
Monitoring Hyperproperties with Circuits?

Luca Aceto1,3, Antonis Achilleos1, Elli Anastasiadi1, and Adrian Francalanza2

1 ICE-TCS, Department of Computer Science, Reykjavik University, Iceland
2 Department of Computer Science, University of Malta, Msida, Malta

3 Gran Sasso Science Institute, L’Aquila, Italy
luca@ru.is, luca.aceto@gssi.it, antonios@ru.is, elli19@ru.is,

adrian.francalanza@um.edu.mt,

Abstract. This paper presents an extension of the safety fragment of
Hennessy-Milner Logic with recursion over sets of traces, in the spirit of
Hyper-LTL. It then introduces a novel monitoring setup that employs
circuit-like structures to combine verdicts from regular monitors. The
main contribution of this study is the definition of the monitors and
their semantics, as well as a monitor-synthesis procedure from formulae
in the logic that yields ‘circuit-like monitors’ that are sound and violation
complete over a finite set of infinite traces.

1 Introduction

The field of runtime verification concerns itself with providing methods for check-
ing whether a system satisfies its intended specification at runtime. This runtime
analysis is done through a computing device called a monitor that observes the
current run of a system in the form of a trace [4,12]. Runtime verification has re-
cently been extended to the setting of concurrent systems [1,5,7,16] with several
attempts to specify properties over sets of traces, and to introduce novel moni-
toring setups [2,6,11]. A centerpiece in this line of work has been the specification
logic Hyper-LTL [9]. Intuitively Hyper-LTL allows for existential and universal
quantification over a set of traces (which describes the set of observed system
runs). The properties over one trace are stated in LTL, with free trace variables,
and then made dependent on properties of other traces via the quantification
that binds the trace variables.

We define the linear-time specification logic Hyper-µHML, as a counter-
part to Hyper-LTL, building on previous studies of monitorability and monitor
synthesis for µHML [1,13], which are necessary for the kind of correctness and

? The authors were supported by the projects ‘Open Problems in the Equational
Logic of Processes’ (OPEL) (grant No 196050-051) and ‘Mode(l)s of Verification and
Monitorability’ (MoVeMent) (grant No 217987) of the Icelandic Research Fund, and
‘Runtime and Equational Verification of Concurrent Programs’ (ReVoCoP) (grant
No 222021), of the Reykjavik University Research Fund. Luca Aceto’s work was also
partially supported by the Italian MIUR PRIN 2017 project FTXR7S IT MATTERS
‘Methods and Tools for Trustworthy Smart Systems’.

mailto:luca@ru.is
mailto:luca.aceto@gssi.it
mailto:antonios@ru.is
mailto:elli19@ru.is
mailto:adrian.francalanza@um.edu.mt

2 Aceto et al.

complexity guarantees we aim to achieve in this work. However, just like Hyper-
LTL, Hyper-µHML can define dependencies over different traces, which intu-
itively causes extra delays in the processing of traces as the properties observed
on one of them can impact what is expected for another. For example, if a prop-
erty requires that an event of a trace is compared against an event occurring in
all other traces then the processing cost of this event becomes dependent on the
number of traces. In this approach, we keep the processing-at-runtime cost (as
defined in [17]) minimal by restricting the type of properties verified to a natural
fragment of Hyper-µHML, but applying no assumptions on the system under
scrutiny. This comes in contrast with the existing research, where the runtime
verification of such properties is dealt with via a plethora of modifications and
assumptions made over the monitoring setup, such as being able to restart an
execution or having access to all executions of a system.

Our monitor setup is engineered for the studied fragment of the specification
language, by utilizing circuit-like structures to combine verdicts over different
traces. The fragment of the logic restricts the amount of quantification that can
be applied to the properties of individual traces and thus limits the dependencies
between them. This naturally induces circuits with monitors from [1] as input
nodes and simple kinds of gates at the higher levels, with the resulting structure
having constant depth with respect to the corresponding formula, which is con-
sidered efficient in the field of parallel computation [14]. Thus, each step taken
by such a monitor in response to an event of the system under scrutiny takes
constant time, which makes the monitors ‘real time’ in the sense of [17].

