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Preface
This volume includes the abstracts that were selected for presentation at the 27th Nordic Workshop on Pro-
gramming Theory (NWPT 2015). The workshop was held at Reykjavik University in the period 21–23 October
2015 and was organized by us in cooperation with Dario Della Monica.

The event had 57 registered participants (50 of which came from abroad, giving yet another indication of
the powerful lure of Iceland as a destination for scientific events), and several talks were also attended by some
local faculty members and students who were not officially registered for the workshop. All sessions were well
attended and had lively discussions, including the very last one.

The workshop was graced by three excellent invited talks by Rocco De Nicola, Marta Kwiatkowska and Jiri
Srba, and the quality of the contributed presentations was consistently high. It was very pleasing to see many
young researchers deliver clear, well prepared and well paced presentations.

The abstracts for the contributed presentations and the slides for nearly all the talks are available at
http://icetcs.ru.is/nwpt2015/programme.html.

We thank the members of the PC for the workshop and all the participants for making NWPT 2015 a
scientifically interesting and enjoyable event.

Luca Aceto, Ignacio Fábregas, Álvaro García-Perez, Anna Ingólfsdóttir

ICE-TCS, School of Computer Science, Reykjavik University.

Technical Report RUTR-SCS16001 School of Computer Science
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Languages and Models for Collective Adaptive Systems

Rocco De Nicola

IMT Lucca, Italy

Abstract

Collective Adaptive Systems (CAS) are systems that consist of a large number of interacting com-

ponents that dynamically adjust and combine their behaviour to achieve specific goals. We propose a

set of programming abstractions that have been specifically designed to deal with CAS, and with their

need to adapt to the changes of the working environment and to the evolving requirements. Based on

these abstractions, we introduce SCEL (Software Component Ensemble Language), a kernel language

whose solid semantic foundations lay also the basis for formal reasoning on CAS. One of the key feature

of SCEL is the so called attribute-based communication, an alternative to broadcast and to binary com-

munication. Building on this, we introduce also a basic process calculus, named AbC, whose primary

primitive for interaction is exactly attribute-based communication. An AbC system consists of a set

of parallel components each of which is equipped with a set of attributes. Communication takes place

in an implicit multi-cast fashion, and interactions among components are dynamically established by

taking into account connections as determined by predicates over the attributes exposed by compo-

nents. Expressiveness and effectiveness of AbC are demonstrated both in terms of the ability to model

scenarios featuring collaboration, reconfiguration, and adaptation and of the possibility of encoding a

process calculus for broadcasting channel-based communication and other communication paradigms.

Behavioural equivalences for AbC are introduced for establishing formal relationships between different

descriptions of the same system.
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Computing Reliably with Molecular Walkers

Marta Kwiatkowska

University of Oxford, UK

Abstract

DNA computing is emerging as a versatile technology that promises a vast range of applications, in-

cluding biosensing, drug delivery and synthetic biology. DNA logic circuits can be achieved in solution

using strand displacement reactions, or by decision-making molecular robots-so called ’walkers’-that

traverse tracks placed on DNA ’origami’ tiles.

Similarly to conventional silicon technologies, ensuring fault-free DNA circuit designs is challenging,

with the difficulty compounded by the inherent unreliability of the DNA technology and lack of sci-

entific understanding. This lecture will give an overview of computational models that capture DNA

walker computation and demonstrate the role of quantitative verification and synthesis in ensuring the

reliability of such systems. Future research challenges will also be discussed.

1
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Techniques and Tools for the Analysis of Timed Workflows

Jiri Srba

Aalborg University, Denmark

Abstract

Analysis of workflow processes with quantitative aspects like timing is of interest in numerous time-

critical applications. In this talk, I will suggest a workflow model based on timed-arc Petri nets and

study the foundational problems of soundness and strong (time-bounded) soundness. We will explore

the decidability of these problems and show, among others, that soundness is decidable for monotonic

workflow nets while reachability is undecidable. For general timed-arc workflow nets soundness and

strong soundness become undecidable, though we can design efficient verification algorithms for the

practically interesting subclass of bounded nets. Finally, I demonstrate the usability of the theory

on a few case studies of a Brake System Control Unit used in aircraft certification, the MPEG2 en-

coding algorithm, a blood transfusion workflow and a home automation system for a family house.

The implementation of the algorithms is freely available as a part of the model checker TAPAAL

(www.tapaal.net¡http://www.tapaal.net¿).
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Limitations of Non-Interference

Flemming Nielson Hanne Riis Nielson Ximeng Li

DTU Compute, Technical University of Denmark, Denmark

{fnie,hrni,ximl}@dtu.dk

Submitted to NWPT 2015

Abstract

We show that non-interference falls short of providing a convincing se-
mantic characterisation of information flow policies for confidentiality and
integrity and motivate an approach based on instrumented semantics.

Introduction. We have been working with Airbus on developing security poli-
cies for dealing with the challenges of communication between security domains
subject to strict safety concerns, and in the course of this work we have uncov-
ered a limitation of non-interference in establishing convincing semantic char-
acterisations of the required security policies. In this paper we illustrate this
limitation on an utterly simple example and discuss ways of providing alternate
semantic characterisations more acceptable to our industrial partners.

An illustrative example. Let us consider a simple process D that takes
inputs a, b, and c, and produces outputs d1=a+b and d2=b*c.

1 process D

2 begin

3 input(a,b,c);

4 d1:=0; d2:=1;

5 d1:=d1+a; d2:=d2*b;

4 d1:=d1+b; d2:=d2*c;

7 output(d1,d2)

8 end

In the full development, the inputs would be received from other parallel pro-
cesses and the outputs would be delivered to other parallel processes. Here
we simply assume that the variables a, b, c belong to the processes A, B, C,
respectively, and that the variables d1 and d2 both belong to the process D.

1
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Security policies. Motivated by the Decentralized Label Model [3] the secu-
rity policies of interest have two components. One component, R, tracks where
the values of variables are allowed to flow and is useful for dealing with confiden-
tiality; we shall say that it tracks the readers of variables. The other component,
I, tracks what might have have influenced the values of variables and is useful
for dealing with integrity; we shall say that it tracks the influencers (or writers)
of variables. It is natural to require that X ∈ R(x) and X ∈ I(x) whenever the
variable x belongs to the process X, and an example security policy might be
given by the following definition of R and I:

a b c d1 d2

R A,D B,D C,D D D

I A B C A,B,D B,C,D

Typing the example. To analyse the example we need to define R(x) and
I(x) for all variables in such a way that they satisfy conditions imposed by a
type system that are intended to ensure that the annotations are correct. In
our extremely simple program there are two principles for ensuring this.

One concerns assignments of the form x:=y1#y2 where # is one of the
operators + or *. For confidentiality is is natural to impose that R(x) ⊆ R(y1)∩
R(y2), or equivalently R(x) ⊆ R(y1) ∧ R(x) ⊆ R(y2), because one should not
allow any readers beyond those allowed by both y1 and y2. For integrity it is
natural to impose that I(x) ⊇ I(y1)∪I(y2), or equivalently I(x) ⊇ I(y1)∧I(x) ⊇
I(y2), because one should not forget any of the influencers of y1 and y2.

The other principle concerns assignments of the form x:=c where c is a
constant. These are always acceptable. To fit the model of the previous case
we might say that R(c) = U and I(c) = ∅ where U = {A, B, C, D} is the universe
of all processes and ∅ is the empty set.

The definition of R and I expressed in the Table above satisfies the con-
straints imposed by our example program and is in line with the Decentralized
Label Model [3].

Non-Interference. We would imagine that our parallel language is equipped
with an operational semantics. Configurations might take the form 〈S, σ〉 indi-
cating that the system S of parallel processes is currently executing from the
store σ. There would then be a transition relation 〈S, σ〉 → 〈S′, σ′〉 indicat-
ing that one step of evaluation transforms 〈S, σ〉 into 〈S′, σ′〉. We do not have
the space to present the details of this transition relation nor to discuss the
possibility of labelling it (as is often done to deal with communication).

The non-interference approach to the semantic characterisation of a security
policy then introduces the following notions to be defined below: S1 ' S2 for
when one system (S1) is similar to another (S2), σ1 ∼= σ2 for when one store
(σ1) is close to another (σ2), and a notion of when a variable is low.

Unlike the case of bisimulations, the simulation relation ' is not necessarily
reflexive, and the correctness of a type system amounts to ensuring that S ' S
whenever the system S is admitted by the type system.

2
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We now provide the definitions of the three notions introduced. The system
S1 is similar to another S2, written S1 ' S2, whenever 〈S1, σ1〉 → 〈S′1, σ′1〉,
σ1 ∼= σ2, and 〈S2, σ2〉 → 〈S′2, σ′2〉 ensure that S′1 ' S′2 and σ′1 ∼= σ′2, and vice
versa. This definition is recursive and needs to be interpreted co-inductively in
the usual manner of bisimulations.

The store σ1 is close to another σ2, written σ1 ∼= σ2, when they agree on all
low variables: σ1(x) = σ2(x) whenever x is low. A variable x is said to be low
if its security level L(x) (either R(x) or I(x) in our case) is dominated by some
security value ` (a subset of U in our case) according to some partial order v
(being ⊇ for R and ⊆ for I). The key property is that the set of low variables
is closed under reducing the security classification under the partial order v.

Most proofs of correctness [5] of a type system with respect to non-interference
then rely on the type system ensuring that whenever y is somehow used in defin-
ing x (either explicitly or implicitly) then L(y) v L(x). This is fully in line with
our explanation of typing the example above.

Limitations of Non-Interference. The above explanation uses lattice du-
ality in sometimes choosing v to be ⊆ and sometimes ⊇. Let us rephrase the
confidentiality component so that we can always use ⊆ for v.

This amounts to replacing R(x) with its complement R(x) = U \R(x). The
conditions imposed by typing are then changed to R(c) = ∅ whenever c is a
constant and to demanding R(x) ⊇ R(y1)∪R(y2) for an assignment x:=y1#y2.
Intuitively, R(x) lists those processes not allowed to read x. Our typing becomes:

a b c d e

R B,C A,C A,B A,B,C A,B,C

I A B C A,B,D B,C,D

In other words we have explicitly replaced the lattice for R with a dual lattice
for R which is unsurprising from a lattice theoretical point of view and quite
in line with the usual statements of information flow that integrity is the dual
of confidentiality (and used to motivate that technical developments often only
focus on confidentiality).

So what is the point?
The point is that with this change the formal definition of non-interference is

the same, symbol for symbol, for integrity as for confidentiality, and that there
is not even the need to perform dual choices of the partial order.

What does this mean?
It means that while the non-interference result produces some validation of

the type system against errors, it has no way of expressing whether or not I(x)
denotes the set of influencers of x, or rather the set of processes not allowed to
read x; similarly for R(x). In other words:

Non-interference is unable to express the correctness of the intuitive
explanations of what the security policies for influencers and readers are
supposed to capture.

3
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Instrumented Semantics. In our work with Airbus we are using ideas from
program analysis in order to overcome the limitations of non-interference. In
particular the use of an instrumented operational semantics where each tran-
sition is labelled with the flow taking place. In the case of an assignment
statement performed by process Z we would have the following transition:

〈x:=y1#y2;S, σ〉 →(y1,x),(y2,x),(y1,Z),(y2,Z),(Z,x) 〈S, σ[x 7→ σ(y1)#σ(y2)]〉

Here the subscript on the arrow indicates that both y1 and y2 are involved in
producing x. Additionally we record that the process Z is reading y1 and y2
and is influencing (writing) the variable x. The full semantics would extend
this to the other constructs in our parallel programming language and deal with
both explicit (as illustrated) and implicit flow (not illustrated here).

In the full development we will allow policies to be influenced by the values
of variables, so as to model content-dependent security policies. Much as in a
Hoare logic [1] there would then be a policy (I,R) pertaining to the program
point before the action and a possibly different policy (I ′, R′) pertaining to the
program point after the action.

The semantic correctness of the security policies with respect to a system S
is then expressed by requiring that whenever

〈S, σ〉 →∗··· 〈S′, σ′〉 →F 〈S′′, σ′′〉

then we insist for the security policy (R, I) before the action and the security
policy (R′, I ′) after the action, that the following property

(R, I) . F / (R′, I ′)

holds. It is defined as follows:

• whenever (Z, x) ∈ F we have Z ∈ I ′(x),

• whenever (y, Z) ∈ F we have Z ∈ R(y), and

• whenever (y, x) ∈ F we have I(y) ⊆ I ′(x) and R′(x) ⊆ R(y).

This formulation makes it clear that constraints regarding influencers flow in
the forward direction whereas constraints regarding readers flow in the backward
direction. In this way we would be thinking of integrity as a forward analysis
problem (like reaching definitions [4]) and confidentiality as a backward analysis
problem (like live variables). This formulation clearly indicates the different
directions of flow needed for formalizing integrity and confidentiality.

Conclusion. We have shown that non-interference falls short of providing
convincing semantic explanations of the correctness of security policies for con-
fidentiality and integrity as found in information flow frameworks like the De-
centralized Label Model [3].

4
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This contradicts conventional wisdom in the area of security policies for
information flow. To quote an anonymous reviewer on a paper lacking a non-
interference result: “My main complaint is the independence of the annotations
from the actual semantics of the program and the non-interference properties it
may have.”

This may be contrasted with the approach of static analysis where hardly
any non-interference results are proved. To quote an international reviewer on
a project attempting to establish such results: “Non-interference is a rather
restrictive property so I am not totally convinced that one should start with it
as a requirement.”

Our proposal therefore is to provide convincing semantic explanations of the
correctness of security policies for confidentiality and integrity using suitably
instrumented versions of an operational semantics.

Acknowledgement. We are supported by IDEA4CPS [2] and benefitted from
discussions with Michael Paulitsch and Kevin Müller from Airbus.
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Towards Component-based Reuse for Event-B

Andrew Edmunds1, Marina Walden1, and Colin Snook2

1 Åbo Akademi University, Turku, Finland
aedmunds@abo.fi, mwalden@abo.fi

2 University of Southampton, UK cfs@ecs.soton.ac.uk

Abstract: An efficient re-use mechanism is a primary goal of many software development
strategies; and is also important in the safety-critical domain, where formal development is
required. Event-B can be used to develop safety-critical systems, but could be improved by
development of a component-based re-use strategy. In this paper we outline a methodology, and
the tool support required, for facilitating re-use of Event-B machines. As part of the ADVICeS
project [10] we are seeking to improve re-use of Event-B artefacts. The creation of a library of
components, and a way to assemble them, would facilitate this. We propose to extend iUML-B
class diagrams [9], and extend the composition techniques introduced in [7], to allow speci-
fication of Event-B components, interfaces, and composite components. Initial investigation
has been undertaken as part of the project ADVICeS, funded by Academy of Finland, grant
No. 266373. The approach also addresses the need, in Event-B, for bottom-up scalability.
We describe the process of creating library components, their composition, and specification of
new properties (of the composed elements). We introduce the notion of Event-B components,
component interfaces, and composite components. We describe the additional annotations, and
discuss composition invariants.

1) Preliminaries
Event-B is a language and methodology [1, 2], with tool support provided by Rodin [3]. The
system and its properties are specified using set-theory and predicate logic. It uses refine-
ment [6] to show that the properties hold as the development proceeds. Refinement is used to
add detail to the development. Event-B tools are designed to reduce the amount of interac-
tive proof required during specification, and refinement steps [4]. Proof obligations (P.O.s) in
the form of sequents, are automatically generated by the Rodin tool. The automatic prover
can discharge many of the P.O.s. The remainder can be tackled with the interactive prover.
Complex systems can be simplified using decomposition techniques [8].

The basic Event-B elements are contexts, machines and, composed-machines. Contexts
define the static parts of the system using sets, constants and axioms. Machines describe the
dynamic parts of a system using variables and events, and use invariant predicates to describe
properties that should hold. We specify an event in the following way,

e , ANY p WHERE G THEN A END

where e has parameters p; a guarding predicate G; and actions A. For the state updates
(described in the action) to take place, the guard must be true.
The Composition of Decomposed Machines: Previous work [7] describes the composition
that arises from the decomposition of a single machine. Multiple, decomposed sub-units, and
the composed-machine construct, form a refinement of the abstract machine. We use the shared-
event approach for decomposition, where the combined-events clause, of the composed-machine,
refines an abstract event e. We write ea‖eb to combine events ea and eb, where subscripts a and
b also identify the sub-units (machines). These events are said to synchronize (i.e., the events
are enabled) when the conjunction of the guards are true. The combined actions are composed
in parallel.

1
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Towards Component-based Reuse for Event-B Edmunds, Walden and Snook

Cm

Machine

Library Machine Component

Composed Machine
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synch1R

synch2R

L2...........
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synch3

Cc
Cc

Library Composed Component

Figure 1: Machines “Included” in a Composition

Figure 2: The FIFO Buffer Component

2) Composition with Components
By extending existing techniques, we aim to facilitate creation/use of a library of machines.
Figure 1 shows a composed-machine Cm that includes library machine components L1 and L2,
and machines under construction M . Combined-events are shown using a dashed line between
the machines. An interface reveals a set of events that may synchronize with some other
machines, annotated with i against the event. See Fig. 2, an extended version of an existing
iUML-B class diagram [9]. For parameter passing, the names and types of the communicating
parameters are revealed, using ? and ! for input and output resp. A composed-machine may
also be treated as a library component.

Using Component Instances: The component defined in Fig. 2 may be used to buffer data
for producer and consumer models, see Fig. 3, a new diagrammatic representation in Event-B.
Here, arrows represent associations, and dashed lines represent combined events.

The Composition Invariant: Each individual machine has its own set of invariants, and the
composed-machine has composition invariants which specify properties about the composition.
These properties cannot be specified in the individual machines. The composed machine needs
visibility of all of the variables contained within the composition, and their included sets and
constants. To ensure the composition invariant is satisfiable, we should add a guard GCI to
the composed event, but currently there is no feature in the tool to do this. The guards that
preserve the new composition invariant can be added to the composed-machine’s combined
event clause, subject to a tool enhancement. The guard will be added as follows,

ea ‖ eb , ANY pa, pb WHERE GCI(v) ∧ Ga ∧ Gb THEN Aa ‖Ab END

In the example we may want the fifo buffer f1 to hold odd numbers, and f2 to hold even
numbers. This is a property of the composition, and should be specified in the composition
invariant clause. To specify this, we add an invariant, stating that all of the values in the
producer’s f1 buffers must have mod 2 of 1, and the values of the f2 buffers must be mod 2 of
0; as in the following,

∀p·p ∈ dom(f1) =⇒ (∀v ·v ∈ ran(buffer(f1(p))) =⇒ v mod 2 = 1)
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FIFO Combined Events:
a) Producer.inToBuffOK1 || FIFO.inToBuffOK
b) Producer.inToBuffOK2 || FIFO.inToBuffOK
c) Producer.inToBuffFail1 || FIFO.inToBuffFail
d) Producer.inToBuffFail2 || FIFO.inToBuffFail
e) Consumer.retrvFromBuffOK || FIFO.retrvFromBuffOK
f) Producer.generateProducer

a c

Consumer

FIFO

b d

f

Consumer

e

e

f1 f2

fifo

fifo

Figure 3: Component Instance Diagram

Proof Obligations We propose to take a Design-By-Contract (DBC) [5] view for input and
output parameters. In our work the input and output parameters, and their type and direction
information, form part of the interface specification. Using this, we can ensure that matching
parameter’s output values fall within the range of the allowable inputs, by generating proof
obligations.

3) Conclusions
In order to make the Even-B approach more flexible, we propose an extension to the existing
composition approach, to introduce Event-B components. We add input, and output speci-
fiers, “?” and “!” to event parameters, and extend iUML-B to describe components, and their
interfaces. We add annotations, to identify externally visible events, while the remainder are
hidden. We ensure communication is feasible, by generating additional precondition-style proof
obligations; and provide a mechanism to add additional guards, to discharge the composition
invariant proof obligations. We plan to investigate the use of components w.r.t. team-working.
The parallel development of components, and artefacts within components, is key to making
Event-B more agile.
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Exploring the state space of a multithreaded program in an efficient manner is a fundamen-
tal problem in software verification. Concurrent transitions interleave in many ways quickly
generating many equivalent but unequal states leading to the well known state space exposition
problem. Two prominent approaches to deal with this problem are partial order reduction
techniques (PORs) and unfoldings methods.

PORs techniques [1, 3, 4, 10] establish an equivalence relation between executions of the
programs and explore a subset of all possible interleavings preserving at least one representative
per equivalence class. At every state, they execute a subset of active or enabled transitions;
those transitions can be computed statically [4] or dynamically [3]. Recently, an improvement
to these methods have been proposed leading to an optimal PORs in the sense that exactly
one execution is explored for each Mazurkiewicz trace [1] . All these approaches represent the
possible executions of the program as a computation tree and prune some of its branching (once
an equivalent branch has already been visited).

Unfoldings techniques [5, 6] models executions with partial orders together with a conflict
relation to distinguish between different executions of the system. Both PORs and unfoldings
techniques have shortcomings, but surprisingly, promising solutions for a given technique can
be found in the opposite approach. For example PORs inexpensively add events to the cur-
rent execution while computing possible extensions is the most demanding part of unfoldings
techniques; on the other hand, explorations of repeated states and pruning of non-terminating
executions is elegantly achieved in unfoldings with cut-off events.

The advantages of both approaches have been exploited together for the first time in [9]
where they propose a technique that matches the test suite size of [1] but it explores an event
structure rather than a computation tree. The former has a richer structure provided by a
tree-like structure of partial orders. The use of partial order avoids the explicit enumeration
of the order between concurrent or independent transitions of the program. The use of event
structures suggests that improvements can be done to generate further reductions if we just
intend to preserve local reachability [5].

Formally, an event structure is a tuple formed by a set of events E, a partially ordered
relation ≤ called causality (representing dependencies) and a symmetric and antireflective rela-
tion # called conflict which is inherited w.r.t causality, i.e. e1 ≤ e2 and e1#e3 implies e2#e3.
Events not related by ≤ or # are called concurrent. The executions of an event structure are
captured by its configurations, a causally-closed and conflict-free subset of events. Figure 1
shows the Hasse diagram of an event structure with nine events (transitive causalities or inher-
ited conflict are removed for clarity); every event depends on ⊥, e.g. ⊥ ≤ 1 and ⊥ ≤ 4 (since ≤
is transitive); events 1 and 3 cannot belong to a same configuration since they are in conflict,
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i.e 1#3; events 1 and 5 are concurrent. This event structure has four maximal configurations{⊥,1,2,5,6},{⊥,1,2,7,8},{⊥,3,4,5,6} and {⊥,3,4,7,8}.
The unfoldings semantics of a program can be expressed as an event structure [9]; while inde-

pendent1 transitions give rise to concurrent events, dependent ones generate causally dependent
or conflicting events depending if they belong or not to the same execution. Figure 1 shows a
program with 4 threads accessing two global variables x and y; each pair of threads access a
single variable by reading or writing it. Clearly the access to different variables is independent,
thus x = 5 ◇ y = 1, x = 5 ◇ c = y, b = x◇ y = 1 and b = x◇ c = y; access to the same variable are
dependent, i.e. x = 5 } b = x and y = 1 } c = y. The unfolding semantics of this program is
given by the event structure of Figure 1. Each of the four maximal configuration corresponds to
a deadlocking execution of the program. For example the configuration {1,2,5,6} corresponds
to the execution where variable x is written and then read followed by variable y being written
and read.

