most of the time there is a reasonable choice
 - One of the rules is invertible, in which case do it first
 - If both rules are invertible, the choice does not matter
 - If both rules are non-invertible and in positively signed contexts, the choice turns out not to matter
- There are critical pairs for negatively signed contexts, i.e., compositions

Link Resolution: Directional Links

- The situation is even more complicated with quantifiers
- Use the order of links to determine the nesting order

$$\mathscr{C}_0\{\mathscr{C}_1\{\stackrel{\mathbf{A}}{\underbrace{\mathbf{A}}}\} \Rightarrow \mathscr{C}_2\{\stackrel{\mathbf{B}}{\underbrace{\mathbf{B}}}\}\} \qquad \text{or} \qquad \mathscr{A}_0\{\mathscr{C}_1\{\stackrel{\mathbf{A}}{\underbrace{\mathbf{A}}}\} \wedge \mathscr{C}_2\{\stackrel{\mathbf{B}}{\underbrace{\mathbf{B}}}\}\}$$

Intuition is to insert the source into the destination

$$\begin{array}{c} \mathscr{C}_0\{\mathscr{C}_2\{\mathscr{C}_1\{\stackrel{\pmb{A}}{\longrightarrow}\stackrel{\pmb{B}}{\longrightarrow}\}\}\}\\ \vdots\\ \mathscr{C}_0\{\mathscr{C}_2\{\mathscr{C}_1\{\stackrel{\pmb{A}}{\longrightarrow}\}\stackrel{\pmb{B}}{\longrightarrow}\}\}\\ \vdots\\ \mathscr{C}_0\{\mathscr{C}_1\{\stackrel{\pmb{A}}{\longrightarrow}\}\rightarrow\mathscr{C}_2\{\stackrel{\pmb{B}}{\longrightarrow}\}\} \end{array}$$

Link Resolution: Directional Links

$$\frac{\mathcal{A}\{(A \Rightarrow (B \land C)) \lor D\}}{\mathcal{A}\{(A \Rightarrow B) \land C) \lor D\}} \qquad \frac{\mathcal{A}\{A \Rightarrow ((B \land C) \lor D)\}}{\mathcal{A}\{(A \Rightarrow B) \land (C \lor D)\}} \qquad \frac{\mathcal{A}\{A \Rightarrow (B \land (C \lor D))\}}{\mathcal{A}\{(A \Rightarrow B) \land (C \lor D)\}}$$

Link Resolution: Finishing

• When a link has length 0, it can be removed

$$\frac{\mathscr{C}\{\top\}}{\mathscr{C}\{\overset{\bullet}{A}\Rightarrow\overset{\bullet}{A}\}} \qquad \frac{\mathscr{C}\{A\Rightarrow B\}}{\mathscr{C}\{\overset{\bullet}{A}\Rightarrow\overset{\bullet}{B}\}} \qquad \frac{\mathscr{A}\{A\wedge B\}}{\mathscr{A}\{\overset{\bullet}{A}\wedge\overset{\bullet}{B}\}} \qquad (A\neq B)$$

• The formula can be simplified with respect to T.

$$\frac{\mathscr{C}\{A\}}{\mathscr{C}\{A \land \top\}} \qquad \frac{\mathscr{C}\{\top\}}{\mathscr{C}\{A \Rightarrow \top\}} \qquad \text{etc.}$$

Profound

https://dub.sh/profound

Level 3: First-Order

Level 3: First-Order Quantification

• It is common to see quantification done carelessly:

$$A, B, \dots ::= \dots \mid \forall x. A \mid \exists x. A$$

$$\mathscr{C}\{\} ::= \dots \mid \forall x. \mathscr{C}\{\} \mid \exists x. \mathscr{C}\{\}$$

$$\mathscr{A}\{\} ::= \dots \mid \forall x. \mathscr{A}\{\} \mid \exists x. \mathscr{A}\{\}$$