2 The logic

Our logic is defined in the style of Hyper-LTL as presented in [9]. The quantifica-
tion among traces remains the same, but the language in which local trace prop-
erties are stated is µHML. We consider the following restriction to a multi-trace
sHML logic (the safety fragment of µHML [1]), with no alternating quantifiers,
called Hyper1-sHML. We can similarly define the cHML (co-safety) fragment,
and the HML fragment.

Definition 1. Formulae in Hyper1-sHML are constructed by the following
grammar:

ϕ ∈ Hyper1-sHML ::= ∃πψ | ∀πψ | ϕ t ϕ | ϕ u ϕ

where ψ stands for a formula in sHML and π is a trace variable from an infinite
suppy of trace variables V. t and u stand for the regular ∨ and ∧ boolean con-
nectives, only usable at the top syntax level. Although the syntactic distinction
is cosmetic, it allows us to keep the synthesis function in Definition 4 clearer.

Semantics The semantics of Hyper-µHML is given over a finite set of infinite
traces T over Act and it is a natural extension of the linear-time semantics
of µHML. The existential and universal quantification happens via the trace

Monitoring hyperproperties with circuits 3

variable π which ranges over the traces in T . The extension of the µHML linear-
time semantics from [1] to the Hyper-µHML semantics is done in the style of
Hyper-LTL. This semantics applies to Hyper1-sHML, which is a fragment of
Hyper-µHML. We only consider closed formulae in Hyper1-sHML and for these
we use the standard notation T |= ϕ to mean that a set of traces T satisfies ϕ
(and similarly for T 6|= ϕ).

Example 1. The Hyper1-sHML formula ∀π[a]ffu∃π[b](max x.([a]ff ∧ [b]x)),
over the set of actions {a, b}, states that for any set of traces T , none of the
traces in T start with a, and bω ∈ T .

3 The monitors

The intuition behind our monitor design is the following (we recommend follow-
ing this intuition along with the example given in Figure 1). Over a finite set of
traces T we instrument a circuit-like structure. Each trace t ∈ T is assigned a
fixed set of regular monitors that correspond to the properties in sHML to be
verified. These regular monitors are connected with simple gates which evaluate
to yes, no or end based on the verdicts produced by their associated regular
monitors. Once some of these gates start evaluating to verdicts, they communi-
cate with more complex gates, connected in a circuit-like graph, which propagate
input verdicts though logic operations until the root node of the circuit reaches
a verdict as well. The formal definition of a circuit monitor is given in the style
of computational complexity circuits [18, Definition 1.10].

Definition 2. The language Cmonk of k-ary monitors, for k > 0 is given
through the following grammar:

M ∈ Cmonk ::=
∨

[m]k |
∧

[m]k | M ∨M | M ∧M

m ::= yes | no | end | a.m, a ∈ Act | m+ n | rec x.m | x

Cmon is the collection of infinite sequences (Mi)i∈N of terms that are generated
by substituting k = i,∀i ∈ N, in a term M in Cmonk .

We use M,M ′ . . . to denote the monitors (infinite sequences of terms gen-
erated by the first line of this grammar), and refer to them as circuit monitors,
and m1,m2 . . . to denote the regular monitors described by the second line. The
notation [m]k corresponds to the parallel dispatch of k identical regular monitors
m, where k = |T |, with T = {t1, . . . , tk}.

Given a monitor M ∈ Cmon, we will call each syntactic sub-monitor of M a
gate. For example, we have inductively that over the monitor M ′ ∨M ′′ we have
the gates M ′ ∨M ′′ and all gates contained in monitors M ′, and M ′′, while for
the monitor

∨
[m]k we have the gates

∨
[m]k and gates m[i] for i ∈ {1, . . . , k}.

For M ∈ Cmon we define a set of program variables GM , where one variable
gM ′ is assigned to each gate M ′ of M .

For readability purposes we will be omitting the naming g of the program
variables and call them by the name of the gate they represent. We use m[i]

4 Aceto et al.

to mean the regular monitor m instrumented over the trace ti. It is important
here to see that gm[i]

will be the name of the gate assigned to one such monitor
and stays unchanged while the actual monitor advances its computation as trace
events are read. This will be clarified later, through the instrumentation rules.

