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Abstract

We build on previous work on monitors for hyperproperties, where we propose a logic
for specifying properties over sets of traces that can be monitored with circuit-like non-
communicating monitors for violations at runtime. In this paper, we propose an epistemic
multi-agent logic framework for proving the correctness of distributed and communicating,
runtime verification protocols over hyperproperties. Our protocols use monitors that can
communicate and accumulate information. To verify the correctness of such a protocol,
we can describe communication with epistemic statements that can be then used to derive
a proof in an epistemic logic. We then present an example epistemic proof of correctness
for a given communication protocol over a specific property that requires communicating
monitors, and therefore is not included in the original fragment. This is a step towards a
general epistemic framework for the verification of distributed monitoring systems.

1 Introduction

The field of runtime verification provides methods for checking whether a system satisfies an
intended specification at runtime. This runtime analysis is done through a computing device
called a monitor that observes the current run of a system in the form of a trace and attempts
to infer the satisfaction or violation of the specification by the system or its run [1,4,5,7,12,16].
Recent work focuses on monitoring for hyperproperties, which are properties of sets of traces,
introducing novel monitoring setups that process multiple traces [2,6,11]. A centrepiece in this
line of work has been the specification logic Hyper-LTL [8]. Intuitively, Hyper-LTL uses trace
variables and allows for quantifying these variables over a set of traces that can represent a set
of system runs, or a collection of local executions of different system components. Hyper-LTL
can use these trace variables to refer to the satisfaction of propositional variables at specific
traces, and thus express relationships between local events.

We use the specification logic Hyper-uHML instead of Hyper-LTL, and we build on previous
work on monitorability and monitor synthesis for pHML, which is a reformulation of the pu-
calculus, and Hyper-uHML is its extension to hyperproperties [1,3,13]. The logic pHML
allows for straightforward translations from well-known temporal logics such as LTL, and, at
the same time, has an intuitive synthesis for monitors [1,13]. The current paper extends the
work from [3], where the authors give a monitor synthesis from a fragment of Hyper-pHML
with good correctness and complexity guarantees. However, just like Hyper-LTL and unlike
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the fragment from [3], Hyper-uHML can define dependencies over different traces, which can
introduce additional latency when monitoring at runtime. The monitoring framework in [3]
kept the processing-at-runtime cost minimal by restricting the type of properties it verified to
a fragment of Hyper-uHML that effectively does not allow multiple traces to be referred to
in the scope of the same quantifier. Therefore, local monitors do not need to communicate in
order to detect violations.

In this work, we consider an extension of the circuit-like monitors from [3] that allows
monitors to communicate. We observe that there can be more than one correct way to monitor
for a given property, and a monitoring system can be engineered with specific goals, such as to
minimise the communication overhead or to preserve certain privacy or robustness properties.
Therefore, one needs to consider alternatives to a uniform monitor synthesis, which need to
be proven correct. We propose a framework for using epistemic logic to prove the correctness
of the communication strategy of distributed monitoring protocols. Then, we give an example
of describing communications between monitors with epistemic statements and using these to
prove that a monitoring protocol can detect all violations of a specification. Our goal is to
extend this framework in future work, so that one can prove the correctness of monitoring
systems for more general properties and for more notions of correctness.

2 Preliminaries

2.1 The Specification Logic

We present Hyper-pHML, the logic that we use to specify hyperproperties. Hyper-uHML
extends the linear-time interpretation of pHML [14, 15, 17] by allowing quantification over
traces. We assume two disjoint, countably infinite sets: a set II of trace variables and a set V'
of recursion variables; and a finite set ACT of events or actions. We define AcTy = {a, | a €
Act and m € IT}. A set A C AcTy is called consistent if for all ar,,br, € A, a =b or m # 2.
Events in a consistent set can occur simultaneously on different traces.

Definition 1. Formulae ¢ € Hyper-uHML are constructed by the following grammar:

=30 |Vap |0Ae oV |9
Y=ttt | ff [[Aly [ (AY |[YAY |[¢YVeY | maxzyp | minzy) |z,

where € II, x € V, and A C AcTy is consistent. When A = {ar}, we may simply write [a,|¢
or {ax)y instead of [A]Y or (A).

Semantics. The semantics of Hyper-uyHML is given over a finite set of infinite traces T over
a finite set of actions ACT and it is a natural extension of the linear-time semantics of pHML.
We require an environment p that maps recursion variables to sets of traces, and an assignment
7 : I = T of trace variables to traces in T. Let TC = {a, | 7(7) = at for some t € AcT*},
TX = {t| 7(n) = at for some t € AcT¥}, and let 7+ : II — T be defined such that 77 () = t,
where 7(7) = at. We only give the case for the universal modality here:

T,7,p = [A]Y iff A C TO implies TX, 77, p |= 1.