Global variables:

int x,y = 0;

Thread 1: Thread 2: Thread 3: Thread 4:

local b = x; x = 5; local c = y; y = 1;

⊥
3

b = x
4

x = 5

1x = 5

2b = x
5
y = 1

6
c = y

7 c = y
8 y = 1

Figure 1: A multithreaded program and its unfolding semantics.

The optimality of [1, 9] states that no algorithm can explore less executions while preserving
all Mazurkiewicz or deadlocking traces. If one instead targets at covering all local states of
threads (which is sufficient to test for example local properties), it is not necessary any more
to execute all Mazurkiewicz traces, but to cover every event of the event structure [5]. While
computing the minimal set of executions to cover every local state is a very hard problem [8],
we are interested at techniques that generate further reductions than those of [1, 9]. For the
program generating the event structure of Figure 1, both optimal PORs explore four executions
corresponding to the four maximal configurations. However if we are interested just in covering
all the possible values local variables b and c might have, it is sufficient to explore only two
executions, for example, all read transitions first in one execution and all write transitions first
in another one. The first execution covers events 3,4,7,8 while the second one covers 1,2,5,6.
To achieve this kind of reduction, we propose to use local first search [2, 7] on top of the
unfolding-based PORs.

Local first search (LFS) was designed to optimize the search for local properties in transitions
systems. The technique characterizes a restricted subset of traces that need to be explored to
check local properties. For an event structure this means that only maximal events and their
causal predecessors (those are called local or prime configurations) need to be explored. Since

1The independence relation arising from the program is denoted by ◇; while its complement (the dependence
relation) is denoted by }.
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the POR algorithms does not have complete information about the whole event structure (the
event structure is constructed while the program is “being unfolded”), LFS performs an analysis
to detect non prime configurations as soon as possible to avoid their exploration. This is based
on a combinatorial aspect of the independence alphabet of the program. While the unfolding-
based POR algorithm could explore the execution 1 ⋅ 5 ⋅ 2 ⋅ 6, we can detect (adding LFS) that
the sub-configuration {1,5} does not lead to a prime configuration and stop the exploration.
Unfolding-based POR with LFS only explores the executions 1⋅2,3⋅4,5⋅6 and 7⋅8. This approach
explores shorter or smaller configuration, but still four executions are needed. However, it can
be observed that those four configuration can be merged into, for example, 1 ⋅2 ⋅5 ⋅6 and 3 ⋅4 ⋅7 ⋅8,
but doing this during the exploration needs further algorithmics. This is similar to the problem
of obtaining the minimal test suite to test a multithreaded program [8].

While [5] generates further reductions in the number of executions than the PORs tech-
niques, it still relies on the construction of a Petri net unfolding and as such it suffers the
computational cost of computing possible extensions. Since LFS can be used on top of the
POR technique from [9], we believe this approach generates a good trade-off between the re-
duction in the size of the obtained test suite and the computational cost of the exploration.
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1 Introduction

Normative contracts are documents written in natural language, such as English or Swedish,
which describe the permissions, obligations, and prohibitions of two or more parties over a set of
actions, including descriptions of the penalties which must be payed when the main norms are
violated. We encounter such texts frequently in the form of privacy policies, software licenses,
and service agreements. These kinds of contracts are often long and difficult to follow for non-
experts, and many people agree to such legally-binding documents without even reading them.
Our goal is to provide front-end tools for analysing real-world contracts using formal methods.
This involves a number of different components, ranging from entity extraction in natural
language, the choice and design of a formalism for modelling contracts, textual and visual
interfaces for working with contract models, query answering based on syntactic traversal and
verification of temporal properties via conversion to timed automata.

2 Front-end

2.1 Extracting partial models

We have built a tool which takes a contract written in English and tries to extract various bits of
information from it, in order to bootstrap the modelling process. It uses the Stanford parser [3]
to produce dependency trees which we then analyse using some custom heuristics. This involves
using the semantic relations between words to determine the subject, object, verb, modality
and other elements from each sentence in the contract. After some manual post-editing, the
tool’s tabular output can be automatically converted to a model in our formalism. Our initial
experiments show that the approach is already quite promising, both in terms of accuracy and
in the reduction of effort involved for building a contract model.

2.2 Working with models

Diagram editor We visualise contract models as tree-like C-O Diagrams [4], an example of
which can be seen in Figure 1. We have a web-based tool for working with these diagrams using
a drag-and-drop interface along with real-time validation, in order to help the user build syntac-
tically correct diagrams. The tool can import from and export to our XML-based interchange
format COML.

CNL A controlled natural language (CNL) is a smaller, unambiguous and formally definable
subset of a natural language. CNLs can be particularly useful for specific domains where the
coverage of full language is not needed, or when it is possible to abstract away from some
irrelevant aspects. We have defined a CNL for our contract models [2], implemented using the
Grammatical Framework [6]. Figure 1b shows an example of what a contract clause looks like

1

16 Aceto et al.

Reykjavík University



Modelling and analysis of normative contracts Camilleri and Schneider

client

t_payRight<30

Obligation
refund

abort chooseCoffeeMilk

choose coffee

with milk

chooseCoffee

choosing

OR OR OR

choose

coffee
press

abort

(a) C-O Diagram

choosing : when clock t_payRight less than 30

↪→ client is required

- abort : to press abort , or

- chooseCoffeeMilk : to choose coffee with

↪→ milk , or

- chooseCoffee : to choose coffee

otherwise see refund

(b) CNL linearisation

Figure 1: Example of visual and textual representations of an obligation clause.

in this language. As with the diagram editor, we also have a web-based CNL editing tool which
comes with syntax checking, inline completion and basic highlighting to aid the user. It too can
import and export to the COML format, enabling the user to switch back and forth between
editing views.

All these tools are accessible at http://remu.grammaticalframework.org/contracts/.

3 Contract formalism

The formalism we use for modelling contracts is based on C-O Diagrams [4]. To this we have
made a number of syntactic extensions, including a distinction between conditions for enactment
and expiry, and the addition of generalised predicates as guards. Our largest contribution has
been the definition of a completely novel trace semantics for C-O Diagrams, which formally
defines what sequences of events can satisfy or violate a given model. We have also worked on
a full back-end implementation in Haskell which, by parsing COML files into abstract contract
models, can perform the kinds of analysis described in the following section.

4 Analysis

Syntactic Some queries can be checked at a syntactic level, such as identifying obligations
without constraints or reparations. We introduce predicates over single clauses, which are
the building blocks for defining syntactic properties. The predicate isObl(C ) for example is
true if the clause C is an obligation. Predicates may also take additional arguments, such as
fromAgent(a,C ), which is true if agent a is responsible for clause C. Full queries can then be
built out of these predicates, and a querying function returns the set of all clauses that satisfy
the predicate. This function is defined inductively on the structure of contract models.

Semantic Syntactic analysis alone cannot be used to answer queries about the reachability
of a given state. This requires taking into account the conditions applied to each clause, as
well as a possible trace of previous events. These kinds of properties are computed using model
checking. To do this, we convert contract models into networks of timed automata (NTA) [1]
— finite state automata extended with guarded transitions, real-time clocks, and channel-based
synchronisation between parallel automata (see example in Figure 2).

Using the Uppaal tool [5], we can then test liveness and safety properties on our translated
model using Uppaal’s requirement specification language, which is a subset of TCTL including
operators for possibly (E♦) potentially always (E�) and eventually (A♦). This language allows
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Figure 2: One of the automata produced from the translation of C-O Diagram 1a.

us to test for unexpected or undesirable situations which may potentially arise in the execution
of a contract. These properties must be written and tested directly in Uppaal by the user.

Case studies We have applied our methods to a few smaller case studies, including the terms
of service for GitHub, Inc.1 and a service-level agreement from hosting company LeaseWeb Inc.2

5 Future work

The largest piece missing from this work is the connection between high-level user questions
in natural language and the low-level specification languages used for analysis. For this, we
will define a query language (similar to the CNL described above) which can help users build
properties for contract analysis by using a human-friendly interface. This will involve classifying
the different queries we wish to allow, a method for converting these into logical properties using
information from the translation into automata, and using the results of the analysis to produce
properly formulated answers to the original query in natural language.
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1 Introduction
In [9] we presented an approach to permission-based reasoning about concurrent Java programs
in the context of the interactive program verifier KeY [1] which is based on Dynamic Logic and
explicit dynamic frames [6, 13]. We argued for the explicit approach advocating the modular use
(w.r.t. sequential vs. concurrent) and overall preciseness. It was noted, however, that changing
our specification and verification approach to an established one of implicit dynamic frames
(IDF) [11] should be also possible. In consequence, this would allow us to translate Separation
Logic (SL) specifications [12, 2] into our framework to provide a powerful interactive theorem
prover support for SL-like formalisms. In this context, we present some of the challenges
associated with transition to implicit frames in KeY and possible solutions.

2 Permission-based Reasoning with Explicit Frames
public class ArrayList {
Object[] cnt; int s;
//@ model \locset fp = s, cnt, cnt[*];

//@ ensures \result == s;
//@ accessible fp;
/*@ pure @*/ int size() { return s; }

//@ ensures size()==\old(size()) + 1;
//@ assignable fp;
void add(Object o) { cnt[s++] = o; } }

Figure 1: A simple array list specified
(incompletely) with explicit frames.

As originally proposed in [6], the essence of specify-
ing and reasoning about programs using explicit dy-
namic frames is the introduction of locations sets into
the specification language as first class citizens and
allowing them to be embedded within abstract predi-
cates. In the KeY verification system which uses spe-
cially crafted Dynamic Logic for Java, this gives rise to
JML∗ specification language that introduces locations
sets to the classic JML syntax [7] and the Dynamic
Logic is equipped with means to reason about them.
A classical, albeit minimalistic example of a Java pro-
gram annotated with JML∗ specification is shown in
Fig. 1. The essential parts of this specification are
frames, here expressed using abstraction through the
JML model field fp. A read frame is specified with the accessible clause, and a write frame
is specified with the assignable clause. As all other specifications, both clauses are effectively
lemmas. Consequently, one is obliged to show that the lemma holds by showing that the corre-
sponding method adheres to the limits of the frame, and then the lemma can be used to support
proofs that involve the use of the method. For mutator methods the assignable clause is used
to anonymise/havoc the corresponding locations of the program when the method is modularly
applied in the proof to discharge a method call, while the accessible clause is used to establish
the equivalence of two expressions under two different states when the expression is known,

∗This work is supported by the Swedish Knowledge Foundation grant for the AUTO-CAAS project.
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according to the read frame, not to depend on the locations changed between the two states.
In our example, size() is guaranteed to always evaluate to the same value in all states in which
s is not changed. In the Dynamic Logic for Java used by the KeY verifier suitable mechanisms
are devised to both show the framing lemmas to hold and to use them in the proofs [13].

public class ArrayList {
Object[] cnt; int s;
//@ model \locset fp = s, cnt, cnt[*];

//@ requires \readPerm(\perm(s));
//@ ensures \result == s;
//@ accessible<heap> fp;
//@ accessible<perms> \nothing;
/*@ pure @*/ int size() { return s; }

//@ requires \readPerm(\perm(cnt));
//@ requires \writePerm(\perm(s));
//@ requires \writePerm(\perm(cnt[s]));
//@ ensures size() == \old(size()) + 1;
//@ assignable<heap> fp;
//@ assignable<perms> \nothing;
void add(Object o) { cnt[s++] = o; } }

Figure 2: Explicit frames specification
with permissions.

To verify concurrent behaviour, a convenient ap-
proach is to annotate programs with permission ex-
pressions, typically based on fractions [4], to guard
every memory location access. A full permission
grants a write access, while a partial permission
grants only a read access. The construction of the
verification method and the permission manipula-
tion system guarantee that verified programs are
data-race free. Typically, an SL-like framework is
used for verification, among them IDF method of
the Chalice verifier [8].

To enable permission-based reasoning in KeY
without going too far away from its existing explicit
frames framework, we add a second heap to track
permissions and extend framing to that heap. In
Fig. 2 a specification extended this way is shown.
Most notably, heaps are now named explicitly in
the specification (heap and perms) and are both
given separate framing specifications. In most cases
permission frames are actually empty, but not for
methods and programming constructs that transfer permissions, e.g., mutual exclusion or shar-
ing locks used to access another thread’s data. Additionally, in KeY we opted for developing a
symbolic permission framework1 [5] as an alternative to fractional permissions. The verification
logic of KeY extends naturally to deal with the extra permission heap and methods are provided
to enable fully modular and abstract specifications for the whole framework [9].

3 Transformation to Implicit Dynamic Frames
In [11] it has been shown that IDF and SL are essentially equivalent w.r.t. expressiveness of
specifications. Hence, here we concentrate on the task of treating IDF-style specifications in
our framework.

The key observation in our explicit methodology is that because of the the use of permission
annotations in specifications, particularly in preconditions, and verifying the code against these
annotations, the assignable and accessible clauses are in essence obsolete. That is, the precondi-
tion provides the complete framing information for a given method – a read permission indicates
that a method might be accessing a heap location (previously indicated in the accessible clause)
and the write permission indicates that a method might be modifying a heap location (previ-
ously indicated in the assignable clause). More importantly, no heap location access (read or
write) in the code would be allowed without a corresponding permission annotation, hence the
permission annotations provide complete and sound framing specification. Dropping the frame
specifications for the regular heap means two things. First, the frames do not have to be shown
to hold in a separate proof obligation, the checking of the program w.r.t. the specified access

1Here the details of this permission system are not really relevant, the important part is that we can specify
a permission to be a read or write permission, and that permissions can be transferred.
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rights establishes the adherence to frame specification given by permission annotations. Second,
it becomes a bit more difficult to apply modular method dispatch based on framing information,
as the frames are not specified directly. The solution to this is to build the frame dynamically
on demand using almost the same mechanism as we have presented in [9] to show self-framing
of specifications w.r.t. permissions. For the assignable frame, a formula of the following shape
is constructed: pre ∧ ∀o:Object,f :Field (writePerm(o.f@perms) → (o, f) ∈ writeFrame), where
writeFrame is a fresh function symbol that collects all the heap locations for which we can show
a write permission assuming that the method’s precondition pre holds. The writeFrame can
then be used in modular method dispatch.

public class ArrayList {
Object[] cnt; int s;

//@ requires \readPerm(\perm(s));
//@ ensures \result == s;
//@ ensures \samePerm(\perm(s));
/*@ pure @*/ int size() { return s; }

//@ requires \readPerm(\perm(cnt));
//@ requires \writePerm(\perm(s));
//@ requires \writePerm(\perm(cnt[s]));
//@ ensures size() == \old(size()) + 1;
//@ ensures \samePerm(\perm(s));
//@ ensures \samePerm(\perm(cnt));
//@ ensures \samePerm(\perm(cnt[s]));
void add(Object o) { cnt[s++] = o; } }

Figure 3: IDF specification in JML∗.

However, the frames to the permission heap
perms cannot be simply dropped in the same way
without consequences for the specification method
and patterns. The main reason is that the presence
of a given permission in the specification does not,
in general, imply that the permission heap perms is
accessed or modified within the body of the method.
In fact, the most common case is that a permission
is present in the specification to allow a correspond-
ing access on the regular heap, while the permis-
sion heap itself stays unchanged. Yet, assuming a
frame for the perms heap as described above for the
regular heap is the minimal sound approach if the
frame is not to be stated explicitly. The resulting
over-approximation of the permission frame can be
mitigated on the specification level by specifying for
each permission whether it is changed (and how) or
not. In the latter case we propose to use a new keyword \samePerm. Figure 3 shows the
specification of the program in Fig. 2 modified to suit the implicit frame specification approach
following the ideas just described. The need to specify all permissions in postconditions to
enable precise reasoning is not surprising – all SL-like specifications are required to do so.

The implicit framing brings another small over-approximation issue. A write permission in
the method’s precondition implicates a corresponding location to be in the assignable clause of
the method, while in reality the method might be only reading the location. Methods under-
specified like this cannot be considered pure, despite being so. To check that this situation does
not occur, an additional proof obligation in Java Dynamic Logic could be devised.

4 Conclusion
We presented the preliminary ideas for supporting IDF-style specifications in JML∗ and the
KeY program verifier for Java. As the explicit frames approach is deeply embedded in the KeY
philosophy, the implementation considerations in KeY for IDF might bring further challenges.
Moreover, we have not covered here interactions with JML∗ model methods that we use for
very flexible abstract and modular specifications in the context of inheritance [10]. Finally,
despite the mentioned equivalence of IDF and SL, the ideas that we have discussed here are
not sufficient for full and proper translation of SL specifications to JML∗ and KeY logic. In
particular, to fully support SL we also have to deal the separating conjunction operator * and
the magic-wand operator -*, the latter being known for requiring non-trivial encodings [3].
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Abstract

Program evolution may reveal bad design decisions, misunderstandings, or erroneous
code and specifications. Problems made early may not be discovered until much later. Non-
trivial changes of old code may be needed, and flexibility in making changes is essential.
We propose a framework for reasoning about unrestricted program/specification changes,
focusing on the challenges of concurrent and object-oriented programs.

Motivation
Program development is in general a complicated process where many kinds of mistakes can be
made over time. There can be bad design decisions, unclear specifications, misunderstandings,
or erroneous code and specifications. Problems made early may not be discovered until much
later. Redoing code made at an early stage in the software development may affect many parts
of the overall system. Thus making changes in order to correct problematic decisions may create
new problems that are hard to foresee. These kinds of problems are severe in the setting of
concurrent programs when the interaction of the different concurrent units is complicated, and
also in the setting of object-oriented programs, due to inheritance, dynamic binding and code
reuse.

A systematic approach in which the consequences of a software change can be formalized,
would be advantageous. Formal methods could be helpful in supporting specification and anal-
ysis of program properties. However, formal methods are mainly oriented towards developing
correct specifications and programs rather than the process of redoing earlier decisions. It
is therefore interesting to look at formal frameworks with support for unrestricted software
changes, and such that the framework can detect possible consequences.

A trivial approach to reasoning about program changes is to re-verify and reprove all results
whenever a change has been made. However this is time consuming and it is an expensive
solution, especially for large software systems. Ideally we would like to reprove as little as
possible, without losing soundness. And we would like to consider the setting of concurrent
and object-oriented programs, which is both relevant in the software industry and challenging.
The simplicity of a reasoning framework for software changes depends on the choice of specifi-
cation and reasoning mechanisms as well as the language constructs and their semantics. For
some programming paradigms, like shared variable concurrency, it is hard to analyze the effect
of software changes, even with an advanced reasoning framework. We will therefore consider
asynchronously communicating concurrent objects, since this setting offers compositional verifi-
cation, and we consider program assertions over the communication history, since this captures
all interactions and offers a measure of possible side-effects.

∗This work was done in the context of the EU projects H2020-644298 HyVar: Scalable Hybrid Variability for
Distributed Evolving Software Systems, FP7-610582 Envisage: Engineering Virtualized Services, and FP7-ICT-
2013-X UpScale: From Inherent Concurrency to Massive Parallelism through Type-based Optimizations.
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Related Work

In formal methods the notion of refinement is used to reflect software development. A refinement
is in general leading from a design with certain properties to a design which preserves these
properties, while adding more detail. In this way refinement is semantics-preserving. Certain
refinement logics support the introduction of (additional) error values, thereby semantics is
preserved as long as no errors appear. Banach et al have argued for the need of refinement-like
steps that go beyond the limitation of semantics-preserving development [1]. However, their
approach does not support analysis of program properties.

In the setting of object-oriented programs with inheritance, behavioral subtyping is the most
common reasoning approach, restricting subclasses to obey the super-class specifications [7].
This means that subclasses must preserve behavior in some sense. Lazy behavioral subtyping
[2] relaxes this condition; only behavior that is needed to verify local calls in a superclass must
be respected by a subclass redefining the method. This gives added flexibility, allowing a larger
class of changes without breaking the requirements. A number of works on asynchronously
communicating concurrent objects, partly by the authors of this paper, consider certain forms
of software and/or specification changes: The concept of dynamic software updates allows
changes to superclasses [6]. Interface abstraction allows reasoning about remote calls to rely on
the declared interface of the callee. This means that changes in a (super)class implementation
may be done as long as the stated interface support is respected, and as long as subclass
reasoning is not affected.

A calculus allowing changes to methods, (super)classes and interfaces is presented in [4].
The calculus can be seen as a generalization of lazy behavioral subtyping. Program properties,
represented by Hoare triples, are classified in two categories for each class C, representing the
verified ones and the unresolved (unverified) ones, U(C). The set of verified properties of a given
class C and method m is denoted G(C,m). When the set of unverified program properties is
verified (i.e., U(C) is empty) the class is found to be correct in the sense that all pre/post
method specifications are satisfied by the corresponding implementation in a class as well as
those in interfaces supported by the class. Changes in code or specifications may affect both
categories. However, a program requirement added to U(C) may be impossible to verify (in
case the Hoare triple is not satisfied), and it will then remain in U(C), and there is no guarantee
that this problem is detected.

The approach in [3] addresses transformation of classes and allow classes in the middle of a
class hierarchy to be changed. Modifications are archived by means of update operations modify
and simplify. The modify operations extend class definitions, allowing code such as new fields,
method definitions, guarantees, and interfaces to be added to classes, and existing methods
to be redefined. The simplify operations allow redundant methods to be removed from class
definitions. The approach does not classify classes using G and U such as in [4], rather, for
each update applied to a class, all verification work is done to methods affected by the update.
However, the approach is limited to interface additions, i.e., implemented interfaces can not be
removed or modified and methods can only be changed if the guarantees are strong enough to
satisfy the constraints of the implemented interfaces. And superclass requirements needed to
handle local calls are imposed on subclasses, as in [4].

Another line of works consider proof reuse, including partial reuse of proofs of earlier verified
properties. This may require some storage of proof outlines or non-trivial verification steps.
This means that when a (part of a) program is corrected, one may try to rerun previous proofs
to alleviate the verification burden [9]. The notion of abstract method calls allows reuse of
abstract proof outlines, for a fixed method body, while their instances may need further work
when other methods or requirements are changed [5] These approaches simplify the verification
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task of evolving programs. The amount of proof reuse can be balanced against the amount
of automation. Efficiently automated proof need not be reused while interactive proofs could
benefit from reuse, if possible. In our approach we will be oriented towards a language with
a high degree of automation of verification conditions and proof reuse is therefore not in our
focus. For simplicity we will therefore not consider techniques for proof reuse.