A program variable related to gate M , can be assigned the following values:
yes, no, end, and j, with j ∈ {0, . . . , 2(`+1)−1}, ` being the number of immediate
syntactical sub-monitors of gate M . Number j is encoded in binary, and is used
to carry the information of which sub-gates have given some verdict (this means
that the encoding of j has `+1 bits). The value of the `+1-th bit of j is reserved
to encode that one of the sub gates has outputted an end. The information that
j carries is very important for the evaluation of a gate, as often this evaluation
depends on the verdicts of more that one sub-gate, as well as what these verdicts
are (see Figure 1). A variable gm can only take the values yes, no and end,
produced by the relevant monitor instrumented over a trace.

A configuration of monitor M is an array sM containing a value for all
program variables g of M . We denote the set of all configurations for a monitor
M as SM . We use the notation s[M\i] to denote the update of a configuration
s where gate M stores some value j to one where the i-th coordinate of j is 0,
while all other variables have the value they had in configuration s. Similarly, we
use the notation s[M\endi] to refer to a configuration where the update s[M\i]
has taken place and the value of the `+ 1-th bit of j is set to 1, and we also use
the notation s[v/M] with v ∈ {yes, no, end}, to mean a configuration where the
value of the variable for gate M is updated to v,

All gate variables in a circuit monitor are initialized to 2` − 1 (a sequence
of `-many zeros), to represent that all sub-gates are waiting to give some output
and sMinit stands for the initial configuration of M . Since M is a family of
circuits, we have that the initial configuration of each monitor Mi in the family
corresponds to a different initial configuration sMi−init .

Example 2. In Figure 1, we give an example of a circuit monitor and its evalu-
ation.

∧
{11}

sM3−init −→∗

∧
{111}

∨
{111}

m1,1 m2,1 m1,2 m2,2 m1,3 m2,3

aω b.a.bω bω

no
{01}sM

no
{100}

∨
{011}

no no yes m2,2 yes m2,3

aω a.bω bω

Fig. 1. The circuit monitor for the formula from Example 1, over T = {aω, b.a.bω, bω}.

Monitoring hyperproperties with circuits 5

Monitor semantics:

s[m[i]] = yes

s→ s[yes/
∨

[m]k]

s[m[i]] = no

s→ s[
∨

[m]k\i]
s[m[i]] = end

s→ s[
∨

[m]k\endi]

s[
∨

[m]k] = 0

s→ s[no/
∨

[m]k]

s[
∨

[m]k] = 2k

s→ s[end/
∨

[m]k]

Instrumentation:

m
τ−→ m′

m / t
τ−→ m′ / t

m
a−→ m′

m / a.t
a−→ m′ / t

∀j ∈ {1, . . . r}, mj[i] / t
a−→ m′j[i] / t

′

s / (−→m / T)→ s / (−→m[m′j[i]/mj[i], ∀j] / T [t′/t])

s −→ s′

s / (−→m / T)→ s′ / (−→m / T)

s / (−→m / T)→ s / (−→m[v/nj[i]] / T [t′/t])

s / (−→m / T)→ s[v/gmj[i]] / (−→m[v/nj[i]] / T [t′/t])

Fig. 2. Operational semantics of processes in Cmon.

Semantics The semantics of a regular monitors is as presented in [1]. Each reg-
ular monitor corresponds to an LTS, and a transition labeled with a ∈ Act
corresponds to a regular monitor observing the event a when instrumented with
a system p that produces it. The semantics of a circuit monitor is given as a
transition relation −→⊆ SM × SM and the instrumentation / takes place over a

set of regular monitors −→m instrumented over a set of traces T , denoted M(T).
We define M(T) := sM|T |−init /

−→m[i] / T , where −→m is the set of regular

monitors that occur in M , and −→m[i] is −→m, instrumented over the trace ti ∈ T.
When m is a regular monitor then / stands for the existing instrumentation
relation from [1]. The transition and instrumentation relations are defined as
the least ones that satisfy the axioms and rules in Figure 2. Due to lack of space,
we only include the rules giving the semantics of the

∨
[m]k monitor. Those for

the other operators follow the same structure. The proof in Appendix A could
help with the understanding of the more intricate instrumentation rules.

A monitor is required to be correct with respect to some specification for-
mula ϕ. The notions of correctness we use in this work are defined below.

Definition 3. Given a monitor M ∈ Cmon, and a set of traces T .

– M rejects T (resp. accepts T) denoted rej(M,T) (resp. acc(M,T)) iff
M(T)→∗ s/−→n /T ′ for some s,−→n , T ′, where s[M] = no (resp. s[M] = yes).