Level 3: First-Order Quantification

• It is common to see quantification done carelessly:

$$A, B, \dots ::= \dots \mid \forall x. A \mid \exists x. A$$

$$\mathscr{C}\{\} ::= \dots \mid \forall x. \mathscr{C}\{\} \mid \exists x. \mathscr{C}\{\}$$

$$\mathscr{A}\{\} ::= \dots \mid \forall x. \mathscr{A}\{\} \mid \exists x. \mathscr{A}\{\}$$

ullet Problem: $\mathscr{C}\{A\}$ interpreted as capturing the free variables of A

Level 3: First-Order Quantification

• It is common to see quantification done carelessly:

$$A, B, \dots ::= \dots \mid \forall x. A \mid \exists x. A$$

$$\mathscr{C}\{\} ::= \dots \mid \forall x. \mathscr{C}\{\} \mid \exists x. \mathscr{C}\{\}$$

$$\mathscr{A}\{\} ::= \dots \mid \forall x. \mathscr{A}\{\} \mid \exists x. \mathscr{A}\{\}$$

- Problem: $\mathscr{C}\{A\}$ interpreted as capturing the free variables of A
- Problematic to implement, formalize the meta-theory, export

First-Order Quantification

Alternative: raising

$$\mathcal{C}_{\Gamma,x}\{\} ::= \cdots \mid \forall x. \, \mathcal{C}_{\Gamma}\{\} \mid \exists x. \, \mathcal{C}_{\Gamma}\{\}$$

$$\mathcal{A}_{\Gamma,x}\{\} ::= \cdots \mid \forall x. \, \mathcal{A}_{\Gamma}\{\} \mid \exists x. \, \mathcal{A}_{\Gamma}\{\}$$

• Intuition: if $\Gamma \vdash A$: prop then $\mathscr{C}_{\Gamma}\{A\}$ is well-formed:

$$\forall u. \, \mathcal{C}_{\Gamma,x} \{A\} = \forall u. \, \mathcal{C}_{\Gamma} \{ [u/x]A \}$$

Interlude: Representing Contexts

```
Inductive cx : list Type -> Type :=
   Hole : cx nil
   C AndL Ts : cx Ts -> Prop -> cx Ts
   C_AndR Ts : Prop -> cx Ts -> cx Ts
   COrL Ts : cx Ts -> Prop -> cx Ts
   COrR Ts : Prop -> cx Ts -> cx Ts
  | C ImpL Ts : ax Ts -> Prop -> cx Ts
   C ImpR Ts : Prop -> cx Ts -> cx Ts
   C AllD A Ts : (A \rightarrow cx Ts) \rightarrow cx (A :: Ts)
   C ExD A Ts : (A \rightarrow cx Ts) \rightarrow cx (A :: Ts).
and ax : list Type -> Type := ...
```

Interlude: Representing Raised Formulas

```
Fixpoint raise (Ts : list Type) (U : Type) : Type :=
  match Ts with
  | nil => U
  | A :: Ts => A -> raise Ts U
  end.
Notation "Ts ▷ U" := (raise Ts U).
```

Interlude: Representing Raised Formulas

```
Fixpoint raise (Ts : list Type) (U : Type) : Type :=
  match Ts with
  | nil => U
  | A :: Ts => A -> raise Ts U
  end.
Notation "Ts ▷ U" := (raise Ts U).
```

Interlude: Building Raised Formulas

Interlude: Building Raised Formulas

Linking: Quantifier Rules

• Extrusion:

$$\frac{\mathscr{C}_{0}\{\forall x. \left(\mathscr{C}_{1}\{\underbrace{\mathbf{A}}\} \Rightarrow \mathscr{C}_{2}\{\underbrace{\mathbf{B}}\}\right)\}}{\mathscr{C}_{0}\{\mathscr{C}_{1}\{\underbrace{\mathbf{A}}\} \Rightarrow \forall x. \mathscr{C}_{2}\{\underbrace{\mathbf{B}}\}\}} \qquad \frac{\mathscr{A}_{0}\{\forall x. \left(\mathscr{C}_{1}\{\underbrace{\mathbf{A}}\} \land \mathscr{C}_{2}\{\underbrace{\mathbf{B}}\}\right)\}}{\mathscr{A}_{0}\{\mathscr{C}_{1}\{\underbrace{\mathbf{A}}\} \land \forall x. \mathscr{C}_{2}\{\underbrace{\mathbf{B}}\}\}}$$

etc.