Approach
In this paper we try to find a good framework for reasoning about unrestricted program changes,
focusing on the challenge of concurrent and object-oriented programs. We use interface ab-
straction since this limits the visible effect of low-level changes. Furthermore we allow multiple
invariants for each class/interface since this makes it meaningful to add new invariants for old
classes upon need. In program evolution, specifications should be allowed to evolve. Finally we
consider primitives for changing old or new interfaces or classes, including methods, invariants,
inheritance, and interface support. In general a software modification will consist of a sequence
of several primitive changes constituting a meaningful modification. We assume type correct-
ness, and therefore fields may only be removed when no longer in use. Thus one must modify
all methods and invariants using a field before removing it.

Our primitives allow unrestricted changes of code (assuming type correctness). This means
that one may write combinations of code and invariants that are inconsistent, for instance when
a class does not satisfy the requirements of its interface(s). The framework will help in detecting
such inconsistencies so that they may be resolved. In order to determine the consequences of
changes in a (super)class the framework needs to keep track of dependencies of local calls. In
particular for reasoning about inheritance, we build on the approach of behavioral interface sub-
typing [8] where each class is only required to satisfy its invariant(s) and interface specifications
and any other local specifications given in the class. This means that a method redefined in a
subclass may break the requirements of the superclass, even the minimal requirements imposed
in the case of lazy behavioral subtyping. This opens up for more liberal modifications than
earlier work based on lazy behavioral subtyping as no superclass requirements are imposed on a
subclass. The consistency of a class is determined by looking at the class itself, its interface(s),
and any reused code from superclasses. For a software modification one must first determine
the affected code, and for each class containing such code one must re-verify the affected parts.
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We discuss an Agda formalization of the algorithms, due to Klaus Sutner [3], that decide
injectivity and surjectivity of one-dimensional cellular automata by equating these properties
with features of cycles in specific finite labeled graphs.

A cellular automaton (briefly, CA) is a quadruple A = 〈d,Q,N , f〉 where the dimension
d ≥ 1 is an integer, the alphabet Q is finite and contains at least two elements, the neighborhood
N ⊆ Zd has N ≥ 1 elements ν1, . . . , νN , and the local update rule f is a function from Qs to Q.

The global transition function of the CA A on the set C = QZd

of d-dimensional configurations
is defined as the synchronous application of the local update rule to each point of Zd, according
to the formula

FA(c) = λx : Zd. f (c(x+ ν1), . . . , c(x+ νN )) ∀c ∈ C . (1)

For d = 1 one can always take N = {m, . . . ,m + N − 1} for suitable m ∈ Z, and see f as a
function of the word q1 · · · qN corresponding to the concatenation of its arguments q1, . . . , qN .

Deriving properties of a CA’s global transition function exclusively from its finitary formu-
lation is, in general, undecidable. There are, however, important exceptions: in dimension 1,
both injectivity and surjectivity of (1) are decidable. This is due to the Garden of Eden theo-
rem ruling that a CA is surjective if and only if distinct configurations only differing in finitely
many points have distinct images, and the characterization of injective 1D CA as those that
are injective on the set of periodic configurations. (See [1] for an introduction to CA theory.)

Recall that the product of two labeled graphs G1 = (V1, E1,L) and G2 = (V2, E2,L) with
the same set L of labels is the graph G = (V,E,L) where V = V1×V2 and ((x1, x2), (y1, y2)) ∈ E
with label ` ∈ L if and only if (x1, y1) ∈ E1 and (x2, y2) ∈ E2 both witl label `.

For N ≥ 2, the de Bruijn graph of order N on the alphabet Q is the graph G = (V,E) where
V = QN−1 and (u, v) ∈ E if and only if u = xw and y = wy for suitable x, y ∈ Q and w ∈ QN−2.
If A = 〈1, Q,N , f〉 is a 1D CA with alphabet Q and neighborhood N = {m, . . . ,m+N−1}, we
can label xwy ∈ QN with f(xwy) ∈ Q: we call the Sutner graph of the CA the product of the
labeled graph so obtained with itself. By our discussion above, calling diagonal the subgraph
generated by the pairs (w,w) with w ∈ QN−1, the following hold [3]:

1. A one-dimensional cellular automaton is injective if and only if no cycle in its Sutner
graph touches a node outside the diagonal.

2. A one-dimensional cellular automaton is surjective if and only if no cycle in its Sutner
graph joins the diagonal with the outside.

∗This research was supported by the ERDF funded projects EXCS and Coinduction, the Estonian Ministry
of Education and Research institutional research grant IUT33-13, and the Estonian Science Foundation grant
no. 9398.
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For the present work, which is still in progress, we use version 2.4.2.3 of the Agda program-
ming language [5] with version 0.9 stable of the standard library. Agda is a dependently-typed
functional programming language based on intuitionistic type theory. The standard library
is rich in algebra and category theory, but only deals with acyclic graphs. As a side project,
we start the development of a small Agda library for graphs, following what is done by [2] in
Haskell: such library would, in our aims, include an efficient implementation of the depth-first
search algorithm. The choice of Agda is motivated by the greater expressiviness of its type
system, which allows not only to implement algorithms, but also to prove their correctness.

Our module 1DCA is parameterized by three values q m s : N. We implement the alphabet
as the initial interval Q of the natural numbers with suc q elements, the neighborhood as an
interval of starting point -m and size N = suc (suc s), and the local update rule f as a function of
type Vec Q N→ Q. We define patterns as vectors on Q.

Configurations are implemented as pairs of streams (defined coinductively) over a given
alphabet, with the convention that the configuration (. . . , q−2, q−1, q0, q1, . . .) is represented by
the ordered pair of streams ((q−1, q−2, ...) →| (q0, q1, ...)) : the constructor of the type Conf of
configurations is →| , rather than the standard comma, to emphasize the role of the point
0 ∈ Z. Equality is defined through bisimilarity in the standard way. Such method allows
to define translations (i.e., the functions σt = λ c : C.

(
λx : Zd. c(x+ t)

)
) straightforwardly. A

pattern p is turned into a periodic configuration by a function periodic = λ p . behind p →| ahead
p, where ahead p is the periodic stream obtained by concatenating ω copies of p, and behind p
the one similarly obtained from the reverse of p.

In order to update entire configurations by the global transition function, we must be able to
update single points by the local update rule: having done this, we can corecursively apply the
procedure to both the ahead and behind component of the configuration. The global transition
function is defined up to translations: as the latter are bijections, this does not alter injectivity
and surjectivity of the CA—which is our present focus.

The de Bruijn graph is implemented via its edge relation. From this, we construct the
Sutner graph: two pairs of vectors (xs , xs’), (ys , ys’) of length suc s are related if and only if (xs,
ys) and (xs’, ys’) are both in the de Bruijn relation, and in addition f takes the same value on the
words of length N corresponding to the two pairs. A path in the Sutner graph will then be the
reflexive and transitive closure of the Sutner relation; a cycle, a nonempty path with the same
endpoints; a loop, a cycle of length 1.

As a cycle of length 2 or more always belongs to a strongly connected component, and
every strongly connected component with two or more nodes always contains a cycle (possibly
a loop), the Sutner conditions for injectivity and surjectivity can be tested by Tarjan’s strongly
connected components algorithm [4] as follows:

1. The CA is injective if and only if the Sutner graph has no loops outside the diagonal,
and no strongly connected components of size 2 or more that contain a point outside the
diagonal.

2. The CA is surjective if and only if the Sutner graph has no strongly connected components
that contain nodes both inside and outside the diagonal.

For condition 1 we can exploit that every loop in the Sutner graph is on a node of the form
(qN−1, pN−1) with q, p ∈ Q.

We can prove in Agda that, if the global transition function is injective, then all cycles in
the Sutner graph are contained in the diagonal. The proofs of the converse of the above, and
of the corresponding statements for surjectivity, are currently being implemented.
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Future work will deal with formalizations of cellular automata theory. In particular, we
conjecture that the aforementioned Garden of Eden theorem can be formalized in Agda: which
would allow to prove the other direction with regard to surjectivity.
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Álvaro Garćıa-Pérez
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1 Introduction

Structural operational semantics (SOS) [14,15] is a widely used formalism for defining the formal
semantics of computer programs and for proving properties of the corresponding programming
languages. In the SOS formalism a transition system specification (TSS) [9], which consists of a
signature together with a set of inference rules, specifies a labelled transition system (LTS) [11]
whose states (i.e., processes) are closed terms over the signature and whose transitions are those
that can be proved using the inference rules.

Rule formats [3, 13] are syntactically checkable restrictions on the inference rules of a TSS
that guarantee some useful property of the associated LTS. We focus on the finiteness of the
number of outgoing transition from a given state, which is referred to as bounded nondetermin-
ism in [18]. Broadly, bounded nondeterminism is taken as a synonym of finite branching [7].
Finite branching breaks down into the more elementary properties of initials finiteness and
image finiteness [1].

Nominal structural operational semantics (NoSOS) [5] enriches the SOS formalism by adopt-
ing the nominal techniques from [8, 16] to deal with names and variable-binding operations
within the SOS framework. The nominal techniques allow one to extend pleasantly structural
induction and recursion to languages with variable-binding operations, without the need to
redo on a case-by-case basis a large number of routine constructions that deal with renaming
of bound variables [8]. The NoSOS framework develops the nominal techniques in the general
setting of meta-theory of SOS [3, 13] and makes them applicable to a wide variety of specific
languages.

The investigations on rule formats for bounded nondeterminism are far from being new.
Vaandrager [17] introduced a rule format for SOS based on the de Simone format [6] that guar-
antees that the associated LTS is finite branching. Following Vaandrager, Bloom [4] introduced
a rule format for his GSOS formalism that also guarantees a finite-branching LTS. Finally,
Fokkink and Vu [7] introduced yet another less restrictive rule format for SOS which adapts
the notion of strict stratification from [10], and showed that a TSS in this format induces an
LTS that is finite branching.

Our work takes this programme further by contributing on three fronts:

(i) We provide syntactic conditions that use global information to filter more junk rules (i.e.,
rules that are never involved in a proof tree) than the conditions of the rule format in [7],
which uses local information.

∗Joint work with Luca Aceto, Ignacio Fábregas and Anna Ingólsfdóttir.
†This research has been supported by the project ‘Nominal Structural Operational Semantics’ (nr. 141558-

051) of the Icelandic Research Fund.
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(ii) We extend the applicability of the rule formats to the nominal setting by tackling one of
the most prominent challenges there, namely that of allowing variables to occur in the
actions that label a transition [2].

(iii) We consider a family of bounded-nondeterminism properties that are more elementary
than finite branching, and which include image finiteness and initials finiteness [1].

The examples that follow are representative of each of these three contributions. Recall

from [7] that an LTS is finite branching iff for every process p, the set {(l, p′) | p l−→ p′} is
finite.

Example 1.1. Let the signature Σ consist of unary function symbols f and g and constant
symbol c. Let the set L consist of label l. Consider the TSS

g(x)
l−→ x

gi(x)
l−→ x

f(x)
l−→ x

, i ∈ N

where gi stands for applying i times the function symbol g to its argument. The TSS induces
an LTS that is finite branching. Notice that for g(p) and f(p), with p any process, the only

provable transitions are respectively g(p)
l−→ p and f(p)

l−→ p since the axiom on the left allows
one to instantiate the rule template on the right only for i = 1.

Previous work on rule formats for finite branching [7] introduces the η-types, which deter-
mine an over-approximation of the set of rules that give rise to transitions. One of the conditions
of the rule format in [7] is to require the η-types to be finitely inhabited. The η-typing discipline
is local and thus it is not strong enough to discern whether the instances of the rule template
of Example 1.1 would take part in a proof tree or not. For all i ∈ N, the instances of the rule
template above have one and the same η-type, which is infinitely inhabited. This renders the
TSS of Example 1.1 out of the conditions of the rule format.

Example 1.2. Consider the nominal TSS (NTSS for short) for term-for-atom substitution

(a
T7→ x) on page 6 of [5], which includes the rule (abs1Ts) that we reproduce next:

. . .

y
T7→z−→

y
T7→z−→

x
y

T7→z−→ x′ a#z a#y

[a]x
y

T7→x−→ [a]x′
(abs1Ts)

y
T7→z−→

y
T7→z−→

. . .

Recall from [5] that the nominal term [a]x is an abstraction where the atom a is abstracted in
the nominal term x, and that a#z is a freshness assertion that is provable iff the atom a does
not appear free in the nominal term z. The substitution of term x for atom a in term t is

modelled as an LTS with transitions t
a

T7→x−→ t{a 7→ x}. Notice that · T7→ · is a binary function

symbol and that the labels include arbitrary nominal terms, i.e., the y
T7→ z that labels the first

premiss of rule (abs1Ts) contains variables y and z.

The rule format in [7] requires the labels of transitions to be ground. The occurrence
of variables is important in order to determine whether a proof tree can introduce spurious
variables, which could be unified to any term and could possibly break bounded nondeterminism.
Besides, the proof of correctness of the rule format in [7] relies on the TSS having a strict
stratification (see Definition 4 of [7]) that entails an order relation among processes and enforces

2
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the sources of the premisses in a rule to be less than the source of the rule. This prevents the
associated LTS to implement ungarded recursion. The occurrence of variables in the labels
opens for the possibility of the LTS to break bounded nondeterminism. In order to regain
boundedness, a suitable notion of strict stratification may have to take the labels into account,
which poses a non-trivial challenge.

Recall from [1] that an LTS is initials finite iff for every process p the set {l | ∃p′ s.t. p
l−→ p′}

is finite, and it is image finite iff for every process p and every label l, the set {p′ | p l−→ p′}
is finite. An LTS is finite branching iff it is both initials finite and image finite, and thus the
latter properties are more elementary than the property of finite branching.

Example 1.3 (Example 5.3 of [7]). Let r ∈ R>0. Consider the operator for deadlock in real-
time Basic Process Algebra [12], which can be expressed by the rule

δ[r]
δ[s]−→ X

0 < s < r.

Process δ[r] is infinitely branching and has an uncountable set of initials. However, δ[r] has
a finite set of images since for a given time s the only possible transition labelled by δ[s] is

δ[r]
δ[s]−→ X. The associated LTS is image finite, but it is not finite branching nor initials finite.

The η-types of [7] constrain the cardinality of the actions that label the premisses in a rule. In
conjunction with the conditions that ensure that a proof tree cannot introduce spurious variables
in the targets of transitions, the η-types being finitely inhabited and the strict stratification
are enough to guarantee finite branching. However, finite branching is only one among many
bounded-nondeterminism properties, and it is certainly not the most elementary. For the
property of initials finiteness, the process p is fixed and the rule format constrains the cardinality

of the labels l in transitions p
l−→ p′ while allowing the targets p′ to be unbounded. For the

property of image finiteness, the process p and the label l are fixed and the rule format constrains

the cardinality of the targets p′ in transitions p
l−→ p′. In order to guarantee these elementary

properties, more refined syntactic conditions than the ones in [7] are needed.

2 Contributions

Filtering junk rules. We introduce the S-types that, differently from the η-types in [7], rely
on the global information provided by the order relation between processes that is entailed by
the strict stratification. The S-types filter out those rules for which the sources of the premisses
and the sources of the rule are not in the order relation. For instance, the TSS of Example 1.1
has a strict stratification given by

S(f(p)) = 1
S(g(p)) = 0.

An instantiation of the rule template on the right of Example 1.1 has source f(x) and premiss
with source gi(x) for some i ∈ N, which unify respectively with processes f(p) and gi(p) (with
p any process). The strict stratification S is undefined for gi(p) with i 6= 1, and thus the
source of the rule and the source of the premiss are in the order relation only when i = 1, i.e.,
S(g(p)) < S(f(p)). The other instantiations of the rule template do not have a valid S-type
and can be disregarded because they will never take part in a proof tree. The S-type of the
instantiation where i = 1 is finitely inhabited.

3
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Variables in labels and elementary properties. We introduce a transformation for tran-

sitions that turns the triadic representation p
l−→ p′ into a dyadic representation o→ d (o for

origin and d for destination) that places the label l either in the origin, i.e., (p, l) → p′, or in
the destination, i.e., p → (l, p′). (As in [2], we assume that nominal terms are closed under
Cartesian product.) The rule format is applied verbatim to the dyadic representation of an
NTSS. The transformation serves two purposes:

(i) The 0-fold Cartesian product (unit) is the new administrative label in all transitions,
while the real labels are arbitrary terms either in the origin or in the destination. This
circumvents duly the concerns about the proof trees introducing spurious variables and
about the strict stratification.

(ii) Different dyadic transformations enforce different bounded-nondeterminism properties,
i.e., p → (l, p′) for finite branching and (p, l) → p′ for image finiteness. (More on initials
finiteness below.) For example, the dyadic transformation for image finiteness of rule
(abs1Ts) of Example 1.2 reads:

(x, y
T7→ z) −→ x′ a#z a#y

([a]x, y
T7→ x) −→ [a]x′

.

The LTS for term-for-atom substitution is initials finite because for a given nominal term

t and label a
T7→ x (a is the atom to be substituted for and x is the subject of the

substitution) there is only one result of the substitution, i.e., t
a

T7→x−→ t{a 7→ x}.

In order to ensure initials finiteness, we relax certain syntactic conditions of the rule format
for finite branching as to unconstrain the cardinality of targets p′ in the destinations (l, p′). We
refer to this relaxation of the rule format as extrusion.

Other bounded-nondeterminism properties. The dyadic transformation for finite branch-
ing applies to yet another elementary bounded-nondeterminism property. By extruding the
labels instead of the targets the following property is ensured: for every process p, the set

{p′ | ∃l s.t. p
l−→ p′} is finite.

Other dyadic transformations in which the label l is itself the origin or the destination are
possible, which we have dubbed l ↑ (p, p′) and (p, p′) ↓ l. Together with extrusion, our rule
format affords for a family of up to eight bounded-nondeterminism properties based on the
dyadic transformations, which include finite branching, initials finiteness and image finiteness.
We are not aware whether any of the five other properties has received any particular name
in the literature. These properties may have relevance in the nominal setting where labels of
transitions have a prominent role.

3 Future work

We have considered NTSSs after stripping away freshness assertions. We conjecture that, for
such NTSSs, the freshness assertions can only restrict the cardinality of provable transitions
from infinite (all) to cofinite (all but finitely many), and hence freshness assertions do not
have an impact in the bounded-nondeterminism properties. Proving this result is still work in
progress.

4
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References

[1] Samson Abramsky. Domain theory and the logic of observable properties. PhD thesis, Department
of Computer Science, Queen Mary College, University of London, 1987.

[2] Luca Aceto, Matteo Cimini, Mohammad Reza Mousavi, Michel A. Reniers, and Murdoch James
Gabbay. Nominal SOS. To be submitted.

[3] Luca Aceto, Wan Fokkink, and Chris Verhoef. Structural operational semantics. In A. Ponse
J.A. Bergstra and S.A. Smolka, editors, Handbook of Process Algebra, chapter 3, pages 197–292.
Elsevier, 2001.

[4] Bard Bloom. CHOCOLATE: Calculi of Higher Order COmmunication and LAmbda TErms (pre-
liminary report). In Hans-Juergen Boehm, Bernard Lang, and Daniel M. Yellin, editors, Conference
Record of the 21st ACM Symposium on Principles of Programming Languages, Portland, Oregon,
pages 339–347. ACM Press, 1994.

[5] Matteo Cimini, Mohammad Reza Mousavi, Michel A. Reniers, and Murdoch James Gabbay. Nom-
inal SOS. Electronic Notes in Theoretical Computer Science, 286:103–116, 2012.

[6] R. de Simone. Higher-level synchronising devices in Meije–SCCS. Theoretical Computer Science,
37(3):245–267, 1985.

[7] Wan Fokkink and Thuy Duong Vu. Structural operational semantics and bounded nondetermin-
ism. Acta Informatica, 39(6-7):501–516, 2003.

[8] M. J. Gabbay and A. Pitts. A new approach to abstract syntax involving binders. In G. Longo,
editor, Proceedings of the 14th Symposium on Logic in Computer Science, Trento, Italy, pages
214–224. IEEE Computer Society Press, 1999.

[9] J. F. Groote and F. Vaandrager. Structured operational semantics and bisimulation as a congru-
ence. Information and Computation, 100(2):202–260, 1992.

[10] Jan Friso Groote. Transition system specifications with negative premises. Theoretical Computer
Science, 118(2):263–299, 1993.

[11] R. M. Keller. Formal verification of parallel programs. Communications of the ACM, 19(7):371–
384, 1976.

[12] A. S. Klusener. Models and axioms for a fragment of real time process algebra. PhD thesis,
Department of Mathematics and Computing Science, Technical University of Eindhoven, 1993.

[13] Mohammad Reza Mousavi, Michel A. Reniers, and Jan Friso Groote. SOS formats and meta-
theory: 20 years after. Theoretical Computer Science, 373(3):238–272, 2007.

[14] G. D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19,
Department of Computer Science, Aarhus University, Denmark, 1981.

[15] Gordon D. Plotkin. A structural approach to operational semantics. Journal of Logic and Algebraic
Programming, 60-61:17–139, 2004.

[16] Christian Urban, Andrew Pitts, and Murdoch J. Gabbay. Nominal unification. Theoretical Com-
puter Science, 323(1-3):473–497, 2004.

[17] F. Vaandrager. Expressiveness results for process algebras. In J. W. de Bakker, W. P. de Roever,
and G. Rozenberg, editors, Proceedings of the REX Workshop on Semantics: Foundations and
Applications, Beekbergen, The Netherlands, volume 666 of Lecture Notes in Computer Science,
pages 609–638. Springer, 1993.

[18] Rob J. van Glabbeek. Bounded nondeterminism and the approximation induction principle in
process algebra. In F. J. Brandenburg, G. Vidal-Naquet, and M. Wirsing, editors, Proceedings
of the 4th Annual Symposium on Theoretical Aspects of Computer Science, Passau, Germany,
volume 247 of Lecture Notes in Computer Science, pages 336–347. Springer, 1987.

5

34 Aceto et al.

Reykjavík University



Winning Cores in Parity Games

Steen Vester

Technical University of Denmark, Kgs. Lyngby, Denmark
stve@dtu.dk

Abstract

Whether parity games can be solved by a polynomial-time algorithm is a well-studied
problem which has not yet been resolved. In this talk we propose a new direction for
approaching this problem based on the novel notion of a winning core.

We give two different, but equivalent, definitions of a winning core and show a number
of interesting properties about them. This includes showing that winning cores can be
computed in polynomial time if and only if parity games can be solved in polynomial time
and that computation of winning cores is in the intersection of NP and co-NP.

We also present a deterministic polynomial-time approximation algorithm for solving
parity games based on computing winning cores. It runs in time O(d · n2 · m) where d
is the number of colors, n is the number of states and m is the number of transitions.
The algorithm returns under-approximations of the winning regions in parity games. It
works remarkably well in practice as it solves all benchmark games from the PGSolver
framework in our experiments completely and outperforms existing algorithms in most
cases. Correctness of the output of the algorithm can be checked efficiently.