– Given a formula ϕ ∈ Hyper-µHML, M is sound for ϕ if ∀T , acc(M,T) =⇒
T |= ϕ, and rej(M,T) =⇒ T 6|= ϕ.

– M is violation complete for ϕ if ∀T , T 6|= ϕ =⇒ rej(M,T).

Synthesis: Given a formula ϕ in Hyper1-sHML, We synthesize a circuit monitor
M through the following recursive function Syn(−) : Hyper1-sHML → Cmon.

6 Aceto et al.

Definition 4 (Circuit Monitor Synthesis).

Syn(∃πϕ) =
∨

[m(ϕ)]k Syn(∀πϕ) =
∧

[m(ϕ)]k

Syn(ϕ1 t ϕ2) = Syn(ϕ1) ∨ Syn(ϕ2) Syn(ϕ1 u ϕ2) = Syn(ϕ1) ∧ Syn(ϕ2)

Where m(−) is the monitor synthesis function for sHML defined in [1].

Proposition 1. Given a formula ϕ in Hyper1-sHML, we have Syn(ϕ) is a
sound and violation-complete monitor for ϕ.

Proof. The proof is by induction on the structure of ϕ. We present here a charac-
teristic case and give more details for some of them in the Appendix A. Assume
that ϕ = ∃πψ, with ψ ∈ sHML and that we have a set of traces T s.t. T 6|= ϕ.
From the semantics of Hyper1-sHML, we have that ti 6|= ψ, for all traces ti in
T . However ψ ∈ sHML and thus from [1] we get that mψ is a violation com-
plete monitor for ψ. This means that for all ti ∈ T , there exist t′i ∈ Act∗ and
t′′i ∈ Actω, such that ti = t′i.t

′′
i , such that the monitor mψ rejects t′i.

From the rules in Figure 2 we see that each gate gmψ[i]
will reach the value

no as enough events over the trace t′i will occur. I.e. sM / −−−→mψ[i]
/ T →∗ sM /

−→m[i][no/m[i]] / T [t′′i /ti], witch propagates to the evaluation of gm[i]
to no, for all

i. We now study the transitions sM [no/gmψ [i]] since those can be then composed
with this instrumentation via the fourth instrumentation rule. Applying the SOS
rules yields that the update \i takes place for all i at the gate

∨
[m]k which means

that the value of j stored in it becomes 0. This finally yields that the value of
the final gate

∨
[m]k becomes 0, i.e. sM [no/gm[i]

∀i] → sM [no/
∨
[m]k]. Since this

transition can be composed with the discussed instrumentation we have that
sM /−−−→mψ[i]

/T → sM [no/g∨[mψ][i]
]/−→n /T ′ for some −→n and T and we are done. ut

3.1 Runtime costs

The monitor synthesis in Definition 4 provides a family of circuits that can be
instrumented appropriately on an arbitrary set of traces to analyze the events
occurring in them. Ideally, the runtime cost of monitoring resulting from our
constructions should be bounded by a constant that does not depend on the
parameters of the system (such as the number of available traces, or of the
events observed so far) [17]. In this way, if a monitor is launched along with the
system components, it will only induce a feasible computational overhead.

We already know that the regular monitors instrumented with individual
traces analyze the system events they observe with a constant overhead [13].
Regarding the computational cost of the circuit part, since we are given k many
traces, it must be that the necessary computation performed from a circuit
monitor can be performed in parallel, distributed over the components that
produced the traces in the first place. This means that we can only concern
ourselves with the circuit complexity [18] of a given monitor, which encapsulates
the parallel processing power necessary for its evaluation.

Monitoring hyperproperties with circuits 7

We now observe the synthesis function. There, a formula ϕ in Hyper1-
sHML will be turned into a family of circuit monitors where, for each connective
of the original formula ϕ, the output monitor increases in size based on the size
for the monitors of the sub-formulae of ϕ. However, for each connective of the
formula, the depth of the circuit is only increased by 1 which means that the
output circuit monitor has a depth bounded by the size of the formula ϕ. Since
the gates of the output monitor can have either a fixed amount of sub-gates
(∨,∧), or k many (

∨
,
∧

), we have that the output circuit is in the complexity
class AC0 [18]. Thus, the monitor only adds a constant computational overhead
when executed over the computational resources of the distributed components
of the system.