Linking: Quantifier Rules

Extrusion:

$$\frac{\mathscr{C}_{0}\{\forall x. (\mathscr{C}_{1}\{\underbrace{\mathbf{A}}\} \Rightarrow \mathscr{C}_{2}\{\underbrace{\mathbf{B}}\})\}}{\mathscr{C}_{0}\{\mathscr{C}_{1}\{\underbrace{\mathbf{A}}\} \Rightarrow \forall x. \mathscr{C}_{2}\{\underbrace{\mathbf{B}}\}\}} \qquad \frac{\mathscr{A}_{0}\{\forall x. (\mathscr{C}_{1}\{\underbrace{\mathbf{A}}\} \land \mathscr{C}_{2}\{\underbrace{\mathbf{B}}\})\}}{\mathscr{A}_{0}\{\mathscr{C}_{1}\{\underbrace{\mathbf{A}}\} \land \forall x. \mathscr{C}_{2}\{\underbrace{\mathbf{B}}\}\}}$$

etc.

Instantiation:

$$\frac{\mathscr{C}\{[t/x]A\}}{\mathscr{C}\{\exists x.A\}} \qquad \frac{\mathscr{A}\{[t/x]A\}}{\mathscr{A}\{\forall x.A\}}$$

Linking: Quantifier Rules

Extrusion:

$$\frac{\mathscr{C}_{0}\{\forall x. \left(\mathscr{C}_{1}\{\underbrace{\mathbf{A}}\} \Rightarrow \mathscr{C}_{2}\{\underbrace{\mathbf{B}}\}\right)\}}{\mathscr{C}_{0}\{\mathscr{C}_{1}\{\underbrace{\mathbf{A}}\} \Rightarrow \forall x. \mathscr{C}_{2}\{\underbrace{\mathbf{B}}\}\}}$$

$$\frac{\mathscr{A}_{0}\{\forall x. \left(\mathscr{C}_{1}\{\underbrace{\mathbf{A}}\} \land \mathscr{C}_{2}\{\underbrace{\mathbf{B}}\}\right)\}}{\mathscr{A}_{0}\{\mathscr{C}_{1}\{\underbrace{\mathbf{A}}\} \land \forall x. \mathscr{C}_{2}\{\underbrace{\mathbf{B}}\}\}}$$

etc.

Instantiation:

$$\frac{\mathscr{C}\{[t/x]A\}}{\mathscr{C}\{\exists x.A\}} \qquad \frac{\mathscr{A}\{[t/x]A\}}{\mathscr{A}\{\forall x.A\}}$$

Simplification:

$$\frac{\mathscr{C}\{\mathsf{T}\}}{\mathscr{C}\{\forall x.\;\mathsf{T}\}}$$

Linking: Predicates

• Initial:

$$\frac{\mathscr{C}\{s_1 \doteq t_1 \wedge \dots \wedge s_n \doteq t_n\}}{\mathscr{C}\{\underset{s_1}{\mathsf{as}_1} \cdots s_n \Rightarrow \underset{s_n}{\mathsf{at}_1} \cdots t_n\}}$$

Linking: Predicates

Initial:

$$\frac{\mathscr{C}\{s_1 \doteq t_1 \land \dots \land s_n \doteq t_n\}}{\mathscr{C}\{\underset{s_1}{\mathsf{as}_1} \dots s_n \Rightarrow \underset{s}{\mathsf{a}} t_1 \dots t_n\}}$$

• Equality simplification:

$$\frac{\mathscr{C}\{s_1 \doteq t_1 \wedge \dots \wedge s_n \doteq t_n\}}{\mathscr{C}\{\mathsf{f}\, s_1 \, \cdots \, s_n \doteq \mathsf{f}\, t_1 \, \cdots \, t_n\}} \qquad \frac{\mathscr{C}\{\top\}}{\mathscr{C}\{s \doteq s\}}$$