1 Introduction

Solving parity games [1] is an important problem of both theoretical and practical interest.
This is known to be in NP ∩ co-NP [2] and UP ∩ co-UP [7] but in spite of the development
of many different algorithms (see e.g. [13, 18, 8, 17, 9, 15]), frameworks for benchmarking such
algorithms [6, 10] and families of parity games designed to expose the worst-case behaviour
of existing algorithms [8, 4, 5] it has remained an open problem whether a polynomial-time
algorithm exists.

Various problems for which polynomial-time algorithms are not known can been reduced in
polynomial time to the problem of solving parity games. Among these are model-checking of
the propositional µ-calculus [11, 3, 16], the emptiness problem for parity automata on infinite
binary trees [14, 2] and solving boolean equation systems [12].

Some of the most notable algorithms from the litterature of solving parity games include the
recursive algorithms from [13, 18] using O(nd) time, the small progress measures algorithm [8]
using O(d ·m · (n/d)d/2) time, the strategy improvement algorithm [17] using O(n ·m ·2m) time,
the big step algorithm [15] using O(m·nd/3) time and the dominion decomposition algorithm [9]
using O(n

√
n) time. Here, n is the number of states in the game, m is the number of transitions

and d is the maximal color occuring in the game.

2 Contributions

First, we introduce some notation. In the following we fix a finite parity game G (for a definition,
see e.g. [18]) with colors in {1, ..., d}. The set of winning states for player j in G is denoted
Wj(G). We say that a (finite or infinite) sequence ρ = s0s1... of states with at least one
transition is 0-dominating if the greatest color e = max{c(si) | i > 0} occuring in a non-initial
state of ρ is even and 1-dominating if it is odd. Examples are shown in Figure 1.

1
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Figure 1: The sequence to the left is 0-dominating and the sequence to the right is 1-dominating.

We say that a play ρ begins with k consecutive j-dominating sequences if there exists
indices i0 < i1 < ... < ik with i0 = 0 such that ρi`ρi`+1...ρi`+1

is j-dominating for all 0 ≤ ` < k.
This definition is straightforwardly extended to an infinite number of consecutive j-dominating
sequences. As examples, the sequence on the left in Figure 1 begins with two consecutive 0-
dominating sequences s0s1 and s1s2s3 whereas the sequence to the right begins with only one
0-dominating sequence t0t1, but not two consecutive 0-dominating sequences.

For a player j and a parity game G the winning core Aj(G) is defined as the set of states
in G from which player j can force that the play begins with an infinite number of consecutive
j-dominating sequences. Our main results on winning cores are the following.

Proposition 1. Let ρ be a play. Then ρ begins with an infinite number of consecutive j-
dominating sequences if and only if ρ is j-dominating and winning for player j.

Theorem 1. Let G be a parity game and j be a player. Then

1. Aj(G) ⊆Wj(G)

2. Aj(G) = ∅ if and only if Wj(G) = ∅

Proposition 2. There exists a parity game G where Aj(G) is not a j-dominion [9].

Theorem 2. Computing winning cores is in NP ∩ co-NP.

Theorem 3. Computing winning cores can be done in polynomial time if and only if parity
games can be solved in polynomial time.

Proposition 1 gives us two equivalent definitions of the same concept which is not immedi-
ately obvious. Theorem 1 provides us with valuable information about the winning cores and,
further, it is used to design an algorithm for solving parity games based on computing winning
cores. Proposition 2 is interesting as many algorithms for solving parity games focus on finding
j-dominions whereas the winning core is a subset of winning states that is not necessarily a
j-dominion. Finally, Theorem 2 and 3 make the search for a polynomial-time algorithm for
computing winning cores a viable direction in the search for a polynomial-time algorithm for
solving parity games.

The results are used to develop a new fixpoint algorithm that calculates under-approximations
of the winning regions in parity games. This algorithm runs in time O(d · n2 ·m) and is very
fast in practice. Further, it can be efficiently checked whether the output of the algorithm is
correct. This means that it can be applied with confidence when it outputs the correct result.

In our experiments the algorithm performs remarkably well returning the complete winning
region in most cases. In Figure 2 are experimental results on correctness in randomly generated
games. Further, the algorithm returns the correct results on all other benchmark games from
the PGSolver framework on which it has been tested. A comparison of running times for some
of the benchmarks can be seen below. These benchmarks are games designed to be difficult for
some of the existing algorithms to solve. Our algorithm has been implemented in OCaml as a
part of the PGSolver framework using the same basic data structures as the other algorithms.
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d = 4 d = d√ne d = n
n\b 2 5 10 2 5 10 2 5 10
100 0.002% 0.000% 0.000% 0.114% 0.001% 0.000% 0.559% 0.011% 0.000%
1000 0.000% 0.000% 0.000% 0.571% 0.000% 0.000% 2.113% 0.000% 0.000%

Figure 2: Ratio of games where the algorithm did not return the entire winning region. n is
the number of states, d is the number of colors and b is the out-degree. For every fixed n, d
and b the experiments were done on 100.000 games generated randomly by PGSolver [6].
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1 Motivation

Over the past decade, the use of the social networks like Facebook and Twitter, just to mention
two of the most popular ones, has increased at the point of becoming ubiquitous. Many people
access Social Networks Services (SNSs) on a daily basis; e.g. to read the news, share pictures
with their friends or check upcoming events. Nearly 70% of the Internet users are active on
SNSs, as shown by a recent survey [4]. Empirical studies have also shown that the current
privacy protections offered by SNSs are very far from the users’ expectations [6, 5]. One of
their weaknesses is the inability for users to express desirable privacy policies. This is because,
the privacy settings offered by SNSs are too coarse-grained. Furthermore, many users are not
fully aware of the result of activating a privacy policy or if the policy protects their personal
data as they expect. We believe citizens should be in power to control and decide on how much
information to make public. One way to do so is by providing users with means to define their
own privacy policies and give guarantees that they will be respected. Privacy in SNSs may be
compromised in different ways: from direct observation of what is posted (seen by non-allowed
agents), by inferring properties of data (metadata privacy leakages), indirectly from the topology
of the SN (e.g., knowing who our friends are), to more elaborate intentional attackers such as
sniffers or harvesters [3]. Among others, one of the origins of these attacks comes from their
privacy enforcement mechanism, the so called Relationship-Based Access Control (ReBAC) [2].

We aim at developing a privacy enforcement mechanism which offers social network users
the possibility of expressing finer-grained privacy policies, enabling them to deal with (certain
kinds of) implicit disclosure of sensitive information. Moreover this mechanism should take into
account that the social network evolves and enforce the privacy policies as events occur. We
have developed the privacy policy framework FPPF for social networks [8, 7], which is briefly
described in next section.

2 The First-Order Privacy Policy Framework FPPF
FPPF is composed by a static part which describes the state of the social network at a given
point in time, and the dynamic part, which models how the social network evolves as events
occur [7]. The components are:

A social network model. SNM is a social graph, a graph whose nodes represent users, and
edges represent different kind of relationships between users. The graph is enriched with
information on the knowledge the users of the social network have, and what they are
permitted to do.

A knowledge-based logic. KBLSN is an epistemic logic including a permission operator,
which provides the possibility to reason about what the agents know and what they are
allowed to do. The logic allows us not only to access and reason about the explicit
knowledge of an agent, but also about implicit knowledge (through inferences).

1
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A formal privacy policy language. PPLSN is a language for writing privacy policies for
each individual user.

A labelled transition system for social networks. LT SSN contains a set of SNMs, which
result from the execution of events in the SNSs. These events as operational semantics
rules, which are divided in the following categories: i) Epistemic. These rules describe
how the knowledge and the permission change in the SNM. ii) Social topology. These
rules modify the social topology of the SNM, i.e. the users and their relationships. For
instance, adding new users, relationships between them, etc. iii) Policy. These rules allow
for the modification of the set of privacy policies of the agents. iv) Hybrid. These are
rules which combine changes of any of the categories above.

Besides, the framework also comes with a satisfaction relation defined for the logic KBLSN ,
and a conformance relation defined for the policy language PPLSN . The framework may be
tailored by providing suitable instantiations of the different relationships, the events, the atomic
predicates representing what is to be known, and the additional facts or rules a particular social
network should satisfy.

In order to show how FPPF can be used, we have instantiated the privacy policies of
Facebook and Twitter [8, 7], which are two of the most used social networks nowadays. For
instance, one of Facebook’s privacy policies is responsible for setting the audience of a post,
where the user can choose among ‘Friends’, ‘Only me’ and ‘Custom’. In FPPFFacebook it would
be split in 3 policies. In the mentioned instantiation if u wants the audience of her posts to
be her Friends, it would be written as follows: J¬SAg\friends(u)\{u}post(u, j, n)Ku where SGϕ is
a formula stating “somebody in the group G knows ϕ”, Ag is the set of all the agents in the
SNM, u, j ∈ Ag, n ∈ N, post(u, j, n) represents post n, written by u and posted in j’s timeline
and friends(u) is an function which returns all the friends of u.

As we mentioned before FPPF is an generic framework, therefore we could combine instan-
tiations of two (or more) different social networks in one. This is a very useful and innovative
feature, since currently it is becoming more common to connect several accounts from different
social networks and share information between them. As a final example of the use of our
framework, we present below an example of a privacy policy concerning the combination of
FPPFTwitter and FPPFFacebook [8]. The following privacy policy: Only my friends in Face-
book who are following me in Twitter can know my location will be written in our formalism
as J¬SAg\(friends(u)∩Followers(u))\{u} u.locationKu. The rules defining how the SNM evolves are
given using small step operational semantics. For example, in Twitter the most basic event
is called tweet. It is used to share a 140 characters long message with a set of users. Let
tweet(tu, TweetInfo,Audience) be the event representing that user tu shares TweetInfo to
the set of users Audience. The following rule models the behaviour of the event,

∀ϕ ∈ TweetInfo, ∀i ∈ Audience KB′
i = KBi ∪ {ϕ}

SN
tweet(tu,TweetInfo)−−−−−−−−−−−−−−→ SN ′

We use SN
tweet(tu,TweetInfo)−−−−−−−−−−−−−−→ SN ′ to denote that an SNM SN evolves to a new SNM SN ′.

TweetInfo is a set of formulae in KBLSN , which represents the content of the message, e.g. if
the predicate age(u) ∈ TweetInfo, it means that u’s age is part of the message. KBi represents
the knowledge base of a user i. In SNMs knowledge bases are used to store all the information
that the users know. Let KB′

i be the knowledge base of i in SN ′ and analogously for KB,
then ∀ϕ ∈ TweetInfo,∀i ∈ Audience KB′

i = KBi ∪ {ϕ} means that after the execution of the
event tweet, all users part of the audience will know all the information shared in the tweet.

In [7] we define what means for a SNS to be privacy-preserving. Specifically, we say if all
privacy policies are executed before and after the execution of any event in the SNS, then the

2
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SNS is privacy-preserving. We also proved that Twitter is privacy-preserving. Additionally,
we proved that adding new desirable policies to Twitter and Facebook make the SNSs not
privacy-preserving.

3 Current and Future Work

Traditionally the semantics of “the logic of knowledge” or epistemic logic are given by means of
Kripke structures, where the uncertainty of the agents in modelled [1]. However, in FPPF we
explicitly model the concrete knowledge of the agents. While these approaches to model knowl-
edge seem to be complementary, we recently found out that it is possible to encode SNM to the
equivalent Kripke structure. Nevertheless, this encoding entails some issues that we are cur-
rently investigating. For instance, the properties of the binary relations in the Kripke structure
affect the implicit knowledge that agents can infer. It might be possible that some properties of
knowledge that hold in Kripke structures do not hold in SNMs. Besides, we plan to investigate
whether the models are equivalent, i.e. we claimed that it is possible to encode SNMs in Kripke
structures, but we do not know if the opposite is possible.

Besides, we are currently implementing a prototype of our framework in the open source
SNS Diaspora* 12. We have extended Diaspora* with several privacy settings, which are not
currently offered in other major SNS (including Facebook or Twitter). We aim at implementing
the full power of FPPF . A centralised implementation of the enforcement mechanism would
create a huge bottleneck, since SNSs are massively distributed and millions of events could be
triggered at the same time. Therefore, we are currently looking into distributed architectures
for monitoring algorithms, which can help us to monitor the privacy policies of all users in the
SNS efficiently.

As future work we plan to extend FPPF to support real time policies. For example, a user
could write a policy saying “My boss cannot know my location between 20:00-23:00” or “The
audience of the post on my timeline during my birthday is only my friends”.
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Abstract

Exceptions in low-level architectures are implemented as synchronous interrupts: upon the execution

of a faulty instruction the processor jumps to a piece of code that handles the event. Previous work has

shown that assembly programs can be written, verified and run using higher-order separation logic [2].

However, execution of faulty instructions is then under specified by either being undefined or terminating

with an error. In this work, we initiate the study of synchronous interrupts and prove an example of

memory allocator, thus showing that it is possible to write positive specifications of programs that fault.

All of our results are mechanised in the interactive proof assistant Coq.

1 Introduction

Assembly code is difficult to prove correct. Standard Hoare-logics make implicit assumptions
about the control flow of programs and assume that the code c in a triple {P}c{Q} has one
entry point and one exit point, even though it may internally contain loops and method calls. In
assembly programs we cannot make this assumption as the control flows of these languages are
inherently unstructured. Control flow is altered primarily by two mechanisms – jump commands
and interrupts. Jump commands allow developers to execute code stored nearly anywhere in
memory; their use is an active choice, much like writing a loop or calling a method. Interrupts,
on the other hand, occur either when something has gone catastrophically wrong (such as
dividing by zero or reading from un-mapped memory) or when an action from the environment
requires processing (such as the user pressing a key, a change to the file system is made, or the
processor clock ticks). While some of the aspects of interrupts might resemble that of function
calls, there are substantial differences: synchronous interrupts are not called explicitly but are
dependent on a certain events that can occur at run-time, secondly, there cannot be infinitely
many calls as after three interruptions the machine reboots. These interrupts are typically
referred to as synchronous. Another denotation for synchronous interrupts is exceptions, due to
their similarity with the exceptions encountered in languages like Java or ML, and we will use
the terms interchangeably.

In this paper we extend Kennedy et al.’s semantics for the x86 machine [3] and Jensen et
al.’s [2] program logic by adding support for synchronous interrupts. As a case study, we use it
to verify a small memory allocator that uses exceptions.

The source code to our mechanisation can be found at http://www.itu.dk/people/mpav/
downloads/exp-tgc05.zip. The increment to the previous development amounts to 1084 lines
of code. The code is compiled with coqc version 8.4pl3 with OCaml 4.00.1.

2 Memory allocation using exceptions

1
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alloc(info) , mov ESI, info;
mov EDI, [ESI];
mov [EDI], 0;
add EDI, 4;
mov [ESI], EDI.

Figure 1: Allocator code snippet

We use the standard AT&T syntax for assem-
bly notation. For this example, ’mov r, v’
stores the value v in the register r, ’[r]’ deref-
erences a pointer stored in r and ’add r, v’
adds the value v to the value stored in the
register r.

Jensen et al. [2] implemented and verified
a simple bound-and-check memory allocator.
We verify an alternative version, whose be-
haviour and code is depicted in Figure 1. In
our allocator there are no checks for overflow
or memory bounds, instead, we mark the end
of the available memory with an unmapped lo-
cation. The code takes an argument info that
is a single pointer to the start of memory and
begins by moving the starting address of the
information block to the ESI register and then
by moving its value to the EDI register. After
this preamble, EDI will eventually point at the
beginning of the available memory. Now we
write the value 0 in the memory pointed by EDI. By writing a value to the byte of memory we
wish to allocate we will trigger an exception if that memory is unmapped, i.e. when the end of
the memory available to the allocator has been reached. It is then up to the interrupt handler
to catch the exception, but by jumping to the fail address it will mimic the behaviour of the
handler in previous work [2]. If the memory is mapped, the control flow will go through and
add four bytes to the EDI register to keep track advance the pointer to the free memory. At this
point we update the information block by storing the value of the EDI register into the value
pointed by ESI.

3 Allocator with exceptions specification

In order to give the specification of the piece of code in Figure 1 we use Jensen’s step-indexed
variant of separation logic, but here we prefer to keep the presentation as simple as possible,
thus using standard separation logic connectives as ? for the usual separating conjunction in
separation logic, 7_ for a points-to predicate for the registers and 7→ as a points-to predicate
for the memory. Moreover, we use the question mark r? for registers and memory addresses as
syntactic sugar for ∃, v.r 7_v and similarly for 7→. Here, we borrow the continuation passing style
specification from previous work [2], thus, a specification has the following continuation-passing
style form:

` (safe⊗Q =⇒ safe⊗ P )� i..j 7→ c (1)

which states that a program c stored in the memory from the address i and the address j is safe
to run from P provided that there is a continuation that runs safely from Q.

The specification for the example in Figure 1 follows the same pattern, but, since the program
can succeed or fault we need two continuations, one stating what happens upon success and one
stating what happens upon failure, a pre-condition and a invariant (omitted for space reasons)
specifying that there exists a storage which ends are bounded by an unmapped memory region
and that there exists and IDT containing the pointers to the handlers.
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We define the specification allocSpec as the pre and post-conditions of the code in Figure 1
stating that, when the code is pointed by the range of addresses i to j, is safe to execute from a
state

P , EIP 7_ i ? INTL 7_ 0 ? EDI? ? ESP 7_ sp ? (sp−4..sp) 7→ spval (2)

where EIP points to the beginning of the code, INTL is the register keeping track of the level
of interruptions, EDI is a temporary register and ESP is the stack pointer, provided that the
program is safe in case an exception occurs, i.e. that there exist an handler which is going to
take on the computation from the address fail with the INTL set to 1 and the stack pointer
containing the return address to the original code

Q1 , EIP 7_ fail ? INTL 7_ 1 ? EDI? ? ESP 7_ (sp−4) ? (sp−4..sp)? (3)

and that there is a program which is safe run from the address j with the EDI register
pointing to the end of the allocated memory and with the interrupt level set at zero in case the
allocator succeeds

Q2 ,EIP 7_ j ? INTL 7_ 0 ? ESP 7_ sp ? (sp−4)..sp 7→ spval?

∃p,EDI 7_ (p+4) ? (p..(p+ 4))? (4)

By wrapping up the tree formulas all together we obtain the allocSpec specification:

allocSpec , ` ((safe⊗Q1 ∧ safe⊗Q2) =⇒ safe⊗ P )� i..j 7→ c⊗ Inv

Finally, we prove that implementation of the allocator respects the specification:

Theorem 1. The specification allocSpec for the piece of code in Figure 1 is sound. [Coq proof]

4 Conclusions and Future Work

We have extended an existing mechanisation of x86-assembly created by Jensen et al. to support
synchronous interrupts. Jensen’s model is expressive enough to reason about mutable code and
we stay true to this design philosophy by storing the IDT and all handlers in memory, allowing
them to be dynamically updated by the processor. Our extensions to the program logic are also
very conservative. By allowing the memory points-to predicate to state that certain memory is
unmapped (and not only what it contains), we obtain a logic that is expressive enough to verify
programs that use synchronous interrupts. We believe that this is a testiment not only to the
validity of our design decisions, but also of the quality of the original mechanisation.
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In a perfect world, every digital integrated circuit (IC) leads a well-documented life. Alas,
documentations are lost, not written, deliberately withheld. To reconstruct the inner workings
of an IC, we modify the learning algorithms by Dana Angluin and by Ronald Rivest and
Robert Schapire so that they employ ICs as the learning environment. Known pin directions
and functions allow reducing the state space, alphabet size, and set of learners and therefore
accelerate the learning. We set up different strategies to seek out hidden state to realize an
approximative equivalence check and provide the necessary counterexamples. In summary, the
contributions are different strategies for the teacher to test for equivalence and a specialized
learner for ICs, called ALICe [3], with the possibility to incorporate prior knowledge.

Angluins L* algorithm [1] learns an automaton representation using the inputs and the
corresponding results plus the counterexamples obtained from a teacher, assuming we know a
reset. Rivest and Schapires algorithm [6] can be seen as a generalization of L* and handles
absent resets using homing sequences. Angluin has one learner whose queries are simulated
from a unique state. To execute such a query in any environment, the environment must be
reset to the unique state. In the absence of a reset, homing sequences bring the environment
into a defined state. The learner, Angluins main learning loop, becomes the basic building
block. Rivest and Schapires algorithm maintains a set of learners to accommodate the different
states a homing sequence may lead to. For each final state the homing sequence can lead to, a
learner exists that has this final state as a starting state.

ALICe uses the libalf library for the learners [2] and builds the homing algorithm around
it. The IC takes the role of the teacher in the Angluin learning. ALICe incorporates prior
knowledge about the ICs interface (see Table 1) into the model of the input alphabet and the
learning process.

Prior Knowledge Usage Effect

Pin directions Input = in + inout
Output = out + inout

Reduced number of learners/
states, reduced alphabet size

Clock pin Subtract from input alphabet, let hard-
ware handle clock behaviour

Reduced alphabet size,
reduced state space

Clear word As homing sequence One learner
Clear pin Build homing sequence,

subtract from input alphabet
One learner, reduced alphabet size

Table 1: Usage and Effects of Prior Knowledge

1 Strategies to Realize Equivalence Checks

The teacher has to provide a counterexample to an incorrect representation of an IC. An
ideal check is impossible due to the infinite amount of stimulation necessary. We therefore

1
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Strategy Expected Effect

0 No check, without any knowledge Fewer queries than with any strategy, missing states
with clocked ICs

0c No check, subtract clock pin Fewer queries, fewer missing states with clocked ICs
0d No check, subtract clock and clear pin Fewer queries than 0c, same state counts

I Walk to each state, check two times the input sym-
bols; base case

Rather high number of learners, states, queries

Ia Base case strategy, clear word for reset (construct
from pin, all zeros)

Only one learner (for those with a correct reset)

Ib Base case strategy, clear pin for reset, subtract it
from input alphabet

Only one learner, fewer queries due to reduced al-
phabet

Ic Base case strategy, subtract clock pin (let teacher
handle clock behaviour)

Reduced state space, fewer queries due to reduced
alphabet/state space

Id Base case strategy, clear pin for reset, subtract clear
and clock pin

Only one learner, reduced state space, fewer queries

II Walk to each state and toggle each pin Fewer queries than with I, missing states
III Walk to each state; for each input, stimulate and

toggle each pin
More queries and states than with II, performance
similar to I

IV Walk to each state, stimulate ten random inputs,
then toggle each pin

Fewer queries than with base case, more states than
with II

V Block other learners and test with random inputs Fewer queries than with base case

Table 2: Test Strategies for Evaluation

introduce different strategies, which are based on a general approximate equivalence check
path(Q)?.Ak.randh.[(a)j |(c)l], and list their expected effects (see Table 2).

The strategies I to IV use a path(Q) option to walk to the learned states and perform
additional stimulation from the fringe of the explored state space. This part of the strategies
avoids repeating questions that were already posed by the learner. In Fig. 1 these parts of the
strategies are visualised as the coloured area.