4 Conclusion and future work

We expect that the fragment Hyper1-sHML is maximal with respect to viola-
tion completeness, which means that any monitor in Cmon is monitoring for a
formula in Hyper1-sHML. However, the ultimate goal of this work is to extend
the collection of monitorable properties by allowing alternating quantifiers in the
syntax. This is a very important aspect of any work in this field, as the more
interesting hyperproperties, such as the property “at all times, if one trace en-
counters the event p then all traces do so as well” which is a necessary component
for the expression of properties such as noninference [8,15], require alternation
of quantifiers.

A way to tackle this would be to project such properties into the Hyper1-
sHML fragment. However this procedure is not formally yet defined, or trivial
and one could argue that since every hyperproperty has been shown ([9]) to
be the intersection of a liveness and a safety hyperproperty, (and since liveness
and safety properties are widely accepted as independent [3]), an elimination of
alternating quantifiers can only take place in very few cases. Thus, our main
purpose is to extend the logic and the consequent monitors in order to express
and monitor for the most general class of such properties. The main objective of
the logical fragment we give here is to establish a formal baseline which we will
attempt to extend in future work.

Our approach to an extension would be to allow a notion of synchronization
rounds among the regular monitors (or equivalently a round of communication).
This would enable more complex dependencies between traces, as now the prop-
erties required of a given trace can be impacted by the state of the ones monitored
for on a different one. However, the analysis of communications among the mon-
itors is a complicated extension, as their exact content plays a significant role to
our insight over the system, as well as the processing at runtime cost. We plan
to implement this therefore by utilizing dynamic epistemic logic [10] in order to
perform this extension formally and soundly.

8 Aceto et al.

References

1. Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and
Karoliina Lehtinen. Adventures in monitorability: from branching to linear time
and back again. Proc. ACM Program. Lang. POPL, 3(52):1–29, 2019.

2. Shreya Agrawal and Borzoo Bonakdarpour. Runtime verification of k-safety hy-
perproperties in HyperLTL. In IEEE 29th Computer Security Foundations Sym-
posium, CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016, pages 239–252. IEEE
Computer Society, 2016.

3. Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness. Distrib.
Comput., 2(3):117–126, sep 1987.

4. Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. Introduction
to runtime verification. In Ezio Bartocci and Yliès Falcone, editors, Lectures on
Runtime Verification - Introductory and Advanced Topics, volume 10457 of Lecture
Notes in Computer Science, pages 1–33. Springer, 2018.

5. Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. A theory of
design-by-contract for distributed multiparty interactions. In Paul Gastin and
François Laroussinie, editors, CONCUR 2010 - Concurrency Theory, pages 162–
176, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

6. Borzoo Bonakdarpour and Bernd Finkbeiner. The complexity of monitoring hyper-
properties. In 31st IEEE Computer Security Foundations Symposium, CSF 2018,
Oxford, United Kingdom, July 9-12, 2018, pages 162–174. IEEE Computer Society,
2018.

7. Ian Cassar, Adrian Francalanza, Claudio Antares Mezzina, and Emilio Tuosto.
Reliability and fault-tolerance by choreographic design. In Adrian Francalanza
and Gordon J. Pace, editors, Proceedings Second International Workshop on Pre-
and Post-Deployment Verification Techniques, PrePost@iFM 2017, Torino, Italy,
19 September 2017, volume 254 of EPTCS, pages 69–80, 2017.

8. Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski,
Markus N. Rabe, and César Sánchez. Temporal logics for hyperproperties. In
Mart́ın Abadi and Steve Kremer, editors, Principles of Security and Trust, pages
265–284, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

9. Michael R. Clarkson and Fred B. Schneider. Hyperproperties. J. Comput. Secur.,
18(6):1157–1210, 2010.

10. Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. Dynamic Epistemic
Logic. Springer Publishing Company, Incorporated, 1st edition, 2007.

11. Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup. Mon-
itoring hyperproperties. Formal Methods Syst. Des., 54(3):336–363, 2019.