We use the standard notation T' = ¢ to denote that the set of traces T satisfies ¢ (and
similarly for T' |~ ¢). The work in [3] demonstrates how to monitor for the fragment Hyper!-
SHML of this logic, which does not allows nested trace quantification, diamonds, disjunctions,
or least-fixpoints, using circuit-like monitors.
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Figure 1: The circuit monitor for the formula in Example 1 over T = {a*, b.a.b*,b*}.

Example 1. The Hyper'-sHML formula Vr[az]£f A 3 [bs](max z.([a;]£f A [br]z)), over the
set of actions {a, b}, states for a set of traces T, that no trace starts with a, and b* € T.

2.2 The Circuit Monitors Model

In this section, we give the intuition behind the monitor design in [3]. Circuit monitors are
composed of a hierarchy of gates, connected in a circuit-like structure and instrumented over a
finite set of traces T'. Each trace t €T is assigned a fixed set of regular monitors that correspond
to the local properties to be verified and are at the bottom layer of the structure. Monitors
assigned to the same trace run in parallel [1] and observe identical events, whereas those assigned
to another trace also run in parallel but completely isolated from other traces. When monitors
reach a verdict, yes, no or end, they communicate it to the smaller gates connecting them. These
then evaluate to some verdict themselves and propagate their evaluation upward through logic
gates until the root of the circuit reaches a verdict as well.

Definition 2. The language CMONy, of k-ary monitors, for k > 0, is given through the following
grammar:

M € CvoNg = \/[m] | Al | MVM | MAM

m = yes | no | end | a.m, a € AcT | m+n | rec z.m | x

CMON is the collection of infinite sequences (M;);en of terms that are generated by substituting
k=14VieN, in a term M in CMONg.

The notation [m]; corresponds to the parallel dispatch of k identical regular monitors m,
where k = |T|, with T'= {¢1,...,t;}. The circuit monitor A[m]; evaluates to a yes verdict if all
sub-monitors evaluate to yes verdicts, and a no verdict if at least one sub-monitor evaluates to
a no verdict. Otherwise, if all sub-monitors evaluate to some verdict but none of the previous
criteria is met, it evaluates to end. The evaluation of \/[m]}, is symmetric, whereas the evaluation
of the V and A gates over them follows similar rules.

Figure 1 from [3] illustrates the circuit monitor and its evaluation for the formula in Exam-
ple 1. The notion m; ; signifies that monitor m; is instrumented with trace j, where monitors m;
and msy respectively monitor for the local properties V[a,|ff and 3, [b;](maz z.([ax|E£A[bx])).

Given a formula ¢ € Hyper!-sHML and a set of traces T', we can synthesise a circuit monitor
M through the recursive function Syns(—): Hyper!-sHML —CMON defined in [3].
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Proposition 1 (from [3]). For a formula ¢ €Hyper'-SHML and a set of traces T, we have
that Synr(p) is a violation complete monitor for ¢ over T, in that Synr(p) outputs a verdict
no if and only if T |~ .

2.3 Epistemic Logic

Definition 3 (Multi-agent modal logic). For a set of agents A, a formula ¢ in the multi-agent
modal logic is defined as:

pu=T | L | p | —¢ | ong | Ki¢ | Ca¢

where p is an atomic formula, i € A, and G C A. Implication and disjunction can be defined
from the other operators as usual.

We use the standard multi-agent S5 semantics for epistemic formulas with common knowl-
edge, as seen, for example, in [10]. Later on, we also use a natural deduction proof system for
multi-agent S5. One would need a more intricate logic to fully analyse monitoring frameworks,
but as the following section demonstrates, sometimes the above epistemic logic suffices to prove
the correctness of a protocol.

3 Epistemic Analysis of Communication Protocols

The fragment Hyper!'-sHML that was introduced in [3] is quite restricted. This allows for
a uniform, correct monitor synthesis that does not require the monitors to communicate. In
this section, we consider monitoring systems with a communication protocol, which allows us to
monitor for more involved properties. In contrast to [3], instead of giving a monitor synthesis for
a larger fragment of Hyper-uHML, we focus on proving the correctness of the communications
part of a monitoring framework that might have not been produced by an automated synthesis.