The 0 strategies do not perform an equivalence check. Strategy I appends all possible
combinations of two input alphabet elements and densely explores the area next to the learned
area (see Fig. 1a). Strategy II tries to find first counterexamples fast using a toggle check plus
path option (see Fig. 1b). A hybrid strategy (III) appends each symbol of the input alphabet
and then toggles all pins (see Fig. 1c). The last path-based strategy (IV) appends 10 random
symbols and then toggles all pins (see Fig. 1d).

A conceptually different strategy (V) does not systematically explore the state space, but
instead performs a random walk using the input symbols to find a counterexample (see Fig. 1e).
This strategy is close to the weak oracle introduced by Angluin and Rivest and Schapire.

(a) path(Q).Ak (b) path(Q).(c)l (c) path(Q).A.(c)l (d) p..(Q).randh.(a)j (e) randh

Figure 1: The Search Space Covered by Equivalence Strategies1

1 The x-axis represents the inputs as queries. The y-axis indicates the query length. The dark blue area
represent the queries that lead to new states. The light blue area constitutes the input the learner looked further.
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2 Evaluation

We evaluated the different equivalence strategies and applied levels of prior knowledge to several
groups of ICs according to the number of queries, number of learners, and various performance
parameters.

We use groups of ICs that stem from three university introductory courses to digital cir-
cuits [7, 4, 5]. The stateless groups include combinatoric logic gates like NAND with different
numbers of input pins, de/encoders, (de)multiplexers, and arithmetic entities like comparators
or full adders. The groups of ICs with state include shift registers, transceivers and buffers,
flip-flops with clear pins or inverted outputs, and counters and oscillators. The evaluation shows
that it is possible to learn the functionality of digital ICs.

Although ALICe needs no information about an IC except the number of pins as well as
the power supply and ground pin, we can accelerate learning by nearly 100% by providing
additional knowledge about pin directions and functions for selected groups.

Different equivalence checks vary considerably in their number of queries. The random-
based strategies, often found in the literature, usually trigger a reset of the IC and terminate
learning before an useful result is obtained (IV, V). On the other hand, for stateless ICs, an
equivalence check is not necessary, and a 0 strategy with minimal cost is sufficient.
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1 Introduction

Binary session types arose in the work of Honda in the setting of the π-calculus; a binary
session type describes the protocol followed by the two ends of a communication channel and
a well-typed process will not exhibit communication errors, since the two ends of a channel
must always adhere to the dual parts of their protocol. Binary session types have been used
for describing a variety of program properties, including liveness properties. In the setting of
sessions, an important property is that of progress , namely that a session will never be stuck
waiting for a message that does not arrive.

This paper provides a common generalization of existing binary session type systems using
psi-calculi . These have been proposed as a common framework for understanding the plethora
of π-like process calculi; like π-like calculi psi-calculi have the notion of mobile names with scope
but also allow channels to be not just names but arbitrary terms from a so-called nominal data
type.

Type systems for psi-calculi already exist. In particular, there is a type system generalizing
a collection of simple type systems and another system for resource-aware properties . We now
extend this approach to a generic type system for binary session types. We only assume that
session types have certain labelled transitions; this is in the tradition of behavioural contracts
that provides a behavioural type discipline in which types have transitions.

A main result is the definition of a binary session type system for psi-calculi and a fidelity
result that generalizes results from existing session type systems. Since channels can be arbitrary
terms, a major challenge is to deal with this. Whenever a session is created, private session
channels are introduced by means of scoped endpoint constructors that can be applied to
ordinary terms in order to create a session channel. The type system keeps track of how the
behaviour of a session channel evolves by keeping track of the modified behaviour of these
endpoint constructors.

The safety result for our binary session type discipline is that of fidelity, namely that the
usage of a well-typed channel evolves according to its session type.

Existing binary session type systems arise as instances of our general type system. These
include a system for ensuring progress due to Vieira and Vasconcelos, a type system for corre-
spondence assertions due to Vasconcelos et al. and the system with subtyping due to Gay and
Hole .

2 Psi-calculi

Psi-calculus processes can contain terms M,N, . . .; these must form a nominal datatype T . If
Σ is a signature, a nominal data type is then a Σ-algebra, whose carrier set is a nominal set. In
the nominal data types of ψ-calculi we use simultaneous term substitution X[z̃ := Ỹ ] which is

to be read as stating that the terms in Ỹ replace the names in z̃ in X. We assume a notion of
channel equivalence; Ψ |= M ↔̇ N denotes that terms M and N represent the same channel.

1
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Processes can also contain assertions Ψ and conditions ϕ, that must also form nominal
datatypes.

Unlike in the π-calculus channels can be arbitrary terms in a psi-calculus, as arbitrary terms
are allowed in the subject position of a prefix.

We extend psi-calculus with the selection and branching primitives of Honda et al. , as these
are standard in session calculi. In a selector was always a name; here we allow arbitrary terms
M as selectors. Branching thus becomes M . {l1 : P1, . . . , l:Pk} and selection is written as
M / l.P1, where l ranges over a set of label names.

We introduce session channels by means of dual endpoints as in Giunti and Vasconcelos .
The construct (νc)P can be used to set up a new session channel with endpoint constructor c
that can be used to build session channels.

All in all, this gives us the formation rules

P ::=M(λx̃)X.P |MN.P | P1 | P2 | (νc)P | !P | (|Ψ|) | case ϕ1 : P1, . . . , ϕk : Pk

|M / l.P1 |M . {l1 : P1, . . . , lk : Pk}

3 A generic type system

We T range over the set of types and distinguish between base types B, session types S and
endpoint types TE . An endpoint type TE describes the behaviour at one end of a channel.
A session type S describes the behaviour at both ends of a channel and is an unordered pair
(T1, T2) of endpoint types, i.e. so (T1, T2) and (T2, T1) denote the same type.

In psi-calculi channels can be arbitrary terms; in our setting we use session constructors
to indicate that a term is to be used as a session channel. A term whose principal session
constructor is c will have a type of the form T@c.

We assume a deterministic labelled transition relation defined on the set of endpoint types.

Transitions are of the form TE
λ−→ T ′ where

λ ::= !T1 | ?T1 | �l | �l

If a channel has endpoint type TE , which has the transition TE
?T1−−→ T ′

E , then following an input
of a term of type T1, the channel will now have endpoint type T ′

E . For a given type language,
we must give transition rules that describe how these transitions arise.

We assume a duality condition for labels in labelled type transitions; we define !T1 = ?T2
and �l = �l and vice versa, and we require that λ = λ. A session type is balanced if the types
of its endpoint are dual to each other.

Definition 1. A session type S is balanced if S = (TE , TE) for some TE .

A type environment Γ is a finite function from names to types, often written as x̃ : T̃ . A
type environment Γ is balanced if for every x ∈ dom(Γ) we have that whenever Γ(x) = S, then
S is balanced.

Type judgements The type judgements in our type system are of the form Γ,Ψ ` J where
J is built using the formation rules

J ::=M : T | X : T̃ → U | Ψ | ϕ | P

2
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For terms, the type judgment Γ,Ψ ` M : T@c says that the term M has type T using
session constructor c. The rules defining these judgements depend on the instance of the type
system but we require that the session constructor must have an endpoint type for the resulting
channel to be typable. Rules for assertions and conditions are also specific to the instance
considered.

The type rules for processes contain judgment of the form Γ,Ψ ` P where Ψ is an assertion.
Table 1 contains the most interesting type rules for processes.

Note that for patterns, judgments are of the form Γ,Ψ ` X : T̃ → U . The intended
interpretation is that pattern X has type T̃ → U if the pattern variables are bound to terms
of types T̃ whenever the pattern matches a term of type U .

An important rule is that for parallel composition, since type addition enables us to split a
session type into two endpoint types; this follows Giunti and Vasconcelos .

Whenever a prefix is typed, the type of the subject must be updated when typing the
continuation. As subjects in the psi-calculus setting can be arbitrary terms, we update the
type of the channel constructor used to construct the channel.

(Output)

Γ1,Ψ1 `min M : T1@c T1
!,T2−−→ T3

Γ2,Ψ2 `min N : T2 Γ3 + c : T3,Ψ3 ` P
Γ1 + Γ2 + Γ3,Ψ1 � Ψ2 � Ψ3 `MN.P

(Input)

Γ1,Ψ1 `min M : T1@c T1
?,T2−−−→ T3(x̃)

Γ2,Ψ2 `min X : Ũ → T2 Γ3 + x̃ : Ũ + c : T3[x̃],Ψ3 ` P
Γ1 + Γ2 + Γ3,Ψ1 � Ψ2 � Ψ3 `M(λx̃)X.P

x̃ ] dom(Γ1 + Γ2 + Γ3)

x̃ ] Ψ1 � Ψ2 � Ψ3

(Case)
Γ,Ψ ` ϕi Γ,Ψ ` Pi 1 ≤ i ≤ k
Γ,Ψ ` case ϕ1 : P1, . . . , ϕk : Pk

(Session)
Γ + x : T,Ψ ` P
Γ,Ψ ` (νx : T )P

x ] Γ,Ψ

(Select) Γ1,Ψ1 `min M : T@c Γ2 + c : Ti,Ψ2 ` P T
�,li−−→ Ti

Γ1 + Γ2,Ψ1 � Ψ2 `M � li.P

(Branch)

Γ1,Ψ1 `min M : T@c

T
�,li−−→ Ti and Γ2 + c : Ti,Ψ2i ` Pi for 1 ≤ i ≤ k

Γ1 + Γ2,Ψ1 � ⊗k
i=1 Ψ2i `M � {l1 : P1, . . . , lk : Pk}

Table 1: Selected type rules

Theorem 1. Suppose we have Ψ0 I P
α−→ P ′, where α is a τ -action and that Γ,Ψ `bal P and

Ψ ≤ Ψ0. Then for some Ψ′ ≤ Ψ and Γ′ ≤ Γ we have Γ′ `min α : (T@c, U).

Theorem 2 (Fidelity). Suppose we have Ψ0 I P
α−→ P ′, where α is a τ -action and that Γ,Ψ ` P

with Γ and ΓP balanced and Ψ ≤ Ψ0. Then for some Ψ′ ≤ Ψ we have Γ ↑ α,Ψ′ `bal P ′.
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Model checking (MC) [6] is a widely accepted pre-deployment verification technique that
checks whether a system satisfies or violates a property by potentially analysing all the possible
system behaviours. By contrast, runtime verification (RV) [10, 14] is a lightweight verification
technique aimed at mitigating scalability issues such state explosion problems, typically asso-
ciated with traditional verification techniques like MC. RV attempts to infer the satisfaction
(or violation) of a correctness property from the analysis of the current execution of the system
under scrutiny. It is thus performed post-deployment (on actual system execution), which is
appealing for component-based applications (parts of which may not be available for analysis
pre-deployment), as well as for dynamic settings such as mobile computing (where components
are downloaded and installed at runtime). The technique has fostered a number of verification
tools, e.g., [2, 3, 8, 9, 12, 13, 16], and has proved effective in various scenarios [4, 7, 17].

Despite its advantages, RV is limited when compared to MC because certain correctness
properties cannot be verified at runtime [5, 10, 15]. For instance, MC makes it possible to
check for both safety and liveness properties, by providing either a positive or a negative answer,
according to whether the system conforms with the specifications; RV, on the other hand, can
only return a positive verdict for certain liveness properties (called co-safety properties [5]) or a
negative one for safety conditions. Moreover, RV induces a runtime overhead over the execution
of a monitored system, which should ideally be kept to a minimum [14].

RV’s limits in terms of verifiable properties is evidenced more for branching-time logics, that
are able to express properties describing behaviour over multiple system executions. In recent
work [11], one such branching-time logic called µHML [1] is studied from an RV perspective.
Figure 1 outlines the logic µHML used and its semantics, defined over a Labelled Transition
System (LTS), consisting of a set of states s, r ∈ Sta, sets of actions α ∈ Act, and a transition

relation between states labelled by actions, s
α−→ r; as in [1], the semantic definition employs

an environment from µHML logical variables, Vars, to sets of states, ρ ∈ (Vars ⇀ P(Sta)).
One of the main contributions of [11] is the identification of an expressively maximal, runtime-
verifiable subset of the logic, reported in Figure 1 as the grammar for sHML and cHML; in
[11] they show how these classes provide an easy syntactic check for determining whether a
property satisfaction (or violation) can be determined using the RV technique.

We building on the findings of [11], with the aim of extending the applicability of RV to
a larger class of µHML properties other than sHML ∪ cHML from Figure 1. Specifically,
we propose a hybrid approach that permits automated formal verification to be spread across
the pre- and post-deployment phases of a system development, with the aim of calibrating the
management of the verification burden while combining the strengths of MC with those of RV.
As an illustrative example, consider the µHML property (1) below, describing systems that
can perform action a, prefix 〈a〉(. . .), and reach a state from where it can either perform action

1
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Syntax

ϕ, φ ∈ µHML ::= tt (truth) | ff (falsehood)

| ϕ∨φ (disjunction) | ϕ∧φ (conjunction)

| 〈α〉ϕ (possibility) | [α]ϕ (necessity)

| minX.ϕ (min. fixpoint) | maxX.ϕ (max. fixpoint)

| X (rec. variable)

Semantics

Jtt, ρK def
= Sta Jff, ρK def

= ∅
Jϕ1∨ϕ2, ρK def

= Jϕ1, ρK ∪ Jϕ2, ρK Jϕ1∧ϕ2, ρK def
= Jϕ1, ρK ∩ Jϕ2, ρK

J〈α〉ϕ, ρK def
=

{
s | ∃r.s α−→ r and r ∈ Jϕ, ρK

}
J[α]ϕ, ρK def

=
{
s | ∀r.s α−→ r implies r ∈ Jϕ, ρK

}

JminX.ϕ, ρK def
=

⋂ {S ∈ Sta | Jϕ, ρ[X 7→ S]K ⊆ S} JmaxX.ϕ, ρK def
=

⋃ {S ∈ Sta | S ⊆ Jϕ, ρ[X 7→ S]K}
JX, ρK def

= ρ(X)

Monitorable Fragments

θ, ϑ ∈ sHML ::= tt | ff | [α]θ | θ∧ϑ | maxX.θ | X
π,$ ∈ cHML ::= tt | ff | 〈α〉π | π∨$ | minX.π | X

Figure 1: µHML Syntax and Semantics

b, subformula 〈b〉tt, or else can never perform action c, subformula [c]ff.

〈a〉(〈b〉tt∨ [c]ff) (1)

According to Figure 1, (1) turns out not to be runtime-verifiable because of the subformula
[c]ff; intuitively, whereas a system execution exhibiting action a followed by action b suffices
to prove that the system satisfies (1), an RV monitor cannot determine whether a system can
never produce action c after performing action a from the observation of only a single system
execution [11]. However, property (1) can be expressed as the (logically equivalent) formula

(〈a〉〈b〉tt) ∨ (〈a〉[c]ff) (2)

whereby we note that the subformula 〈a〉〈b〉tt is runtime verifiable, according to [11]. We argue
that reformulations such as (2) allow for a hybrid compositional approach to verification, where
part of the property, e.g., the subformula 〈a〉[c]ff, can be checked prior system deployment
using MC, and the remaining part of the property, e.g., 〈a〉〈b〉tt, can be runtime-verified during
system execution.

Preliminary investigations indicate that this decomposition approach applies to arbitrary
µHML formulas. We therefore aim to devise general analysis techniques that reformulate
any µHML formula into either conjunctions or disjunctions, i.e., ϕRV ∧ ϕMC or ϕRV ∨ ϕMC,
where ϕRV and ϕMC denote the runtime-verifiable and model-checkable formula components,
respectively. From a software engineering perspective, we envisage at least two ways how this
decomposition between pre- and post-deployment verification can be fruitful:

1. The ensuing hybrid approach may be used as a means to minimise the verification ef-
fort required prior to the deployment of a system. E.g., in the case of (2), the model-
checked subformula ϕMC = 〈a〉[c]ff is smaller than the full formula (1), since we would
be offloading a degree of verification onto the runtime phase when runtime-verifying for
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ϕRV = 〈a〉〈b〉tt. Moreover, for disjunction decompositions such as (2), the satisfaction of
ϕMC prior to deployment obviates the need for any runtime analysis, minimising runtime
overheads (a dual argument applies for conjunction decompositions and ϕMC violations).

2. In settings where software correctness is desirable but not essential, a hybrid approach can
be used as a means to circumvent full-blown MC. Specifically, instead of model-checking
for (1), a system may be runtime-verified for ϕRV = 〈a〉〈b〉tt during its pilot launch, acting
as a vetting phase: if ϕRV is satisfied during RV, this means that, by (2), (1) is satisfied
as well; if not, we then proceed to model-check the system offline wrt. ϕMC = 〈a〉[c]ff.
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Compiling Protocol Narrations into Applied Pi Processes
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When designing or presenting cryptographic protocols, it is common to use informal protocol
descriptions, such as protocol narrations, to describe the intended execution of a protocol run
as a sequence or directed graph of message exchanges between the associated principals[BN07].
An example of a protocol narration can be seen below. Encryption of a message M with a key
N denoted by {M}N .

A; S : {B}kAS

S ; A : {kB}kAS

A; B : {m}kB

This narration describes a simple protocol, in which a principal A can ask a key server S for a
key to communicate with a principal B. However, some assumptions about ownership of keys
are made, namely that A and S share a key kAS and that B knows the key kB that is sent to
A by S. Other important aspects are the actions that principals are supposed to perform on
messages that are received, e.g. decryption and consistency checks are implicit. We obviously
expect the principals to attempt decryption of the messages they receive. We also expect that
the key-server S only sends the key kB , if that is the key requested by A.

An important challenge is to be able to create an executable implementation of the pro-
tocol based on a narration. In [BN07] Briais and Nestmann define a translation of protocol
narrations to processes in the spi calculus, which have been implemented by Briais in the spyer
compiler[Bri08]. However, the spi calculus contains a fixed set of cryptographic primitives, and
protocols that depend on other cryptographic primitive, e.g. homomorphic encryption, are
therefore not supported by the compiler.

In this paper we deal with this issue by instead considering the applied pi calculus[AF01]
which is an extension to the spi calculus with arbitrary cryptographic primitives. These primi-
tives are described by means of an equational theory. For instance, the equation dec(enc(x, y) , y) =
x describes how symmetric encryption and decryption of a message x with a key y should be-
have.

We describe how to translate protocol narrations into a version of the applied pi calculus;
this method is implemented in OCaml as a tool which acts as a front-end for ProVerif.

In addition to the translation from protocol narrations to processes in the spi calculus[BN07],
our work is related to that of projection from global session types to local session types[HYC08]
and code generation based on protocol narrations[Mod14].

While the addition of an equational theory for deriving terms is useful for modelling arbitrary
cryptographic primitives, they can be the source of high computational complexity. We show
that the problem of deriving terms using an equational theory and a set of terms is NP-complete.

Definition 1 (Term Derivation Problem). Given a signature Σ, an equational theory Θ, a set
of terms T , and a term t, can a term be synthesised from Σ and T that equals t in Θ?

Theorem 1. The term derivation problem is NP-Complete.
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1 Introduction

It is ironic that Model Driven Engineering (MDE) was introduced to reduce the complexity
of system development, but in many cases, adds accidental complexity [7]. In the process of
development, software designers are often confronted with a variety of inconsistencies and/or
incompleteness in the models under construction [4]. In particular, the modeller will most of
the time be working with a partial model not conforming (i.e., being typed by and satisfying
modelling constraints) to the metamodel that defines the modelling language being used [6].
Clearly, the productivity of the modeller could be improved by providing editing support that
could either automatically fix a partial model or make suggestions based on completion rules to
assist the modeller in completing the model [5]. In many respects, this idea is similar to code
completion features as found in IDEs. More generally, complexity of modelling could be reduced
by providing editing support for automated rewriting of models so that they conform to the
modelling language used. However the philosophy of this approach incorporates an important
element: in the form of ‘termination analysis’. In order to guarantee termination of the model
completion, we propose a set of sufficient termination criteria.

1.1 Example of a model completion

In [5] we presented a web-based metamodelling and transformation tool called WebDPF based
on the Diagram Predicate Framework (DPF) [2] which supports multilevel metamodelling and
allows partial model completion. DPF provides an abstract visualization of concrete constraints.
In WebDPF, one can graphically specifiy completion rules. WebDPF exploits the locality of
model transformation rules and provides a foundation that enable automated tool-support to
increase modelling productivity. The WebDPF editor (see Figure 1) consists of four resizable
windows. The windows are arranged in a single view which provides the modeller with an
overview of different modelling artefacts. The control panel on the left allows the user to select
metamodels from the metamodel stack and also provides options to perform analysis such
as conformance checking and termination. The conformance checking is used for validating
whether a model conforms to its metamodel and the termination analysis is used for checking
whether the application of transformation rules are terminating. While designing a model using
the WebDPF model editor, the metamodel viewer displays the metamodel to help the modeller
choose types for modelling elements. The signature editor is used to graphically define the arity
and visualization of predicates. An atomic constraint can be defined by selecting a predicate
in the signature editor and binding the arity of the predicate to the model elements from the
model editor. Figure 1 shows a predicate called composition ([comp]) in the signature editor,
and its associated completion rule in the completion rule editor. The purpose of the completion
rule is to fix a model with missing edges. A partial model instance is shown in Figure 2 which
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Figure 1: The WebDPF editor with a control panel (left), a metamodel viewer (top right),
a model editor (bottom right), a signature editor (top middle), and a completion rule editor
(bottom middle)

does not satisfy all the atomic constraints. After applying completion rules, the partial model
instance becomes a complete model instance.

Figure 2: (a) An inconsistent model instance and (b) a complete model instance
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2 Termination Criterion

In this article we focus on termination analysis for the application of transformation rules for
model completion. Our proposed analysis is based on the principles adapted from layered graph
grammars [1]. In a layered typed graph grammar, transformation rules are distributed across
different layers. The transformation rules of a layer are applied as long as possible before going
to the next layer. Ehrig et al [1] distinguished between deletion and nondeletion layers where
all transformation rules in deletion layers delete at least one element and all transformation
rules in nondeletion layers do not delete any elements, but the rules have negative application
conditions. A set of layer conditions was specified in [1] that need to be satisfied by each layer
k to guarantee termination. The layer conditions in [1] do not permit a rule r to use an element
x of a given type t for the match if any element of type t has been created in a layer k′ ≤ k.
The layer conditions also imply that the creation layer of an element of type t must precede
its deletion layer. This restriction prevents the repetitive application of a certain rule. This
layered typed graph grammar approach is suitable for situations where repetitive application
of rules are not required. Unfortunately, there are many situations where repetitive application
of rules are desirable such as to compute transitive closure operations [3].

To overcome the limitations of [1], discussed above, we generalize the layer conditions from
[1] allowing deleting and non-deleting rules to reside in the same layer as long as the rules are
loop-free. Furthermore, our generalization permits a rule to use newly created edges allowing
us to perform transitive closure operations. A loop detection algorithm is implemented that
overestimates the existence of a loop from a set of rules. Let Rk be the set of rules of a layer k.
Our loop detection algorithm is based on the following sufficient conditions for loop freeness.