Linking: Predicates

• Initial:

$$\frac{\mathscr{C}\{s_1 \doteq t_1 \wedge \dots \wedge s_n \doteq t_n\}}{\mathscr{C}\{\underset{s_1}{\mathsf{as}_1} \cdots s_n \Rightarrow \underset{s}{\mathsf{a}} t_1 \cdots t_n\}}$$

• Equality simplification:

$$\frac{\mathscr{C}\{s_1 \doteq t_1 \wedge \cdots \wedge s_n \doteq t_n\}}{\mathscr{C}\{\mathsf{f}\, s_1 \, \cdots \, s_n \doteq \mathsf{f}\, t_1 \, \cdots \, t_n\}} \qquad \frac{\mathscr{C}\{\top\}}{\mathscr{C}\{s \doteq s\}}$$

• Rewriting:

$$\frac{\mathscr{C}\{A\{t\}\}}{\mathscr{C}\{\underline{s} \doteq t \Rightarrow A\{\underline{s}\}\}} \qquad \frac{\mathscr{C}\{A\{s\}\}}{\mathscr{C}\{s \doteq \underline{t} \Rightarrow A\{\underline{t}\}\}}$$

Linking: Instantiation Heuristics

Guess instances:

$$\frac{\mathcal{C}\left\{\forall x.\,\mathcal{C}_{1}\{x\doteq t\}\Rightarrow [t/x]A\right\}}{\mathcal{C}\left\{\forall x.\,\mathcal{C}_{1}\{x\doteq t\}\Rightarrow A\right\}} \qquad \frac{\mathcal{C}\left\{\exists x.\,\mathcal{C}_{1}\{x\doteq t\}\wedge [t/x]A\right\}}{\mathcal{C}\left\{\exists x.\,\mathcal{C}_{1}\{x\doteq t\}\wedge A\right\}}$$

Linking: Instantiation Heuristics

Guess instances:

$$\frac{\mathscr{C}\{\forall x.\,\mathscr{C}_1\{x\doteq t\}\Rightarrow [t/x]A\}}{\mathscr{C}\{\forall x.\,\mathscr{C}_1\{x\doteq t\}\Rightarrow A\}} \qquad \frac{\mathscr{C}\{\exists x.\,\mathscr{C}_1\{x\doteq t\}\wedge [t/x]A\}}{\mathscr{C}\{\exists x.\,\mathscr{C}_1\{x\doteq t\}\wedge A\}}$$

- Other approaches are possible
 - Unification
 - Theory reasoning
 - Issue: export to other provers

Level 4: Clutter Management

```
\forall x:i. \forall y:i. \mathbf{t} \ y \ y \Rightarrow \mathbf{t} \ y \ y
```

$$\frac{\forall x : \mathbf{i} \cdot \forall y : \mathbf{i} \cdot \mathbf{t} \ y \ y \Rightarrow \mathbf{t} \ y \ y}{(\forall x : \mathbf{i} \cdot \forall y : \mathbf{i} \cdot \mathbf{t} \ x \ y \lor \mathbf{t} \ y \ x) \Rightarrow (\forall x : \mathbf{i} \cdot \forall x \ y \lor \mathbf{t} \ y \ x)}$$

$$\frac{\forall x \text{i.} \ \forall y \text{i.} \ \mathbf{t} \ y \ y}{(\forall x \text{i.} \ \forall y \text{i.} \ \mathbf{t} \ x \ y \lor \mathbf{t} \ y \ x) \Rightarrow (\forall x \text{i.} \lor y}$$

$$\frac{\forall x : i. \ \forall y : i. \ t \ y \ y}{(\forall x : i. \ \forall y : i. \ t \ x \ y \lor t \ y \ x) \Rightarrow (\forall x : i. \ \forall y : i. \ t \ y \ y)}{(\forall x : i. \ \forall y : i. \ t \ x \ y \lor t \ y \ x) \Rightarrow (\forall x : i. \ \forall y : i. \ x \ = \ y \Rightarrow t \ x \ y)}$$