3.1 Two Protocols for Two Quantifiers

We consider the example of the following Hyper-pHML formula, which uses two nested quan-
tifiers:
o =VrVr'maz x([px, D £ A [Pry D ]T A [Py Prr )

Formula ¢ states that all traces m and 7' must agree on all events p. Said otherwise, if p is
observed in some trace, then all traces must have p at that time as well. The setup of circuit
monitors from Section 2 cannot handle properties similar to this one. More specifically, all local
monitors would only be able to observe the value of their own traces regarding p and produce
the verdict end when asked for the transition [p,,,/]. However, the latter cannot happen as the
transition specified contains at least one step on a trace that the monitors are not instrumented
on.

The following monitoring setup would succeed in detecting the violations of . If p occurs
in some trace, then there are two possible scenarios: (i) either all other traces have p as well
or (ii) at least one trace does not have p. The key point is that in the case of a violation of
the property ¢, there must be some traces that do not agree on p. Thus, should we design
a naive communication protocol where every monitor instantaneously communicates with all
other monitors after each event it observes, to inform them about whether or not it observed p,
at least a few of the monitors would indeed observe this violation. Naturally, such a protocol
would produce a great number of messages while it runs.

4
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Figure 2: Communication Protocol for formula ¢

In order to reduce the significant communication overhead of the above approach, we can
use fewer messages and compensate for the lack of information via epistemic reasoning. For
instance, consider a protocol where, after observing an event, each monitor communicates with
exactly one agent (the one to its right) and receives exactly one message from another agent (the
one on its left). Both messages are identical in nature, whereby they inform the receiver whether
the sender observed p or not. We refine this further by allowing monitors to communicate only
when p is observed since the absence of a message can convey the negation of this statement as
shown by the dashed line in Figure 2.

A logician could easily recognise that the above protocol detects a violation of the property
described above through the following basic epistemic reasoning. Assume that there are two
traces w, 7 that do not both have p. If all agents are assigned some order in which they
will perform the described communication protocol, there will be two consecutive agents whose
values of p do not match, and both of them will be able to deduce that the property is violated.
For instance, monitors my and mg in Figure 2 detect a violation of ¢ since the former received
p but it observed ¢, whereas the latter observed p but didn’t receive anything, from which it
can infer that my didn’t observe p.

Remark 1. In the worst case, two monitors will be able to infer the no verdict, while all the
others produce the end verdict. However, this is sufficient for the gate on the higher level to
produce the no verdict as well, giving us violation completeness for the specific property .

In what follows, we demonstrate how to prove the correctness of the protocol that we
discussed, using epistemic logic.

3.2 Proving Correctness

A first attempt at presenting a correctness proof for the communication protocol discussed
above is modelling each monitor as an agent r € A. The protocol is modelled thought sentences
in epistemic logic that are obeyed in each round, where a round is the time during which an
event is observed by all agents.

As is described, a monitor (agent r) can observe the occurrence of the event p on trace r
(denoted p;), in which case it has to inform the monitor assigned to the same property on the
trace “on its right” about this occurrence. We denote the “next” agent as r + 1 mod k, where
k is the total number of traces. Thus, in a round ¢ we first prove that with the protocol we
mentioned it is always the case that a monitor r + 1 knows whether p; or p,.. The natural
deduction proof for this can be seen in Table 1, given in the appendix due to lack of space.

that a violation of the property ¢ occurs the behaviour of the monitors will be in accordance
with the guarantees provided by the epistemic natural deduction proof given in Table 2. Note
that since a violation has occurred it means that there exists traces (and thus monitors rq, r1
such that p,, and p,,.
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Having established this inference, we use it to prove that when a violation of the property
occurs in round 4, (i.e., 3roIr1pr, A Dr,) then there is some agent j that detects the violation.
The proof of this inference can be seen in Table 2 in the appendix.

We remark that one can use a similar approach to prove the correctness of monitoring
setups for more interesting properties. For example, propositional variables in the epistemic
syntax can be used to encode the violations of arbitrary monitorable formulas; the (eventual)
detection of such a violation encoded by p by the monitor on trace ¢ can be written as K;p,
and its monitorability as p — K;p. Then, we can proceed as above.

4 Conclusion and Future Work

In this work we present an initial attempt to incorporate multi-agent epistemic reasoning to the
analysis of distributed runtime verification protocols. The key aspect of our approach is to first
design a protocol for sharing information and then prove formally that it provides correctness
guarantees.