• Cond1: If a rule ri ∈ Rk creates an element x of type t, then ri must have x in its negative
application condition,

• Cond2: If a rule ri ∈ Rk deletes an element of type t, then there is no rule in rj ∈ Rk

that creates an element of type t,

Note that we are assuming, that there are a finite number of rules in each layer and that the
rules are applied on a finite input graph. The algorithm we developed guarantees termination
if all the rules for each layer satisfies the above mentioned conditions. We wish to cover the
following topics during our presentation:

• Generalized termination conditions

• Proof of correctness of our algorithm

• Discussion on complexity of the algorithm
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Abstract

Concurrency is today an essential component of computer systems. One approach to program-
ming concurrent object oriented systems is the use of active objects and asynchronous method calls,
based on the actor model. This model is attractive by offering efficient programming and a simple,
compositional semantics. The model facilitates independent units with a high degree of concurrency,
but may also lead to deadlock. In this paper we show that systems developed using active objects and
asynchronous method calls can result in system failure due to over-eager concurrency, which we call
flooding. If an concurrent unit is flooded it is not able to respond properly. We present an algorithm
to statically detect flooding, and we prove the soundness of the algorithm.

Keywords: active objects, concurrent objects, asynchronous communication, futures, static analysis,
concurrency faults

1 Introduction

Concurrency is today a key aspect of the computer systems forming our infra-structure. This aspect
is essential in distributed systems and net-based service systems such as cloud computing, as well as
multi-core computers. Since it is easier to reduce parallelism than to increase the amount of parallelism,
it is a non-trivial challenge to design systems that allow the desired amount of concurrency – and in a
correct manner. In practice many systems rely on centralized control or synchronization of blocks of
code to make programs dealing with shared data work correctly, including thread-based object-oriented
concurrency, which is the most common paradigm used to program distributed systems today. However,
synchronization restricts parallelism and slows down overall performance. While synchronization prim-
itives for notification/signaling may improve efficiency, they are difficult to use correctly because they
break modular reasoning and understanding.

The Actor model has been acknowledged as a natural way of programming concurrent systems, and
is based on a simple semantics allowing modular reasoning [7, 2, 1]. It has been extended to the object-
oriented setting in the form of active concurrent objects, interacting by means of remote method calls.
Asynchronous methods increase efficiency by allowing non-blocking calls [9, 8]; and shared futures
enable even more efficient interaction, allowing objects to share computation results without waiting for
the results [13, 6, 10, 12, 4]. For instance a caller who does not need the result of the called method may
pass the future identity of the result to other objects without (itself) waiting for the result to appear.

We consider a high-level core language based on this concurrency model. The language includes
a mechanism for asynchronous call, suspension of the active process, and blocking and non-blocking
primitives for obtaining future values, similar to [5]. Inter-object concurrency comes for free in the sense
that each object can run concurrently with other objects. Intra-object synchronization is handled in a
modular manner without the use of external notification. The concurrency model allows unrestricted

∗This work was done in the context of the EU projects FP7-610582 Envisage: Engineering Virtualized Services
(http://www.envisage-project.eu) and FP7-ICT-2013-X UpScale: From Inherent Concurrency to Massive Parallelism
through Type-based Optimizations (http://www.upscale-project.eu).
†
‡
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concurrency with a compositional semantics. Thus it enables efficient programming, class-wise under-
standing, verification, and testing. However, this unrestricted concurrency model does not come without
a price. This programming style may give rise to deadlocks, and it is easy to create programs that are
class-wise semantically correct but that fail due to over-eager creation of method calls. A system may
feed an object with more calls than it is able to handle, regardless of its processing speed. We refer to
this situation as flooding of the object.

In this paper we define and exemplify the concept of flooding, distinguishing between strong and
weak flooding. Weak flooding is less serious than strong flooding and can be managed with the use of
fair scheduling of the processes within an object. Strong flooding may eventually overwhelm a system,
even in the presence of fair scheduling. The scientific contribution of the paper is to propose a static
analysis method to detect possible flooding situations, and prove its soundness (no false negatives). Since
static analysis of flooding cannot be both sound and complete, detection of flooding may not imply a real
flooding situation. However, when no flooding is detected, this implies that there is no real flooding
situation (soundness).

While analysis of deadlock situations for this concurrency model has been investigated in several
ways, we are not aware of analysis of object flooding for this concurrency model. Arvind and Nikhil
[3] recognized a problem of “excessive parallelism” in the context of the functional dataflow language
Id and tagged-token dataflow. More recently, there have been efforts to address scheduling and fairness
issues with active objects, but none of that work discusses the issue of system failure due to flooding.
Instead, scheduling has been proposed to improve performance, and in some cases as an essential part of
the correctness of the algorithm [11].
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Luciano Garcı́a-Bañuelos1, Nick R.T.P. van Beest2,3, Marlon Dumas1 and Marcello
La Rosa3,2

1 University of Tartu, Estonia
{luciano.garcia, marlon.dumas}@ut.ee

2 NICTA, Australia
nick.vanbeest@nicta.com.au

3 Queensland University of Technology, Australia
m.larosa@qut.edu.au

1 Introduction
This paper addresses the problem of business process conformance checking defined as follows: Given
an event log recording the actual execution of a business process, and given a process model capturing
its expected or normative execution, describe the differences between the behavior captured in the event
log and that captured in the process model. In this setting, a log consists of a set of traces, where each
trace is a sequence of events. An event refers to the execution of an activity in the process.

This problem has been approached using replay [4] and trace alignment [7]. Replay takes as input
one trace at a time and determines the maximal prefix of the trace (if any) that can be parsed by the
model. When it is found that a prefix can no longer be parsed by the model, error-recovery techniques
are used to correct the parsing error and continue parsing as much as possible the remaining input
trace. Trace alignment identifies, for each trace in the log, the closest corresponding trace(s) produced
by the model and then highlights the points where the trace and the model diverge. However, trace
alignment cannot characterize the exact differences observed in a given state of the process in a concise
and understandable way, particularly for processes with a large number of possible traces.

In this abstract, we outline a method that, given a process model and an event log, returns a set of
statements in natural language describing all the behavior observed in the log but not allowed by the
process model (and vice versa). The method relies on a well-known model of concurrency, namely
prime event structures. We show that the stated problem of conformance checking can be approached
by folding the input event log into an event structure, unfolding the process model into another event
structure, and comparing the two event structures via an error-correcting synchronized product.

2 Approach
The overall approach is depicted in Figure 1. In this section we describe each of the steps in turn.

PES 1
(Prefix unf.)

PES 2

UNFOLD

MERGE

COMPARE

In the log, task “Check 
income sources” can be 
skipped, while it cannot 
be skipped in the model.VERBALIZE

Input
Model

Input
Event Log

Partially 
synchronized 

product

Figure 1: Overall approach

From a log to a prime event structure
In previous work [5], we presented a method to generate a prime event structure (PES) from an event
log. The method consists of two steps. First the event log, seen as a set of traces, is transformed into a
set of runs by invoking a concurrency oracle. In essence, each trace is turned into a run by relaxing the
total order induced by the trace into a partial order such that two events are not causally related if the
concurrency oracle has determined that they occur concurrently. Existing concurrency oracles such as
those proposed in the α process mining algorithm [8] or in [1] can be used for this purpose.
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Second, the runs are merged into an event structure in a lossless manner, which means that the set of
maximal configurations of the event structure is equal to the set of runs. For example, consider the log
in Figure 2(a), consisting of 16 traces: 3 instances t1 (cf. column “N”), 3 instances of t2, so on. Using
the concurrency oracle of the α algorithm, we conclude that event classes B and C are concurrent, so
that the set of runs in Figure 2(b) can be constructed. The notation e:A indicates that event e represents
an occurrence of event class A in the original log. By merging events with the same label and the same
history (i.e. same prefix), we obtain the PES in Figure 2(c). In this figure, the notation {e1, e2 . . . ei}:A
indicates that events {e1, e2 . . . ei} represent occurrences of event class A in different runs.

Trace Ref N
A B C D E H t1 3
A B C D F H t2 3
A C B D E H t3 2
A C B D F H t4 2
A B D E H t5 3
A B D F H t6 3

(a) Event log

a0 :A

a1 :B a2 :C

a3 :D

a4 :E

a5 :H

b0 :A

b1 :B b2 :C

b3 :D

b4 :F

b5 :H

c0 :A

c1 :B

c2 :D

c3 :E

c4 :H

d0 :A

d1 :B

d2 :D

d3 :E

d4 :H

(b) Runs

e0 = {a0, b0, c0, d0}:A

e1 = {a1, b1, c1, d1}:B e2 = {a2, b2}:C

e3 = {c2, d2}:D e4 = {a3, b3}:D

e5 = {c3}:E e6 = {d3}:F e7 = {a4}:E e8 = {b4}:F

e9 = {c4}:H e10 = {d4}:H e11 = {a5}:H e12 = {b5}:H

(c) Induced PES

Figure 2: Example of construction of a PES from a set of traces

From a model to a prime event structure

A

B E

F

D

C
G

H

f0

f1

f2

f3 f4

f5

f6
f8

f7

f9

f10

f11

A

B E

F
D

C G

H

f0 :A

f1 :B f2 :C

f3 :τ

f4 :D

f5 :F f6 :E

f7 :G f8 :τ f9 :H

f10 :τ f11 :τ

Figure 3: From a workflow net to a PES prefix

The proposed method takes process models as input,
which are captured as Workflow nets (WF-nets) [6],
i.e. Petri nets with a single start and a single end place
such that every node is on a path from the start to the
end. Mappings from common process modeling no-
tations (e.g. BPMN) to WF-nets have been defined in
the literature [2]. Event structures can be losslessly de-
rived from workflow nets via unfoldings of Petri nets
using well-known unfolding techniques. In the case of
acyclic nets, a full unfolding can be computed and a PES can be trivially derived. In the case of bounded
Petri nets with cycles, it is possible to calculate a finite prefix unfolding that captures all the behavior
in the original net. A PES (prefix) can then be derived from such prefix unfolding. Several prefix
unfoldings have been defined in the literature, e.g. the complete prefix unfolding [3].

Comparing prime event structures
Cl = {e0, e1}, Cr = {f0, f1}
ξ = {(e0, f0)A, (e1, f1)B}

Cl = {e0, e1, e2}, Cr = {f0, f1, f2}
ξ = {(e0, f0)A, (e1, f1)B, (e2, f2)C} Cl = {e0, e1}, Cr = {f0, f1, f2}

ξ = {(e0, f0)A, (e1, f1)B}

match B

match C
rhide f2:C

lhide e2:C

lhide e3:D

Figure 4: Fragment of PSP of E1 and E2

The comparison of event structures is performed by
means of an error-correcting synchronized product that
we call a partially synchronized product (PSP). A PSP
is built starting from empty configurations. At each
step, a pair of events from each PES is matched if and
only if their labels and causal order are consistent. Every unmatched event is “hidden” to let the simula-
tion proceed. By using a heuristic search, we construct a PSP that contains the set of optimal matchings
for every runs in the event log PES. Fig. 4 presents an excerpt of the PSP of the events structures from
Fig. 2 and 3. The box on top corresponds to the state where configurations Cl = {e0, e1} (log PES)
and Cr = {f0, f1} (model PES) have been processed, resulting in the matching {(e0, f0)A, (e1, f1)B}.
Given the above state, the events {e2:C, e3:D} from log PES would be enabled, and so is f2:C from the
other PES. Thus, four possible moves are possible in the PSP: (i) the matching of events e2 and f2, both
carrying the label C, (ii) the (left) hiding of f2:C, and (iii) the (right) hiding of e2:C and e3:D. Interest-
ingly, the fragment above alone captures the fact that “In the event log, task C can be skipped, while in
the model it cannot”. Although not illustrated, the PSP supports special-purpose moves to operate with
PES prefixes.
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Verbalizing differences
We identify three categories of differences. The first type of difference is the one in which the labels
of events confined in the mismatch context can be paired. The mismatch stems from differences in
the underlying behavior relations, e.g. parallel vs. sequential relations. The second type concerns
composite mismatches, in which the information of two branches in the PSP needs to be combined in
order to diagnose the difference. For example, a “task skipping” is detected when an event is hidden in
one branch of the PSP and there exists a sibling node where the same event is matched, and both nodes
share the same parent node. The third type concerns differences comprising non-observed behavior. For
instance, the model describes a cycle consisting of a set of events that cannot be found in the log, or vice
versa.

Using the PSP, each change from a particular category can be verbalized to describe the exact dif-
ference between the observed log and the model. The different operations in the PSP uniquely describe
the differences between the model and the log. Table 1 provides an example of the verbalization of
differences with the model in Fig. 3 for each change category.

Difference Log compared to Fig. 3 Verbalization
Type 1

A B DC
In the model, B and C are in parallel, while in the log, B precedes C.

Type 2
F I

In the log, G is substituted by I.

Type 3

F G

D

E In the model, the interval [D,F,G] is repeated multiple times, while in the log it is not.

Table 1: Desired verbalization of differences for each change category.

For Type 1, the PSP describes a series of mismatches concerning the same event for both PESs.
When considering the context in the PESs, it becomes evident from the ordering relations that in one
PES B is in parallel with C, while in the other PES B and C are causal. In the Type 2 example, on one side
G is hidden, while on the other side I is hidden. From this, it can be concluded that G has been replaced
with I. Finally, Type 3 concerns behavior specified in the model that is not observed in the event log.
A mismatch in this category can be identified by identifying sets of events that are not present in the
PSP. Of particular interest are cutoff events because they provide hints about the nature of the missing
behavior. For the example shown in Table 1, the cutoff event f10∶τ would not be part of the PSP, the
absence of which would reveal the fact that cycle [D, F, G] is never observed in the event log.

The examples of Table 1 show that we can characterize behavior in the log that is not in the model
and vice versa in a way that is understandable to users. Using this method, the conformance of an event
log to a model can be assessed more compactly and precisely than existing techniques.
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While many problems can be reduced to solving parity games, see [FL10] for example, veri-
fication frameworks using parity game solvers as a backend technology seem quite unexplored.
In this abstract we report an initial attempt at building an infrastructure for a verification
framework, which so far captures model checking for the modal µ-calculus.

At least two toolsets, mCRL2 and LTSmin, reduce the model-checking problem to parity
game solving, but they both do so by encoding the problem as a parameterized boolean equa-
tion system (PBES) [CGK+13, KvdP14]. We take a more direct, game-based approach, first
proposed by Colin Stirling [Sti96, BS06], where the problem is not encoded as a PBES, but
instead the system is modelled as a labelled transition system and the properties are specified
as a formula in the modal µ-calculus. This is an interesting logic, because it subsumes other
widely used modal logics, such as LTL and CTL [Koz83].

1 Basic Notions

Parity games. A parity game is played by two players, called Player 0 and Player 1, on a
directed graph in which all nodes are labelled with priorities. Formally, a parity game is a tuple
G = (V, V0, V1, E,Ω), where (V,E) forms a directed, total graph. Player 0 controls the nodes in
V0, and Player 1 controls the nodes in V1, such that V = V0 ∪ V1 and V0 ∩ V1 = ∅. The priority
function Ω : V → N assigns a natural number to each node, called the priority of the node.

The game starts in a node v0 ∈ V and an infinite sequence of nodes is constructed as follows.
If the play so far has yielded a finite sequence of nodes v0v1 . . . vi and vi is in Vj , then Player j
selects a node w, such that (v, w) ∈ E, and the play continues with the sequence v0v1 . . . viw.
The winner of the play v0v1v2 . . . is Player 0, if the highest priority that occurs infinitely often
is even, otherwise Player 1 wins.

A strategy for Player j is a function σ : V ∗Vj → V that maps every initial play v0v1 . . . vi
ending a node vi ∈ Vj to a successor node vi+1, such that (vi, vi+1) ∈ E.

An important property of parity games is that they exhibit positional determinacy [Kü02],
i.e., the set V of nodes in an arbitrary game G can be divided into two winning regions, W0

and W1, such that Player j can win every game that starts in a node v ∈ Wj by following a
winning strategy. Moreover, a winning strategy is also positional, i.e., there exists a function
σ′ : Vj → V such that σ(v0 . . . vi) = σ′(vi) for vi ∈ Vj . Thus, an algorithm for solving parity
games should compute the winning regions and the positional winning strategies.

Labelled transition systems. A (P,A)-labelled transition system (LTS) is a tuple S =
(S, V,R), such that S is the set of states; V : P → P(S) is a valuation, i.e., V (p) is the set of
states where p is true; and R = {Ra ⊆ S × S | a ∈ A} contains the action-labelled relations of
the system.

Modal µ-calculus. Given a set of proposition letters P and a set of actions A, the collection
of formulas ϕ in modal µ-calculus are defined by the following grammar

ϕ ::= > | ⊥ | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈a〉ϕ | [a]ϕ | µx.ϕ | νx.ϕ

1
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where p, x ∈ P and a ∈ A. Informally, > and ⊥ are true and false, respectively; ¬, ∧, and
∨ are the usual Boolean operators; 〈a〉 and [a] are modal operators; and µ and ν are fixpoint
operators.

The semantics of the modal µ-calculus can be defined game-theoretically in terms of a
so-called evaluation game [Ven08]. It is helpful to think of the game in terms of proving or
disproving a formula ϕ. Player 0 is trying to prove ϕ, and Player 1 is trying to disprove it.
The problem of determinining the winner of an evaluation game can be reduced to finding the
winning regions of a parity game. Furthermore, the model checker can construct examples and
counter-examples from the winning strategies.

2 The Framework

The overall goal is to investigate the use of parity games for formal verification. Thus, an
efficient solver is a critical part of a verification framework. Therefore, in the first version
we use PGSolver [FL14] as the backend solver, because it allows for experimentation with
different algorithms. Furthermore, a model checker for modal µ-calculus is implemented. This
implementation is based on an on-the-fly generation of a parity game on the basis of a labelled
transition system and a formula in modal µ-calculus.

Parity games of a few million nodes with average degree d = 3 can be solved in less than a
minute1, so speed is not an immediate concern. However, memory is quickly exhausted as the
LTS or the formula becomes complicated, since the game graph consists of O(|S| · |Sfor(ϕ)|)
nodes.2 One approach to overcome this problem is solving parity games symbolically, which
leads to a more compact representation [BEKR09, KvdP14]. For a simple one-node LTS with
three actions, the current implementation can check formulas with eleven alternating fixpoints
in a few seconds, by generating and solving a parity game of 1.2 million nodes. For such formulas
the state space grows exponentially with the depth of the formula, so a formula with twelve
alternating fixpoints results in a parity game of 3.7 million nodes, which exhausts the memory
of the parity game solver.

We have also considered a new type of algorithm due to Steen Vester, in which parity games
are considered in a certain normal form, where the game is strictly turn-based, and where
Player 0 only controls nodes of even parity and Player 1 only controls nodes of odd parity. The
algorithms in consideration exploit these restrictions in order to simplify the solving process.
Considering parity games in this normal form is viable, because it is possible to transform any
parity game to one in normal form in linear time, such that no player has any additional strategic
advantages and the winning regions are preserved. In practice, the normal-form algorithms
perform worse than the state-of-the-art algorithm due to Zielonka [Zie98, FL09], but they
perform well on games that they are theoretically well suited for, i.e., dense game graphs that
are already in normal form (need no transformation). This is promising for the development
of other specialized algorithms. These may not perform better in general, but in special cases
of interest, e.g., an algorithm that exploits the tree-like structure of parity games constructed
from evaluation games.

Overall, this is promising for using parity games for other verification techniques, e.g.,
controller synthesis, which amounts to finding the winning strategies in a parity game [RW89].

1Benchmarks carried out on a machine with four 3.5 GHz Intel Core i5 processors and 8 GB RAM space. The
implementation does not support prallel computations, hence, the benchmarks was only run on one processor.

2Sfor(ϕ) denotes the subformulas of ϕ.
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and Thomas Wilke, editors, Automata Logics, and Infinite Games, volume 2500 of Lecture
Notes in Computer Science, pages 95–106. Springer Berlin Heidelberg, 2002.

[RW89] P.J.G. Ramadge and W.M. Wonham. The control of discrete event systems. Proceedings of
the IEEE, 77(1):81–98, Jan 1989.

[Sti96] Colin Stirling. Modal and temporal logics for processes. Springer, 1996.

[Ven08] Yde Venema. Lectures on the modal µ-calculus. Institute for Logic, Language and Compu-
tation, University of Amsterdam, 2008.

[Zie98] Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theoretical Computer Science, 200(1–2):135 – 183, 1998.

3

68 Aceto et al.

Reykjavík University



Join inverse categories and reversible recursion

Robin Kaarsgaard

DIKU, Department of Computer Science, University of Copenhagen
Copenhagen, Denmark

robin@di.ku.dk

Many reversible functional programming languages (such as Theseus [8] and the combinator
calculi Π and Π0 [3]) as well as categorical models thereof (such as †-traced symmetric monoidal
categories [3]) come equipped with a tacit assumption of totality, a property that is neither
required [2] nor necessarily desirable as far as guaranteeing reversibility is concerned. Shedding
ourselves of this assumption, however, requires us to handle partiality explicitly as additional
categorical structure.

One approach which does precisely that is Cockett & Lack’s notion of inverse categories [4],
a specialization of restriction categories, which have recently been suggested and developed
by Giles [5] as models of reversible (functional) programming. In this paper, we will argue
that assuming ever slightly more structure on these inverse categories, namely the presence of
countable joins of parallel morphisms, gives rise to a number of additional properties useful for
modelling reversible functional programming, notably reversible (tail) recursion and recursive
data types (via ω-algebraic compactness with respect to structure-preserving functors), which
are not otherwise present in general. This is done by adopting two different, but complementary,
views on inverse categories with countable joins as enriched categories – as CPO-categories, and
as (specifically ΣMon-enriched) unique decomposition categories.

Background In the framework of restriction categories, partiality is handled by equipping
each morphism f : A→ B with a partial identity morphism f : A→ A (the restriction idempo-
tent of f , intuitively the identity defined precisely where f is defined) subject to a few axioms,
notably that f is the right-identity of f under composition. This definition provides a partial
ordering on Hom sets by defining f ≤ g for parallel morphisms f and g iff g ◦ f = f .

Joins on morphisms (see, e.g., Guo [6]) are then defined to be joins with respect to this partial
order (subject to a few axioms), with the caveat that parallel morphisms f and g can only be
joined if they are join compatible, which they are iff g ◦f = f ◦g (intuitively, if they agree on all
points in their domain where they are both defined). This definition is then straightforwardly
extended to sets (in this particular case, countable ones) of parallel morphisms by saying that
a set S ⊆ Hom(A,B) is join compatible if all morphisms of S are pairwise join compatible. A
restriction category is thus said to have (countable) joins if all (countable) join compatible sets
have a join, and the category has a restriction zero object, that is, a zero object in the usual
sense which additionally satisfies that the zero map 0A,A : A → A is a restriction idempotent
(i.e., that 0A,A = 0A,A) for all objects A (the zero map 0A,B is the unit for joins in Hom(A,B)).