 $(\forall x : i. \forall y : i. t \ x \ y \lor t \ y \ x) \Rightarrow (\forall x : i. \forall y : i. (a \ y \ x \Rightarrow x \doteq y) \Rightarrow a \ y \ x \Rightarrow t \ x \ y)$ $(\forall x \texttt{i.} \ \forall y \texttt{i.} \ \texttt{t} \ x \ y \lor \texttt{t} \ y \ x) \xrightarrow{\Rightarrow} (\forall x \texttt{i.} \ \forall y \texttt{i.} \ \texttt{a} \ x \ y \Rightarrow \texttt{a} \ y \ x \Rightarrow x = y) \Rightarrow (\forall x \texttt{i.} \ \forall y \texttt{i.} \ \texttt{a} \ x \ y \Rightarrow \texttt{a} \ y \ x \Rightarrow \texttt{t} \ x \ y)$ $\mathsf{t}\,x\,y \lor \mathsf{t}\,y\,x) \Rightarrow (\forall x.\mathsf{i.}\,\forall y.\mathsf{i.}\,\mathsf{a}\,x\,y \Rightarrow \mathsf{a}\,y\,x \Rightarrow x \,\dot{=}\,y) \Rightarrow (\forall x.\mathsf{i.}\,\forall y.\mathsf{i.}\,\mathsf{t}\,x\,y \Rightarrow \mathsf{a}\,x\,y) \Rightarrow (\forall x.\mathsf{i.}\,\forall y.\mathsf{i.}\,\mathsf{a}\,x\,y \Rightarrow \mathsf{t}\,y\,x)$ $orall y ; \mathbf{i} \cdot \mathbf{t} \cdot \mathbf{x} \cdot \mathbf{y} \lor \mathbf{t} \cdot \mathbf{y} : \mathbf{i} \Rightarrow (orall x ; \mathbf{i} \cdot \forall y ; \mathbf{i} \cdot \mathbf{a} \cdot x \cdot y \Rightarrow \mathbf{a} \cdot y) \Rightarrow (orall x ; \mathbf{i} \cdot \forall y ; \mathbf{i} \cdot \mathbf{a} \cdot x \cdot y \Rightarrow \mathbf{a} \cdot x \cdot y) \Rightarrow (orall x ; \mathbf{i} \cdot \forall y ; \mathbf{i} \cdot \mathbf{a} \cdot x \cdot y \Rightarrow \mathbf{a} \cdot x \cdot y) \Rightarrow (orall x ; \mathbf{i} \cdot \mathbf{a} \cdot x \cdot y \Rightarrow \mathbf{a} \cdot x \Rightarrow \mathbf{a} \cdot x \cdot y \Rightarrow \mathbf{a} \cdot x \Rightarrow \mathbf{a} \cdot x \Rightarrow \mathbf{a} \cdot x \Rightarrow \mathbf{a} \cdot x \Rightarrow \mathbf{a} \cdot x$

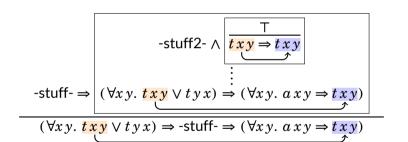
Open Deduction

- We actually use open deduction instead of CoS
- Combined syntax for formulas, sequents, and proofs

$$\mathcal{D} ::= A \mid \mathcal{D}_1 * \mathcal{D}_2 \mid \left\lfloor \frac{\mathcal{D}_1}{\mathcal{D}_2} \right\rfloor \mid \frac{\lfloor \mathcal{D}_1 \rfloor}{\lceil \mathcal{D}_2 \rceil}$$

Contexts are suitably generalized as well

Open Deduction as a Hierarchy



Zooming

$$-stuff2- \wedge \top$$

$$\vdots$$

$$(\forall xy. \ txy \lor tyx) \Rightarrow (\forall xy. \ axy \Rightarrow txy)$$

$$(\forall xy. \ txy \lor tyx) \Rightarrow -stuff- \Rightarrow (\forall xy. \ axy \Rightarrow txy)$$

$$\uparrow$$

$$-stuff2- \wedge \top$$

$$\vdots$$

$$(\forall xy. \ txy \lor tyx) \Rightarrow (\forall xy. \ axy \Rightarrow txy)$$

Zooming into Scopes

$$\forall x. \text{-stuff2-} \land \exists y. \boxed{\frac{\top}{txy} \Rightarrow txy}$$

$$\vdots$$

$$(\forall xy. \ txy \lor tyx) \Rightarrow (\forall x. \ \exists y. \ axy \Rightarrow txy)$$

$$(\forall xy. \ txy \lor tyx) \Rightarrow \text{-stuff-} \Rightarrow (\forall x. \ \exists y. \ axy \Rightarrow txy)$$