12. Adrian Francalanza, Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Ian Cas-
sar, Dario Della Monica, and Anna Ingólfsdóttir. A foundation for runtime mon-
itoring. In Shuvendu K. Lahiri and Giles Reger, editors, Runtime Verification
- 17th International Conference, RV 2017, Seattle, WA, USA, September 13-16,
2017, Proceedings, volume 10548 of Lecture Notes in Computer Science, pages 8–29.
Springer, 2017.

13. Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. Monitorability for the
hennessy-milner logic with recursion. Formal Methods Syst. Des., 51(1):87–116,
2017.

14. Johan H̊astad. Computational Limitations of Small-Depth Circuits, volume 53.
MIT Press, Cambridge, MA, USA, 1987.

Monitoring hyperproperties with circuits 9

15. John McLean. A general theory of composition for a class of “possibilistic” prop-
erties. IEEE Trans. Software Eng., 22(1):53–67, 1996.

16. Claudio Antares Mezzina and Jorge A. Pérez. Causally consistent reversible chore-
ographies: A monitors-as-memories approach. In Proceedings of the 19th Interna-
tional Symposium on Principles and Practice of Declarative Programming, PPDP
’17, page 127–138, New York, NY, USA, 2017. Association for Computing Machin-
ery.

17. Michael O. Rabin. Real time computation. Israel Journal of Mathematics,
1(4):203–211, 1963.

18. Heribert Vollmer. Introduction to Circuit Complexity - A Uniform Approach. Texts
in Theoretical Computer Science. An EATCS Series. Springer, 1999.

10 Aceto et al.

A Appendix: cases for the proof of violation completeness

Here we give some more insight on the remaining cases of the violation com-
pleteness proof. First we highlight that the second base case of our proof, for
formulae of the form ∀πψ is completely analogous to the one we give and thus
omitted.

We will here give an important lemma necessary for analyzing both remain-
ing cases, and then present the high level details for the case of u. The intuition of
the importance of the lemma is that the monitors Syn(ϕ1) and Syn(ϕ2) should
not have their computation affected from the fact that they are run in parallel
over a set of traces T .

Lemma 1. If

– sM1
/−→m1[i] / T → s′M1

/−→m1[i]′ / T ′, and
– sM2

/−→m2[i] / T → s′M2
/−→m2[i]′ / T ′

then

– sM1∨M2
/−−→m12[i] / T → s′M1∧M2

/−−→m12[i]′ / T ′, and
– sM1∧M2

/−−→m12[i] / T → s′M1∧M2
/−−→m12[i]′ / T ′,

where −−→m12 = −→m2 ∪ −→m2 and −−→m12
′ = −→m2

′ ∪ −→m2
′ respectively.

Proof. We note here that a configuration for sM1∨M2
is identical to one for

sM1∧M2
except the root variable, as all other variables they both contain are

s′M1
∪ s′M2

.
The key aspect of this proof is the third rule of the instrumentation relation.

There we can see that in order for a configuration instrumented over a set of
regular monitors, instrumented over a set of traces, can only advance its com-
putation, if all monitors instrumented over the same trace progress with their
computation synchronously by reading the next trace event.

Thus, form the assumptions of this lemma we get that for all j = {1, . . . r},
where r is the total amount of different regular monitors occurring in M1 and
M2 the premise of our rule is satisfied and thus the cumulative configuration of
variables amounting for the union of variables of the two circuit monitors M1

and M2 (including the root variable), can perform the necessary transition to
the new state, where all regular monitors (those both from M1 and M2) assigned
to trace ti have processed the event a, and we are done. ut

Having the above lemma streamlines our inductive step for the rest of the
cases. Assuming a non-base-case formula in Hyper1-sHML we can clearly see
that it must be of the form ϕ = ϕ1 uϕ2 or ϕ = ϕ1 uϕ2. We only analyze one of
the two cases as they are symmetrical. For any set of traces T , such that T 6|= ϕ,
from the semantics of Hyper1-sHML, we have that T 6|= ϕ1 and T 6|= ϕ2.
Since the synthesized monitor for ϕ1 u ϕ2 can reach a configuration where the
values of the gates for Syn(ϕ1) and Syn(ϕ2) are the same as they would be
for the individual monitors instrumented over T , and by inductive hypothesis
(which guarantees that Syn(ϕ1) and Syn(ϕ2) are violation-complete) we have
necessary conclusion by combining the two negative verdicts of the individual
monitors via the semantics. ut

	Monitoring Hyperproperties with Circuits