Perhaps more immediately important to our applications, restriction categories allow for a
definition of a partial isomorphism as a morphisms f : A → B for which there exists a partial
inverse f∗ : B → A such that f∗ ◦ f = f and f ◦ f∗ = f∗. An inverse category is then defined
to be a restriction category in which all morphisms are partial isomorphisms; as such, inverse
categories are “groupoids with partiality,” and can be canonically equipped with the structure
of a †-category by letting the †-functor map each morphism to its partial inverse. Keeping with
this canonical structure, we will use f† for the partial inverse of f from here on out. Inverse
categories can be equipped with joins in the same way as general restriction categories can
(with slightly more work, see Guo [6]).
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CPO-enrichment Since inverse categories come equipped with partially ordered Hom sets,
demonstrating CPO-enrichment reduces to producing suprema of ω-chains and showing that
composition is continuous and strict. Let C be an inverse category with countable joins. For
an ω-chain {fi}i∈ω of some Hom C(A,B), we define its supremum by1

sup {fi}i∈ω =
∨

i∈ω
fi .

That this join exists follows from the fact that f ≤ g implies that f and g are join compatible.
That composition is continuous follows directly by this definition since

g ◦
∨

f∈F
f =

∨

f∈F
(g ◦ f) and


 ∨

f∈F
f


 ◦ h =

∨

f∈F
(f ◦ h)

are axioms of joins [6]; similarly, strictness of composition follows by the universal mapping
property for the zero object, noting that the zero map 0A,B is least in the partial order on
Hom C(A,B) for all objects A,B.

From this follows the existence of fixed points for all continuous morphism schemes for recur-
sion, i.e., monotone and continuous functions of the form f : Hom C(A,B)→ Hom C(A,B) by
Kleene’s fixed point theorem, and can thus be used to model recursion. A further pleasant prop-
erty is locally continuity of the canonical †-functor on C, i.e., the map invA,B : Hom C(A,B)→
Hom C(B,A) given by invA,B(f) = f† is monotone and continuous for all objects A,B.

Combining the two, we can show that each continuous morphism scheme for recursion f
has a fixed-point adjoint f‡ such that (fix f)† = fix f‡; intuitively, that the partial inverse of a
recursive function can be constructed recursively in a canonical way. This is done by defining

f‡ = invA,B ◦ f ◦ invB,A

which is continuous since it is a continuous composition of continuous functions; fix f‡ =
(fix f)† can then be shown using local continuity of the †-functor, and by noting that fn‡ =
invA,B ◦ fn ◦ invB,A. This gives us reversible recursion in the style of rfun [9]: a recursive
function is inverted by replacing recursive calls with calls to the inverse function, and then in-
verting the remainder of the function. Further, by considering more general morphism schemes,
we can get a procedure for representing parameterized functions in the style of Theseus [8].

Another consequence is the fact that every inverse category with countable joins can be
embedded (fully faithfully and in a join and restriction preserving manner) into an inverse cat-
egory that is ω-algebraically compact with respect to the class of join and restriction preserving
functors. The proof of this theorem is somewhat involved: it relies on a coincidence between
restriction monics in inverse categories (split monics that split a restriction idempotent) and
embeddings in CPO-categories (morphisms f : A → B with projections f∗ : B → A such that
f∗ ◦ f = 1A and f ◦ f∗ ≤ 1B); on Guo’s characterization of join restriction categories as partial
map categories with certain stable colimits [6]; and on Adámek’s fixed point theorem [1].

ΣMon-enrichment and unique decomposition Another way to approach inverse cate-
gories with countable joins is as Σ-monoid enriched categories in the sense of Haghverdi [7].
Briefly, a Σ-monoid consists of a set S equipped with a partial sum function Σ defined on

1This is a slight abuse of notation since joins in restriction categories are unordered, i.e., defined on sets
rather than families. The join

∨
i∈ω fi should thus be taken to mean

∨
f∈F f where F = {fi | i ∈ ω}.
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countable families of S (say that such a family if summable if its sum exists), subject to the
axioms of partition-associativity (a family is summable iff any partitioning of it is piecewise
summable, and the sum of the pieces coincide with the sum of the family) and unary sum (the
sum of a singleton family is equal to its element). It is straightforwardly the countable joins in
inverse categories satisfies these axioms, with summability coinciding with join compatibility.

If we, in addition, suppose that our inverse category C with countable joins is equipped with
a disjoint sum tensor in the sense of Giles [5] (a symmetric monoidal restriction functor · ⊕ ·
with the restriction zero as unit, and equipped with jointly epic injections q1 : A→ A⊕B and
q2 : B → A⊕B and jointly monic coinjections q†1 : A⊕B → A and q†2 : A⊕B → B), we get
straightforwardly that C is a unique decomposition category (a symmetric monoidal category
with quasi-injections ιj : Xj → ⊕IXi and quasi-projections ρj : ⊕IXi → Xj for all j ∈ I where
I a finite index set, subject to a two axioms [7]). Using join compatibility of disjoint morphisms,
it follows by Haghverdi [7] that C is traced, and that the trace can be constructed by

TrUA,B(f) = f11 +
∑

n∈N
f21 ◦ fn22 ◦ f12 = f11 ∨

∨

n∈N
f21 ◦ fn22 ◦ f12

for all f : A⊕ U → B ⊕ U , where fij = ρj ◦ f ◦ ιi = q†j ◦ f ◦ qi. In this special case, however,

this is not just a trace, but a †-trace (i.e., it satisfies TrUB,A(f†) = TrUA,B(f)†): this can be seen

by realizing that (fij)
† = f†ji, and by using (

∨
f∈F f)† =

∨
f∈F f

† which follows directly from
local continuity of the †-functor in the CPO-view. This is significant given that †-traces are
used to model reversible tail recursion.

Conclusion The existence of countable joins in inverse categories provides us with a model
of partial reversible functional programming with recursive types and general recursion in the
style of rfun. Further assuming the existence of a disjoint sum tensor allows us to extend the
standard model of †-traced symmetric monoidal categories to one with a notion of partiality.
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Abstract

A “thrown” exception is a non-local side effect that complicates static reasoning about
code. In some programs errors are instead propagated as ordinary values. Such propagation
is sometimes done in monadic style, and some languages include syntactic conveniences for
writing expressions in that style. We sketch a language-based failure management approach
in which error-monad-resembling transparent error value propagation is made the language
default. The approach accommodates language designs with all-referentially-transparent
expressions, and syntactic conveniences resembling those of traditional exception mech-
anisms. Our proof-of-concept implementation of the approach is furthermore capable of
automatically checking data invariants and function pre- and post-conditions, recording
a trace of the failed or unevaluatable expressions caused by an error, and in some cases
retaining “bad” values for potential use in recovering from an error.

1 Bad-Value-Extended Data Types as a Convention

A number of mainstream languages include a try/catch-style facility for intercepting non-local-
returning, exceptional control transfers triggered by errors. Propagating error information using
such mechanisms comes at the cost of making static reasoning about code harder. As exceptions
are side effects, referential transparency (RT) of expressions that may throw is lost; this means
that replacing an expression by its value may not preserve program semantics, as the value may
not capture everything that the evaluation of an expression does.

A more traditional alternative is to report errors through return values, by having some
values of the return type signify an error. While this approach preserves RT, it also tends to
involve tedious, explicit checking and propagation of error return values. One may be able to
encapsulate the tedious work within an abstraction, but the abstraction can only encompass
operations for which there is a known way of determining which return values indicate an error.
A simple way to enable such determination is to augment (in a general way) each return type
to have a carrier set that is a disjoint union of values that are explicitly good or bad.

For example, for a potentially-failing Haskell function whose successfully computed values
are of type Integer, we might specify the return type Result Integer, with the type constructor
Result defined as shown below. In the definition, the parameter t is the type of the good
“payload,” and Error is the type of an error information object.

data Result t = Good t | Bad Error

Result can be made into an error monad by defining the operations of the Monad type
class with the appropriate semantics. The monad then encapsulates implicit actions to check
for Good function arguments, and to propagate any Bad arguments while skipping subsequent,

∗This research has been supported by the Research Council of Norway through the project DMPL—Design
of a Mouldable Programming Language.
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unevaluatable function applications. It is not especially convenient to write monadic expressions
such as mv >>= (\x -> f x >>= (\y -> g y)), but with Haskell’s do notation as syntactic sugar
one may instead write do x <- mv; y <- f x; g y. This is more convenient, but not uniform;
the programmer has both monadic and “bare” values to deal with, and different syntaxes for
monadic and non-monadic expressions (cf. the above expressions versus g (f mv)).

We note that the Result type constructor is universal: any type can be augmented with a
set of error values by “wrapping” it in Result. What if we made use of this power for purposes
of uniformity, and adopted a language-wide convention of computing with Result-wrapped
values? We have been exploring this question, by devising and experimenting with various
language-integrated mechanisms to support such a convention.

Two particularly useful, orthogonal kinds of such language-based support are transparent
propagation of error values, and automated adaptation to other error reporting conventions,
which we discuss in sections 1.1 and 1.2, respectively. Designing and implementing such support
is made easier by consistency of convention and explicit badness of values: it is sufficient to only
have “monadic” expression syntax, which can for the most part be made to look conventional,
while still having it express Result processing; and generating code to check for a bad value
requires no context, but merely the insertion of a single, known predicate check.

Our approach seems most promising for languages focused on supporting static reasoning,
in that such languages benefit from RT preservation and simple, uniform rules for error man-
agement. Furthermore, static reasoning opportunities facilitate optimizations to reduce the
readability-hampering code bloat that results from naive implementations of the approach.

We have implemented our language-integrated error management scheme in the form of
Erda1, which is a family of experimental programming languages that have a Racket-resembling
syntax. ErdaRVM is a dynamically typed language targeting the Racket virtual machine (VM),
while ErdaC++ is a statically typed language that compiles to C++ source code. The imple-
mentation of ErdaRVM is purely based on program transformations expressed in terms of the
host language’s macros, whereas ErdaC++ additionally relies on a compiler.

1.1 Uniform, Language-Wide Error Propagation

Assuming that every operation (whether user-defined or built-in) consistently reports any fail-
ures via distinctly bad return values, then what remains is to add language support for trans-
parent processing of values that make such an explicit distinction. In our solution the processing
includes checking for bad values, skipping operations that may not be performed, and recording
information about failures and skipped operations inside the processed values, for the benefit
of error reporting and recovery. The processing is performed by (highly portable) code that
the language implementation emits between operations that appear in a program; that code is
similar to the implicit actions encoded in terms of the primitives of an error monad.

In ErdaRVM, the literal syntax 0 expresses the constant value (Good 0). The factorial

function, as below, transparently processes Result values throughout; as shown here, it correctly
obeys the convention of reporting errors (in this case its inability to compute x! for any x < 0)
by returning a Bad value, which can be instantiated with raise:

(define (factorial x)

(cond

[(< x 0) (raise ’bad-arg)]

[(= x 0) 1]

[else (* x (factorial (- x 1)))]))

1Code and documentation for Erda is available at https://www.ii.uib.no/~tero/erda-2015/
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In addition to raise, ErdaRVM includes a number of other constructs (e.g., a try/catch-
inspired try, and a less familiar on-alert [1]) capable of dealing with Bad values. Bad values may
be stored in variables as normal. By default, a defined function only receives Good arguments2;
for example, the expression (factorial (factorial -1)) only causes factorial to be called
once, as ErdaRVM skips the outer call due to its Bad argument.

In effect, ErdaRVM has extended the implementation of factorial to allow the normal control
flow of the program to proceed irrespective of whether the result is a good value or a bad value.
If it is a good value, the computation will proceed as normal. If the result is a bad value,
the computation can accumulate information about how the value should have been processed
after its inception. In contrast, an error monad has no access to such contextual information;
a language implementation can access even the uncomputable expression itself.3

1.2 Declarative Adaptation to Other Conventions

Our language-native error reporting convention concerns both natively defined functions and
foreign primitives. Due to our wholesale adoption of the convention, we wanted to support
a declarative way of statically generating adaptation code for interfacing with functions that
follow other conventions. Our declaration-based abstraction over foreign conventions is modeled
after alerts, as detailed by Bagge et al [1]. An alert may be triggered due to a broken pre- or
post-condition or a thrown exception, as declared. Alerts are propagated as bad data values.

Racket functions can be called from ErdaRVM directly, with automatic Result (un)wrapping
of arguments and return values, but any associated alerts have to be declared:

(declare (/ x y) #:alert ([div-by-0 on-throw exn:fail:contract:divide-by-zero?]))

The alert facility is also useful within ErdaRVM. For example, rather than invoking raise

explicitly within factorial, we can make it conformant by declaring an alert for it:

(define (factorial x) #:alert ([bad-arg pre-when (< x 0)]) )

Guarded algebras [2] serve as the formal basis for our declarative checking of failure con-
ditions. Formally, all the applicable data invariants (which may be defined for ErdaRVM data
types) and alert declarations together induce an idealized guard predicate for every expression.
In practice we need not infer a complete pre-condition for an operation, but can rather have
a code generator precede or surround or follow an operation invocation with all the appropri-
ate individual guard expressions, in order to detect or catch errors. At the same time we can
also insert code to ensure that the appropriate wrapper data type is used for the result, with
available information about any error embedded into the wrapper.
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1 Introduction
In economics discounting represents that money earned soon can be reinvested earlier and hence
yields more revenue than money earned later. Discounting has been introduced into temporal
logics to represent that something happening earlier is more important than similar events
happening later [DFH+04, ABK14]. A typical example is a rail road crossing. Consider the
property ‘eventually the gates are open’. While a controller leaving the gates closed an hour
after the train has passed might be safe and alive, it is not useful. We can use discounting
to express that the controller should not wait unnecessarily long before opening the gates. In
[ABK14] this has been described as quantifying the temporal quality of a system.

So far discounting in logics only has been studied for discrete-time temporal logics (LTL,
CTL*, µ-calculus) [DFH+04, ABK14]. Here, we study discounting in the dense temporal case.
We extend Duration Calculus (DC) [CHR91] with discounting and give some examples on which
we want to apply our new logic.

2 Discounted Duration Calculus
We use an adapted version of Duration Calculus (DC), where the chop operator is replaced
by left and right neighbourhood modalities. As atomic formulae, we only allow comparison of
durations with constants.

Definition 1. Let d ∈ [0, 1] ∩ Q, c ∈ Q and let P be a proposition. Then the syntax of our
fragment of DC is defined as

φ ::= ♦dl φ | ♦drφ |
∫ d
S ≥ c |

∫ d
S > c | ¬φ | φ ∨ φ | dSe ,

S ::= P | ¬S | S ∧ S .

The semantics of DC is defined in terms of trajectories. A trajectory is a function

tr : R≥0 → Varname → B

assigning to each time instant and each variable a truth value.
The semantics does not just determine whether the model satisfies the formula, but rather to

what extent the model satisfies the formula. Hence, we associate to a formula and a trajectory
∗Work of the author was partially supported by Deutsche Forschungsgemeinschaft within the Transregional

Collaborative Research Center SFB/TR 14 AVACS.
†Work of the author was partially supported by the Danish Research Foundation for Basic Research within

the IDEA4CPS project.
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a satisfaction value in the form of a real number in the interval [0, 1]. The right neighbourhood
modality ♦dr expresses that right of the current interval there is an adjacent interval satisfying
the subformula. The discount d is used to reduce the satisfaction value w.r.t. the length of
the adjacent interval. The left neighbourhood modality is defined similarly. Discounting in
the integral formula represents that it takes at least c units of time to satisfy the comparison.
Hence, the first c time units should not be discounted.

Definition 2. Given a formula, a trajectory tr , and a time interval [k,m], the semantics is
defined as

IJ♦drφK(tr , [k,m]) = sup
l≥m
{dl−m · IJφK(tr , [m, l])}

IJ♦dl φK(tr , [k,m]) = sup
l≤k
{dk−l · IJφK(tr , [l, k])}

IJ
∫ d
S ≥ cK(tr , [k,m]) =

{
0 if

∫m
t=k

S(t) dt < c

dm−k−c otherwise

IJ
∫ d
S > cK(tr , [k,m]) =

{
0 if

∫m
t=k

S(t) dt ≤ c
dm−k−c otherwise

IJ¬φK(tr , [k,m]) = 1− IJφK(tr , [k,m])

IJφ0 ∨ φ1K(tr , [k,m]) = max{IJφ0K(tr , [k,m]), IJφ1K(tr , [k,m])}

IJdφeK(tr , [k,m]) =

{
1 if

∫m
t=k

S(t) dt = m− k and m > k

0 otherwise

If we want to use the modalities without discounting we use a discount of 1. In this case
we do not explicitly write the discount. Additionally, we define as abbreviations modalities for
every right and left adjacent interval and another modality for every interval:

�rφ
def
= ¬♦r¬φ �lφ

def
= ¬♦l¬φ �φ def

= �r�r�l�lφ

3 Examples

3.1 Call Centre

q0
¬S

q1
S

q2
¬S

connected

please wait
a moment

I’m back

Figure 1: Automaton modelling a call to a call
centre. In state q0 the customer waits to be con-
nected to an employee. In state q1 the customer
interacts with the employee. In state q2 the em-
ployee interacts with his colleagues

Consider a customer calling a call centre
with a request (see Figure 1). Let S be
a state variable indicating whether the cus-
tomer is waiting or interacting with the em-
ployee, let c be the time of interaction be-
tween the customer and the employee re-
quired to complete the request and let d be
the factor of discounting or inflation rep-
resenting the impatience of the customer.
Then a high satisfaction value of the for-
mula

♦r

∫ d
S ≥ c ,

by the model of the call centre indicates an efficient handling of requests.
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3.2 Railway Crossing
Usually at a railway crossing the gates would close when a train is approaching. However, when
the street is heavily used the throughput of the street might be too low when the gates are
closed whenever a train is approaching. Instead, there could be interlocks for the railway that
are nlocked whenever the gates for the street are open. When a train is approaching the gates
of the street should however be closed soon. This is expressed as

�(dapr = 1e =⇒ ♦0.9
r dSG .closede) ,

where apr is the number of trains approaching and SG stands for street gate. If another train
approaches, e.g. on a parallel track or behind the first train, the urgency is increased, which
can be expressed by reducing the discount as in

�(dapr = 2e =⇒ ♦0.8
r dSG .closede) .

3.3 Energy Consumption
Consider a system with an energy capacity c, dissipating energy while operational, but con-
serving energy in idle mode. Examples are distributed sensors or mobile robots. Let the state
variable S describe whether the system currently is operating. Then the satisfaction value of

�0.9
r (

∫
S ≤ c)

becomes the higher, the longer the system has not used up its energy budget.

4 Outlook
We introduced discounted DC and showed some small examples for which interesting properties
can be expressed in our logic. Next we are interested in meaningful decision problems that can
be answered automatically. For this we consider threshold satisfaction as in [ABK14], i.e. for a
formula φ and a trajectory tr , an initial interval [k,m] and v ∈]0, 1[ we ask

IJφK(tr , [k,m]) ≥ v .

For formulas of the form such as in the call centre example the inequality becomes dδ ≥ v,
where δ is the length of the interval that satisfies the formula. Then δ = logd v is the maximal
δ such that the inequality is still satisfied. Hence, we only have to check a bounded part of the
possibly infinite trace. If we additionally assume that the number of state changes in any finite
interval is bounded by some constant then threshold satisfaction seems decidable, because there
is a bound on the maximal number of state changes we need to consider. For more general
formulae, we will investigate approximability of maximal satisfaction values, as facilitated by
discounting the far future and past.
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Abstract

The notion of Data Dependency Algebra (DDA) is an algebraic formalism that turns data depen-
dencies into first class citizens in the program code through a dedicated Application Programming
Interface (API). This forms the basis of a platform independent parallel programming model [BH09].
In this paper, we further expand the theory of DDAs by proposing algebraic combinators operating
on top of DDAs as a means to declare compound DDAs of custom complexity. The purpose is to
allow the programmer to combine existing DDA implementations via high-level language constructs
using simple declarations. The implementation of the compound DDA is generated at compile-time
yet through the API its components are readily available for the programmer after declaration. We
instantiate these ideas through the case-study of a DDA-based polynomial multiplication.

Introduction
Dependence analysis is a complex process through which a compiler collects relevant information about
the execution-order of program statements [Ban96]. The aim is to identify situations when statements
can be reordered for optimisation purposes without changing the semantics of the program. This
may lead to improved instruction scheduling with decreased number of stalls, better exploitation of
instruction-level parallelism when the hardware supports it, or improved memory locality, etc. With the
appearance of early parallel computing systems, compilers also met the challenge of how to generate
parallel executable on demand. This formed the basis of the concept known as automatic parallelization.
While most modern compilers have successfully adopted optimisation techniques based on dependence
analysis, its applicability for automatic parallelization has remained limited. Dependence analysis is
NP-complete in the presence of recursion, indirect addressing, pointers, or when the behaviour of the
program is dynamically determined, for instance, loops with non-fixed iteration spaces, or algorithms
with input-dependent dynamic dependencies. In addition, a major problem with automatic paralleliza-
tion is that sequential and parallel versions of an algorithm are fundamentally different. They are based
on solution paradigms that do not necessarily relate to each other. Compiler transformations, on the
other hand, generally preserve the solution paradigm. Hence, dependence analysis of sequential code
cannot supply sufficient knowledge to aid the complex task of parallelization: parallel task decomposi-
tion, load balancing, data distribution, synchronisation, etc.

Over the last decades, research in parallel programming models and compilers has shown that a
different coding technique is required when the aim is to execute certain parts of a computation in
parallel. Be that through the means of language constructs with a dedicated parallel (or concurrent)

∗This research has been supported by The Research Council of Norway through the project Design of a Mouldable Program-
ming Language.
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execution model, using for instance threads, parallel loops, data-parallel constructs, skeletons, message
passing, or based on directives which instruct the compiler that annotated parts of the code can be
executed in parallel, or based on other abstractions that help the compiler in the parallelization process.

With all that, parallel programming has proved to be very difficult and error-prone. Portability
across multiple platforms and flexibility is also a major issue. Today, this is even more accentuated by
the fact that applications need to be parallelized to adapt to the rapidly growing and versatile realm of
parallel hardware systems. This applies to all range of computing systems, from commodity computers
via embedded systems up to supercomputers. Multi-cores, many-cores, and accelerators like Graphics
Processing Units (GPUs) and Field Programmable Gate Arrays (FPGAs) are becoming standard yet the
search for parallel programming models that meet the requirements of portability, flexibility, efficiency,
scalability and programming productivity across these platforms is still ongoing.

Parallel Programming with Data Dependencies

We pointed out that automatic dependence analysis cannot provide fine-grained details about the data
dependencies occurring in a computation. Nonetheless, it is the flow of data and the presence or lack of
dependencies between computational steps which determine any parallel execution. Therefore, we set
our focus on fine-grained data dependencies.