Zooming into Scopes

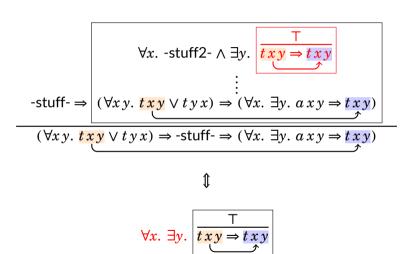
$$\forall x. \text{-stuff2-} \land \exists y. \quad \boxed{\frac{\top}{txy} \Rightarrow txy}$$

$$\vdots$$

$$(\forall xy. \ txy \lor tyx) \Rightarrow (\forall x. \ \exists y. \ axy \Rightarrow txy)$$

$$(\forall xy. \ txy \lor tyx) \Rightarrow \text{-stuff-} \Rightarrow (\forall x. \ \exists y. \ axy \Rightarrow txy)$$

Zooming into Scopes



$$(\forall x y. \ t x y \lor t y x) \Rightarrow \text{-stuff-} \Rightarrow (\forall x y. \ a x y \Rightarrow t x y)$$

$$(\forall x y. \ t x y \lor t y x) \Rightarrow -\text{stuff-} \Rightarrow (\forall x y. \ a x y \Rightarrow t x y)$$

$$-\text{stuff-} \Rightarrow \boxed{(\forall x \, y. \, t \, x \, y \, \lor t \, y \, x) \Rightarrow (\forall x \, y. \, a \, x \, y \Rightarrow t \, x \, y)}$$
$$(\forall x \, y. \, t \, x \, y \, \lor t \, y \, x) \Rightarrow -\text{stuff-} \Rightarrow (\forall x \, y. \, a \, x \, y \Rightarrow t \, x \, y)$$

$$-\text{stuff-} \land F \Rightarrow \boxed{(\forall x \, y. \, t \, x \, y \, \lor t \, y \, x) \Rightarrow (\forall x \, y. \, a \, x \, y \Rightarrow t \, x \, y)}$$

$$(\forall x \, y. \, t \, x \, y \, \lor t \, y \, x) \Rightarrow -\text{stuff-} \land F \Rightarrow (\forall x \, y. \, a \, x \, y \Rightarrow t \, x \, y)$$

$$-\text{stuff-} \land \overrightarrow{F} \Rightarrow \boxed{(\forall x \, y. \, t \, x \, y \, \lor \, t \, y \, x) \Rightarrow (\forall x \, y. \, a \, x \, y \Rightarrow t \, x \, y)}$$
$$(\forall x \, y. \, t \, x \, y \, \lor \, t \, y \, x) \Rightarrow -\text{stuff-} \land F \Rightarrow (\forall x \, y. \, a \, x \, y \Rightarrow t \, x \, y)$$

$$-\text{stuff-} \Rightarrow \boxed{F \Rightarrow (\forall x \, y. \, t \, x \, y \, \lor t \, y \, x) \Rightarrow (\forall x \, y. \, a \, x \, y \Rightarrow t \, x \, y)}$$

$$(\forall x \, y. \, t \, x \, y \, \lor t \, y \, x) \Rightarrow -\text{stuff-} \land F \Rightarrow (\forall x \, y. \, a \, x \, y \Rightarrow t \, x \, y)$$