Besides the verification of distributed monitoring setups, one of our aims is to eventually
produce a sound synthesis algorithm for communication protocols such as the one given in [3]
(Proposition 1). However, there are several obstacles that remain to be incorporated into this
reasoning framework before reaching this goal. The first shortcoming is the static way in which
epistemic logic has been incorporated, which constrains the proofs to be done in a round-by-
round fashion as they are currently. We aim to model the exact content of a communication
into an epistemic action that occurs and has an outcome of the models of a formula. Our
approach here would be to incorporate Dynamic epistemic logic [9] so that the temporal aspect
of a proof is not introduced externally.

Moreover we have not yet formally extended the monitoring setup to include monitors that
can synchronise and produce these communications, and we have not assigned any sort of formal
semantics to such a syntactical modification. Thus, to fully perform the upgrade we need also
to adapt the implementation to mach the capabilities of the theory.

Finally in order to automate the synthesis of a communicating monitor setup, after having
performed the above steps, we want be able to extract from a proof for a certain epistemic
theorem into a communication protocol. For example a theorem we would like to test for
Hyper-pHML formulae could be formulated as ~¢ — JFiK;—p. In such a scenario one would
want to synthesise a valid monitoring setup from potential tableau proof of this statement. Of
course, the semantics of the epistemic operator in the above formula would need to be defined
as part a more complex language that will be able to refer to past and future situations.

Finally, our contribution, even though we only present one specific protocol-property pair,
can also provide privacy guarantees. Specifically, instead of our protocol, all of the trace
observation could be done in a central fashion, or in a distributed one but where every event
is fully broadcast to all agents. However, it is easy to see that both such scenario allow for
also security breaches, as all information is gathered in one place which can be compromised.
Our alternative allows not only for less communication- and thus smaller overhead at runtime-
but also minimises the amount of information exchange, which ensures that for example a
compromised node will only gather partial information about the system. Thus our effort is
a step towards enabling the formal verification of concurrent systems though faster and more
secure distributed monitoring mechanisms.
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Appendix 1 - Natural Deduction Proofs

| s Cater ¢ Kopy)

2 | Vr: Ca(Krpr = Kpy1pr)

3 De

4 Kei1pe = pe S5 axiom.

5 De = Ker1pe prop Thm (4)
6 T 1Pe —re, (3,5)

7 K1 Kep1pe S5 axiom (6)
:

9 pe = Kepe C (1)

10 Kepe = key1pe C (2)

1 —Key1pe Kee (7)

12 ] Pe assumption.
13 Kepe e, (9,12)
14 K. i1pe —e, (10,13)
15 1 e (11,14)

16 pfci —; (12,15)

17 K.+1(p0) K.i (8,16)

Table 1: Deduction of the non-occurrence of p. from agent ¢ + 1

In Tables 1 and 2, lines 1 and 2 are using the quantification not as part of the syntax, but
over the number of agents to indicate the existence of k many real premises corresponding to
the relative line - one for each agent. There we model the communications taking place as part
of the protocol though epistemic premises. Line 1 describes that all agents are operating on a
distributed monitoring scenario where all agents can know whether p or —p on each round, and
are aware that this is the protocol applied ot all of them. Line 2 encapsulates the communication
of the observance of p in a similar fashion. Assuming on round ¢ we have a violation, we have
that 37, and 37’ where due to the argument given above, 7’ = m + 1 mod k such that p, Ap_.,.
Thus we show that there exists some trace ¢, where the relative monitor (agent) will observe
the appropriate events that enable it to deduce [K.(p. A Pe)].
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vr: Ca(pr < K,py)

Vr o Ca(Kypr — Kryapr)
Pe

Dd

Kepe

Ket1pe

Keir1Ker1pe

£T0+1) V DPro+1
De+1
Ket1(Perr)
Kei1pe
Pe
De A\ Detr1
KC-H(pc A m)
JQH (Pe APer1)] V pet1

pc+1

[Kc-l-l (pc A pc+1)] \ DPe+1

[Ket1(Pe ADer1)] V Pett

[/\ pr] \ [\/ [K'I"(pT—l /\ZTT)]]
reA

reA

[\ p]

reA
Pd

i
([ )

reA

\/ [Kr(pr—l A ]TT)]

reA
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—e (1,3)
—e (2,4)
S5 axiom (6)

taut.
assumption
—e (1)

S5 axiom (6)
S5 axiom (12)
A; (10,13)

S5 axiom (14)
Vi (15)
assumption
Vi (17)

Ve (16,18)

(8-19)

assumption

Ae (23)
—e (4,24)
- (23,25)

prop. Thm (22,26)

Table 2: Epistemic guarantees of correctness of round 4
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