Launching, Stopping, and Linking

$$-\operatorname{stuff-} \Rightarrow F \Rightarrow (\forall x \, y. \, t \, x \, y \lor t \, y \, x) \Rightarrow (\forall x \, y. \, a \, x \, y \Rightarrow t \, x \, y)$$

$$-\operatorname{stuff-} \Rightarrow F \Rightarrow (\forall x \, y. \, t \, x \, y \lor t \, y \, x) \Rightarrow (\forall x \, y. \, a \, x \, y \Rightarrow t \, x \, y)$$

$$(\forall x \, y. \, t \, x \, y \lor t \, y \, x) \Rightarrow -\operatorname{stuff-} \land F \Rightarrow (\forall x \, y. \, a \, x \, y \Rightarrow t \, x \, y)$$

Future Work

Additional Universal Interactions

- Additional structural operations
 - Deep re-organization: splitting
 - Refactoring using substitutions

Additional Universal Interactions

- Additional structural operations
 - Deep re-organization: splitting
 - Refactoring using substitutions
- Dealing with lemmas
 - Explicit cuts
 - Appealing to previously proved theorems
 - Searching for lemmas

Additional Universal Interactions

- Additional structural operations
 - Deep re-organization: splitting
 - Refactoring using substitutions
- Dealing with lemmas
 - Explicit cuts
 - Appealing to previously proved theorems
 - Searching for lemmas
- History and persistence
 - Forking histories
 - Linking to the past

Linking for Type Theory

Highly speculative

 Πx :i. Πf :(Πu :i. bu). bx

Linking for Type Theory

Highly speculative

 $\Pi_{\mathbf{x}:\mathbf{i}}$. $\Pi f:(\Pi_{\mathbf{u}:\mathbf{i}}. \, \mathbf{b} \, u). \, \mathbf{b} \, x$

Linking for Type Theory

Highly speculative

$$\Pi x: \mathbf{i}. \Pi f: (\Pi u: \mathbf{i}. (\langle x: \mathbf{i} \rangle \Rightarrow \langle u: \mathbf{i} \rangle) \Rightarrow b u). b x$$

$$\vdots$$

$$\Pi x: \mathbf{i}. \Pi f: (\Pi u: \mathbf{i}. b u). b x$$

Linking for Type Theory: via Realizability

$$[\![\alpha]\!] M \triangleq \langle M : \alpha \rangle$$
$$[\![\Pi x : A . B]\!] M \triangleq \forall x . [\![A]\!] x \Rightarrow [\![B]\!] (M x)$$

Linking for Type Theory: via Realizability

$$\llbracket \alpha \rrbracket M \triangleq \langle M : \alpha \rangle$$
$$\llbracket \Pi x : A.B \rrbracket M \triangleq \forall x. \llbracket A \rrbracket x \Rightarrow \llbracket B \rrbracket (M x)$$

$$\forall x. \langle x : \mathsf{i} \rangle \Rightarrow \forall f. (\forall u. \langle u : \mathsf{i} \rangle \Rightarrow \langle (f u) : \mathsf{b} u \rangle) \Rightarrow \exists z. \langle z : \mathsf{b} x \rangle$$

Linking for Type Theory: via Realizability

$$\llbracket \alpha \rrbracket M \triangleq \langle M : \alpha \rangle$$

$$\llbracket \Pi x : A. B \rrbracket M \triangleq \forall x. \llbracket A \rrbracket x \Rightarrow \llbracket B \rrbracket (M x)$$

$$\frac{\forall x. \ \forall f. \ \exists z. \ (f \ x) \doteq z \land (b \ x) \doteq (b \ x)}{\forall x. \ \forall f. \ ((f \ x) : (b \ x)) \Rightarrow \exists z. \ (z : b \ x)}$$

$$\frac{\forall x. \ \forall f. \ ((f \ x) : (b \ x)) \Rightarrow \exists z. \ (z : b \ x)}{\forall x. \ \forall f. \ (\forall u. \ x \doteq u \land i \doteq i \Rightarrow ((f \ u) : b \ u)) \Rightarrow \exists z. \ (z : b \ x)}$$

$$\forall x. \ \forall f. \ (\forall u. \ ((x : i) \Rightarrow (u : i)) \Rightarrow ((f \ u) : b \ u)) \Rightarrow \exists z. \ (z : b \ x)}$$

$$\vdots$$

$$\forall x. \ (x : i) \Rightarrow \forall f. \ (\forall u. \ (u : i) \Rightarrow ((f \ u) : b \ u)) \Rightarrow \exists z. \ (z : b \ x)}$$

Linking for Type Theory: Future

• Unfortunately, the "realizability interpretation" is unsound

Linking for Type Theory: Future

 Unfortunately, the "realizability interpretation" is unsound except for canonical terms

Linking for Type Theory: Future

- Unfortunately, the "realizability interpretation" is unsound except for canonical terms
- Better alternative: try to do it within type theory itself
 - Might need to generalize the syntax of "types"
 - Would need to split Π into a binder and a type assumption
 - The binder would stay put
 - The type assumption would move via linking

Linking for Type Theory: Future

- Unfortunately, the "realizability interpretation" is unsound except for canonical terms
- Better alternative: try to do it within type theory itself
 - Might need to generalize the syntax of "types"
 - Would need to split Π into a binder and a type assumption
 - The binder would stay put
 - The type assumption would move via linking
- Proposed system
 - Easy to show completeness
 - Hard to prove sound generalized "type" derivations very hard to map to ordinary typing derivations via natural deduction, e.g.

• Definition unfolding: double click

- Definition unfolding: double click
- Notations: if they are functorial, can be incorporated automatically

- Definition unfolding: double click
- Notations: if they are functorial, can be incorporated automatically
 - E.g., $\neg A \triangleq A \Rightarrow \bot$
 - If $A \vdash B$ then $\neg B \vdash \neg A$
 - This means \neg has an $\mathcal{A}\{$ }-style CoS/linking rule
 - Also need to specify what ¬T and ¬⊥ simplify as

- Definition unfolding: double click
- Notations: if they are functorial, can be incorporated automatically
 - E.g., $\neg A \triangleq A \Rightarrow \bot$
 - If $A \vdash B$ then $\neg B \vdash \neg A$
 - This means \neg has an $\mathcal{A}\{$ }-style CoS/linking rule
 - Also need to specify what ¬T and ¬⊥ simplify as
 - Sometimes notations are not functorial
 - Simple example: $A \equiv B \triangleq (A \Rightarrow B) \land (B \Rightarrow A)$
 - $A \vdash B$ does not mean $A \equiv C \vdash B \equiv C$
 - Probably beter here to consider rewrite-stye linking, as with ≐

• Induction:

- Induction:
 - Abella-style sized relations reasonably simple

- Induction:
 - Abella-style sized relations reasonably simple
 - Induction invariants in CoS: open problem?

- Induction:
 - Abella-style sized relations reasonably simple
 - Induction invariants in CoS: open problem?
- Circular reasoning:

- Induction:
 - Abella-style sized relations reasonably simple
 - Induction invariants in CoS: open problem?
- Circular reasoning:
 - Easy: indicating cycles with pointing devices

- Induction:
 - Abella-style sized relations reasonably simple
 - Induction invariants in CoS: open problem?
- Circular reasoning:
 - Easy: indicating cycles with pointing devices
 - Hard: making sense of back edges crossing context boundaries

$$\frac{A \, \Im \quad \frac{\Box}{\overline{\nu X.A \, \Im \, X}}}{\nu X.A \, \Im \, X} \leftarrow$$

• Exporting proofs: already covered

- Exporting proofs: already covered
- Importing proofs?

- Exporting proofs: already covered
- Importing proofs?
 - Every shallow proof is (easily converted to) a deep proof

- Exporting proofs: already covered
- Importing proofs?
 - Every shallow proof is (easily converted to) a deep proof
 - But: too many proof languages!

- Exporting proofs: already covered
- Importing proofs?
 - Every shallow proof is (easily converted to) a deep proof
 - But: too many proof languages!
- Related problem: adding a new verifier?

- Exporting proofs: already covered
- Importing proofs?
 - Every shallow proof is (easily converted to) a deep proof
 - But: too many proof languages!
- Related problem: adding a new verifier?
- Dedukti?

The Future of Interactive Theorem Proving Interfaces?

https://dub.sh/profound/slides