The notion of Data Dependency Algebra (DDA), introduced in [Hav00], is an algebraic formalism
that allows the programmer to present the data dependency graph of a computation as program code to
a compiler. The abstraction is powerful enough to serve as the basis of a platform independent parallel
programming model ensuring flexibility, productivity and portability across the platforms [BH09]. The
approach also provides a high and easy to manipulate level for the programmer to deal with data distri-
bution and placement [BH12]. In general, DDA-based parallel code generation is doable for any parallel
systems with a well defined space-time communication structure. This has been shown for shared- and
distributed-memory model computers, GPUs and FPGAs [Sør98, BH09, Bur14].

Central to this approach is the ability to extract manually the data dependency graph of an algorithm
and code the computation in terms of the DDA API. This approach primarily suits computations with
static and scalable data dependencies where the patterns are regular. Some data dependencies are more
complex and probably less regular than for instance the butterfly pattern of the Fast Fourier Transform,
sorting networks, or stencil computations of PDE solvers. Coding complex dependencies may easily
become cumbersome.

In this presentation, we propose algebraic combinators operating on top of DDAs as a means to
declare compound DDAs of custom complexity. The purpose is to allow the programmer to combine
existing, easy to code DDA implementations via high-level language constructs. The implementation
of the compound DDA is generated at compile-time yet through the API its components are readily
available for the programmer after declaration. The following combinators are presented:

1. The parallel DDA combinator allows DDAs to be placed next to each other resulting in a larger
DDA, to be referenced as a standalone DDA, without defining any additional connection between them.

2. On the contrary, the serial DDA combinator creates a larger DDA by connecting two DDAs in
a “sequential” fashion. New branches are added in the compound DDA that will connect a designated
set of points from the first DDA to a designated set of points of the second DDA determined by a given
transfer function.

3. The sub-DDA combinator is a unary operator resulting in a smaller DDA “forgetting” parts of the
original DDA as specified in the construct. It resembles the sub-graph relation from graph-theory.

4. The nesting DDA combinator requires a global DDA, a collection of local DDAs, one for each
global DDA point, and a family of transfer functions, see Fig. 1. Each point of the global DDA is
replaced by its associated local DDA, and new dependency branches are added along the global depen-
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Figure 1: Detail of a nested DDA (black coloured), obtained using 4 points of a global DDA (grey coloured in the
background), and the associated local DDAs.

dencies between the local DDAs as specified by the transfer functions.
Combinators can be applied in arbitrary order when declaring compound DDAs. Implementing the

combinators in the compiler according to the proposed formalisms ensures that the compound DDA
is in effect a DDA, i.e., its components satisfy the axiomatic requirements of the DDA API which is
quintessential in the framework.

We discuss the benefits of the combinators in the programing model context and instantiate their use
by presenting a compound DDA-based polynomial multiplication.
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1 Introduction

Modern software systems are increasingly concurrent as the computational capacity of modern
CPUs is improved mainly by increasing the number of processor cores. Writing software that
efficiently exploits the capacity of such CPUs is hard. For this purpose new programming
paradigms have been proposed. One such paradigm, which has gained a lot of attention within
the signal processing domain is the dataflow paradigm. A dataflow program consists of a
network of actors connected via asynchronous channels that describe the flow of data between
actors. Each actor can execute concurrently when the required data is available on the incoming
channels. As the only communication between actors is performed over channels, computations
can easily be mapped to different processing units. In the general case dataflow programs have
to be scheduled dynamically at runtime when run on general purpose hardware, which can
cause significant runtime overhead. Consequently, different techniques to reduce the number of
dynamic scheduling decisions have been investigated, e.g. [3].

In this work we present an approach to specification and automatic verification of dataflow
programs based on assume-guarantee reasoning. The approach is based on annotating actors
and networks with contracts stating functional properties which the actor or network should
adhere to. The goal of the approach is to ensure functional correctness with respect to the
contracts as well as deadlock freedom for dataflow networks. The contracts can potentially
also be used to specify and prove properties which can be utilised to make scheduling decisions
at compile-time. The work presented is a generalisation of previous work on verification of
Simulink models [2], in which Simulink models are translated to synchronous data flow [5]
(SDF) networks for verification. SDF is a subset of the the dataflow programs considered here,
which can be statically scheduled.

2 Dataflow programs

We here consider dataflow programs in a language similar to the CAL actor language [4]. CAL
has gained recent attention within the signal processing domain, and a subset of the language,
named RVC-CAL, has also been standardised by ISO/IEC MPEG as part of the Reconfigurable
Video Coding standard [6].

The dataflow programs considered here consist of a set of actors communicating over order-
preserving channels of infinite size. Actors, which are allowed to have state, consist of a set of
actions. The actor executes by firing an eligible action. An action is eligible depending on the
number of tokens available on the incoming channels, the values of the tokens and the current
state of the actor. Some examples of basic actors are listed in Fig. 1a. The actor Add has
two input ports x1 and x2 and one output port y. The actor has one action, which reads one
token from each of the input ports and outputs the sum of the read tokens. The actor Delay
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actor Add() int x1, int x2 ==> int y:
action x1:[i], x2:[j] ==> y:[i+j] end

end

actor Delay(int k) int x ==> int y:
initialize ==> y:[k] end
action x:[i] ==> y:[i] end

end

actor Split() int x ==> int q, int u:
action x:[i] ==> q:[i]
guard i < 0

end
action x:[i] ==> u:[i]
guard i >= 0

end
end

actor Sum() int x ==> int y:
inv sum == (0::y)[last]

int sum := 0;

action x:[i] ==> y:[sum]
sum := sum+i;

end
end

network Sum() int x ==> int y:
entities
a = Add();
d = Delay(0);

end
structure
x1: x --> a.x1; x2: d.y --> a.x2;
y: a.y --> y; z: a.y --> d.x;

end

inv delay(x2,1)
inv x2[next] == (0::y)[last]

action x:[i] ==> y:[(0::y)[last]+i] end

chinv total(y) == read(x1)
chinv total(y) == read(x2)
chinv total(z) == read(x1)
chinv total(z) == read(x2)
chinv total(x2) == read(z)+1
chinv forall int i . 0 <= i && i < total(y)
==> y[i] == x1[i]+x2[i]

chinv forall int i . 0 <= i && i < total(z)
==> z[i] == x1[i]+x2[i]

chinv forall int i . 1 <= i && i < total(x2)
==> x2[i] == z[i-1]

end

(a) (b)

Figure 1: (a) Implementations of some basic actors. (b) A dataflow network consisting of two
basic actors of type Add and Delay.

delays the data on the input channel with one token. The actor has a special initialisation
action outputting an initial token on the output port. This action is run only once when the
actor is initialised. The actor Split is an example of a data-dependent actor, as its behaviour
depends on the value of the incoming token. It outputs negative input tokens on port q and
non-negative input tokens on port u. The actor Sum is an example of an actor with state. It
accumulates the sum of the inputs it has received. A network consisting of one Add actor and
one Delay actor is listed in Fig. 1b. It implements the same functionality as the actor Sum in
Fig. 1a. It should be noted that the syntax used for specifying the network is not standard
CAL. For instance RVC-CAL uses an XML-based format for networks. Networks in pure CAL
do not have actions, but we use them here to describe the intended behaviour of the network.
Hence a network action describes how the network should react when it receives input tokens.

3 Verification
For verification we encode the dataflow programs in the intermediate verification language
Boogie [1]. An actor is verified by checking each action against its contract. Action contracts
state preconditions and postconditions relating tokens on the input and output channels. For an
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actor with invariant I and an action with precondition P , guard conditionG and a postcondition
Q, we need to check that Q and I hold after executing the action, assuming that P , G and I
hold before executing the action.

Verification of a network means checking that the network has the behaviour described by
its network actions. To do this we need to express the relations between data on the channels
in the network. We call these relations channel invariants. In the example in Fig. 1b, channel
invariants are declared using the chinv keyword. Channel invariants are required to hold during
the execution of a network action, while network invariants, declared using the inv keyword,
are required to hold before and after a network action is executed, but not necessarily while the
action is executed. The channel invariants provided in the example in Fig. 1b express relations
both between the number of tokens on the channels and between the data on the different
channels. We for instance have the property that the total number of tokens (written as well as
read) on the channel y during execution of the action is equal to the number of read tokens on
channel x1. This type of properties are needed to ensure that the amount of tokens specified
in the network action is available on the output channels after executing the action. Channel
invariants also relate data on the different channels, for instance that the i:th token on channel
y should be equal to the sum of the i:th tokens on channels x1 and x2.

A network can be verified to be correct with respect to its contract in the following way:
Assume that we have a network with network invariant I and an action with postcondition Q.
Additionally assume that F1, . . . , Fn are the firing conditions of each action A1, . . . , An of every
actor in the network and that C1, . . . , Cm are the channel invariants of the network. Assuming
that C1, . . . , Cm hold, we check that C1, . . . , Cm hold again after executing any actor Ai for
which Fi evaluates to true. We additionally also check that the postcondition of the network
action holds when no actor can be fired: ¬F1 ∧ · · · ∧ ¬Fn ∧ C1 ∧ · · · ∧ Cm ⇒ Q ∧ I.

4 Conclusions
We have outlined an approach to contract-based specification and verification of dataflow pro-
grams. The work is still in progress. To make the approach more usable in practice it would
be important to infer as many as possible of the channel invariants for a network. We plan to
investigate automatic inference of invariants for special classes of actor networks. We also plan
to investigate the use of contracts to aid the compile-time scheduling of dataflow programs.
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Abstract

The PLanCompS project has developed a component-based approach to formal semantics. Here,

we present the tools we have implemented to support component-based language definitions, including

semantics-based program execution. The talk includes a demonstration of the use of the tools.

1 Introduction and Background

The benefits of formal semantics are well known at NWPT. However, it requires a lot of work
to produce a complete and accurate formal semantics for a major language; and when the
language evolves, large-scale revision of the semantics may be needed to reflect the changes.
The investment of effort needed to produce an initial definition, and subsequently to revise it,
can discourage language developers from using formal semantics [3].

To improve the practicality of formal semantic definitions of larger languages, the PLan-
CompS project [9] proposes to base them on a collection of reusable components, and to imple-
ment tool support for their development and testing. Analogous practices are widely adopted
in software engineering: developers rely on reusable components in the form of packages, and
on IDEs when coding and testing.

Component-based semantics. In the PLanCompS approach, a reusable component of lan-
guage definitions corresponds to a fundamental programming construct: a so-called ‘funcon’,
which has a fixed operational interpretation. The formal semantics of each funcon is defined
independently, using a modular variant of SOS [6, 7]. The collection of funcons is open-ended;
crucially, adding new funcons never requires changes to the definition or use of previous funcons.

A component-based semantics of a programming language is defined by translating its con-
structs to funcons. The expectation is that many funcons can be widely reused in the definitions
of different languages. An initial case study [1] gave a semantics for Caml Light [5] based on a
preliminary collection of funcons; after completing a further case study (C]), the funcons used
in the two language definitions are to be finalised and made freely available in a digital library.

Contributions. We introduce a unified meta-notation called CBS for defining abstract syntax
of programming languages, translations from language constructs to funcons, and the semantics
of the funcons themselves. To accompany CBS, we provide a complete tool chain for execut-
ing translation functions and running the resulting funcon terms. A further contribution is
illustrating the usefulness of Spoofax [4] for generating IDEs to support semantic frameworks.

Related work. Other tools supporting development of semantic definitions and/or semantics-
based program execution include the ASM tools, Ott, PLTRedex, the K tools, Maude, Melange,
and DynSem. Some of the semantic frameworks supported by these tools have a high degree
of modularity, but we are not aware of any that provide a collection of reusable components,
apart from an exploratory definition of a modest collection of funcons in K [8].
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2 Developing and Executing Language Definitions

We have implemented an IDE in Eclipse to support development and testing of component-
based semantics. We have used Spoofax [4] to generate a CBS editor with many useful features,
including syntax highlighting, syntax error recovery, hyperlinks from uses of symbols to their
definitions, and flagging of undefined symbols.

The screenshot shows several files open during the development of the component-based
semantics of Caml Light (CL). The top left pane is browsing the CL abstract syntax in the
CBS definition of CL patterns. In the lower part of the bottom left pane, a CBS rule defining
the translation of CL multiple matchings to funcons is being edited; the red mark in the margin
flags an undeclared symbol. The colours and fonts distinguish the names of syntax nonterminals
(green), funcons (red), semantic functions (blue italic), and variables (black italic).

Clicking on a name in a CBS editor shows its definition in a separate pane. The top right
pane shows the definition of the operational semantics of the funcon for scoping declarations.
The two panes on the lower right show a small CL test program and part of its translation to
funcons. When the focus is on a CBS file specifying the semantics of CL, there is a button
to (re)generate an executable translator from CL to funcons. While editing a CL program,
the same button translates it to a funcon term (which can then be executed, see Sect. 3). On
rebuilding the project, any open files with the results of translating test programs to funcons
are updated accordingly. Entire test suites can be translated from a shell command line.

The implementation of the CBS editor in Spoofax involved writing an SDF3 grammar for
the CBS language, some small files specifying the various editor services (highlighting, name
resolution, menus, folding), and Stratego code to generate SDF3 grammars and Stratego rules
from the ASTs of CBS specifications. Each semantic equation in CBS generates a corresponding
Stratego rule, e.g.:

CL-07-Expressions.cbs

  expr-comma-sequence[[ E ]] = expr[[ E ]]
Rule
  expr-comma-sequence[[ E1 ',' E2 ... ]]
    = expr[[ E1 ]], expr-comma-sequence[[ E2 ... ]]

Semantics
  expr-semic-sequence[[ _:(expr (';' expr)*) ]] : (=> values)+
Rule
  expr-semic-sequence[[ E ]] = expr[[ E ]]
Rule
  expr-semic-sequence[[ E1 ';' E2 ... ]]
    = expr[[ E1 ]], expr-semic-sequence[[ E2 ... ]]

Semantics
  expr-map-sequence[[ _:(label '=' expr (';' label '=' expr)*) ]]
    : => maps(ids,values)+
Rule
  expr-map-sequence[[ L '=' E ]] = { label-id[[ L ]] |-> expr[[ E ]] }
Rule
  expr-map-sequence[[ L1 '=' E1 ';' L2 '=' E2 ... ]]
    = {label-id[[ L1 ]] |-> expr[[ E1 ]]}, expr-map-sequence[[ L2 '=' E2 ... ]]

Subsection Matching

Semantics
  matcher[[_:simple-matching]] : (values=>values)+

Rule
  matcher[[ P '->' E ]] =
  case(patt[[ P ]], expr[[ E ]])

Rule
  matcher[[ P1 '->' E1 '|' SM ]] = matcher[[ P1 '->' E1 ]], matcher[[ SM ]]

Semantics
  multiple-matcher[[_:multiple-matching]] : ((values+)=>values)+
Rule
  multiple-matcher[[ P ... '->' E ]]
    = case((patt-sequence[[ P ... ]]), expr[[ E ]])
Rule
  multiple-matcher[[ P1 ... '->' E1 '|' MM ]]
    = multiple-matcher[[ P1 ... '->' E1 ]], multiple-matcher[[ MM ]]

Semantics
  multiple-matching-length[[_:multiple-matching]] : naturals
Rule
  multiple-matching-length[[ P ... '->' E ]]
    = patt-sequence-length[[ P ... ]]
Rule
  multiple-matching-length[[ P ... '->' E '|' MM ]]
    = patt-sequence-length[[ P ... ]]

Subsection Value definitions

Syntax
  VD : value-definition ::= 'let' ('rec')? let-binding ('and' let-binding)*

Semantics
  decl[[_:value-definition]] : => environments
Rule
  decl[[ 'let' LB ... ]] = decl[[ LB ... ]]
Rule
  decl[[ 'let rec' LB ... ]]
    = recursive(set(bound-ids-sequence[[ LB ... ]]), decl[[ LB ... ]])

Page 4

generates

CL-07-Expressions.str

  |[ expr[: while(E1)do(E2)done :] ]| ->
  |[ while(expr[: (E1) :], effect(expr[: (E2) :])) ]|
to-funcons:
  |[ expr[: for(LI)=(E1)to(E2)do(E3)done :] ]| ->
  |[ effect(list-map(case(pattern-bind(id[: (LI) :]), expr[: (E3) :]), integer-list(expr[: (E1) :], 
expr[: (E2) :]))) ]|
to-funcons:
  |[ expr[: for(LI)=(E1)downto(E2)do(E3)done :] ]| ->
  |[ effect(list-map(case(pattern-bind(id[: (LI) :]), expr[: (E3) :]), list-reverse(integer-list(expr[: 
(E2) :], expr[: (E1) :])))) ]|
to-funcons:
  |[ expr[: (E1);(E2) :] ]| ->
  |[ sequential(effect(expr[: (E1) :]), expr[: (E2) :]) ]|
to-funcons:
  |[ expr[: match(E)with(SM) :] ]| ->
  |[ give(expr[: (E) :], else(matcher[: (SM) :], throw(match-failure))) ]|
to-funcons:
  |[ expr[: fun(MM) :] ]| ->
  |[ curry-n(multiple-matching-length[: (MM) :], lambda(else(multiple-matcher[: (MM) :], throw(match-
failure)))) ]|
to-funcons:
  |[ expr[: function(SM) :] ]| ->
  |[ lambda(else(matcher[: (SM) :], throw(match-failure))) ]|
to-funcons:
  |[ expr[: try(E)with(SM) :] ]| ->
  |[ handle-thrown(expr[: (E) :], else(matcher[: (SM) :])) ]|
to-funcons:
  |[ expr[: (VD)in(E) :] ]| ->
  |[ scope(decl[: (VD) :], expr[: (E) :]) ]|

// Expression sequences and maps

to-funcons:
  |[ expr-comma-sequence[: (E) :] ]| ->
  |[ expr[: (E) :] ]|
to-funcons:
  |[ expr-comma-sequence[: (E1),(E2)... :] ]| ->
  |[ expr[: (E1) :], expr-comma-sequence[: (E2)... :] ]|
to-funcons:
  |[ expr-semic-sequence[: (E) :] ]| ->
  |[ expr[: (E) :] ]|
to-funcons:
  |[ expr-semic-sequence[: (E1);(E2)... :] ]| ->
  |[ expr[: (E1) :], expr-semic-sequence[: (E2)... :] ]|
to-funcons:
  |[ expr-map-sequence[: (L)=(E) :] ]| ->
  |[ { label-id[: (L) :] |-> expr[: (E) :] } ]|
to-funcons:
  |[ expr-map-sequence[: (L1)=(E1);(L2)=(E2)... :] ]| ->
  |[ { label-id[: (L1) :] |-> expr[: (E1) :] }, expr-map-sequence[: (L2)=(E2)... :] ]|

// Matching

to-funcons:
  |[ matcher[: (P)->(E) :] ]| ->
  |[ case(patt[: (P) :], expr[: (E) :]) ]|
to-funcons:
  |[ matcher[: (P1)->(E1)|(SM) :] ]| ->
  |[ matcher[: (P1)->(E1) :], matcher[: (SM) :] ]|
to-funcons:
  |[ multiple-matcher[: (P)...->(E) :] ]| ->
  |[ case((patt-sequence[: (P)... :]), expr[: (E) :]) ]|
to-funcons:
  |[ multiple-matcher[: (P1)...->(E1)|(MM) :] ]| ->
  |[ multiple-matcher[: (P1)...->(E1) :], multiple-matcher[: (MM) :] ]|

Page 3

.

The generated SDF3 grammars provide the syntax for the semantic functions and metavariables
that occur in the generated Stratego rules.
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3 Executing Funcon Terms

We execute funcon terms using an interpreter written in Haskell. The interpreter provides an
implementation of I-MSOS [7] specifications, the modular variant of SOS that CBS uses to
specify funcons and semantic entities. The interpreter can be invoked from within Eclipse with
its output printed to Eclipse’s console .

The defining feature of I-MSOS is the implicit propagation of entities, and this is achieved
in Haskell by using a monad in the implementation of the small-step evaluation function. The
Haskell code corresponding to the CBS specifications of the individual funcons and semantic
entities is systematically derived from the CBS rules. The use of a monad allows the resulting
code to be as modular as I-MSOS rules: adding a new funcon or semantic entity requires no
modification to the code for the existing funcons or semantic entities. Deriving the Haskell code
is currently performed manually, although our aim is automate this process.

The CBS language includes a fixed universe of value types, and a set of operations on those
types; these are provided by binding them to Haskell’s data types and library functions. For
nearly all cases, direct counterparts of the CBS value types and operations are available in the
Haskell standard library.

Dynamic errors are handled gracefully by the interpreter, which reports the immediate cause
of the error along with the current contents of the semantics entities and funcon term remaining
to be executed. The interpreter also includes a parser and pretty printer for funcon terms, and
an optional refocusing-based optimisation [2] that provides a more efficient evaluation strategy.

4 Conclusion

In a full version of this paper, we will explain how the CBS meta-notation supports modular
specifications of funcons and semantic entities, and how these specifications can be translated
to modular Haskell code. We will also explain how by categorising our semantic entities, we
allow for the modular addition of new entities without concern for the order in which those
entities are added, in contrast to a conventional approach using monad transformers.
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1 Introduction
Over the last couple of years we have been studying the input-output conformance simulation
relation (iocos) [5, 8, 6, 7] that refines the classic input-output conformance testing (ioco) theory
due to Tretman. The work by Tretmans [10] has provided a widely used and theoretically well-
founded framework for the Model Based Testing (MBT) community: it offers both offline and online
testing algorithms [3], and there are several model-based test generation tools that implement the
ioco-testing theory.

From a theoretical point of view, some interesting features of the ioco-framework are as fol-
lows: behaviours are modelled as labelled transition systems (LTS); quiescent states (see [9])
are considered; implementations should be input enabled; and the ioco relation is a trace-based
semantics, and thus a linear semantics [11].

The iocos approach also considers LTS as models, quiescence, and shares much of the ioco
philosophy, but it considers a wider domain of behaviours, not imposing, but allowing, imple-
mentations to be input enabled. The substantial difference between the two approaches is that
the conformance relation underlying iocos is an input-output simulation (a branching-time seman-
tics [11]) with greater discriminatory power than ioco (see [6, Theorem 1]).

Simulation is an important notion pervading many fields in computer science (model checking,
concurrency theory, formal verification. . . ), with a plethora of theoretical and practical applications.
For example, results presented in [6], indicate that iocos may be used to minimise LTSs in model
checking as a technique to alleviate the state explosion problem.

In more detail, iocos is a simulation-based semantics over LTSs developed under the assumption
that systems have two kinds of transitions: input actions, those that the systems are willing to
admit or respond to, and output actions, those produced by the system and that can be seen as
responses or results. We call I the alphabet for input actions and write a?, b?, c? . . . for typical
members of I . We denote with O the alphabet for output actions and use x!, y!, δ!. . . ro range over
O.

A state with no output actions cannot autonomously proceed; such a state is called quiescent.
For the sake of simplicity and without loss of generality (see for instance [10, 9]), we directly
introduce the event of quiescence as a special action denoted by δ! ∈ O into the definition of our
models.

The formal definition of iocos considers the following functions on states of labelled transition
systems:
∗Research partially supported by the Spanish MEC projects TIN2012-36812-C02-01 and TIN2012-39391-C04-04,

the project 001-ABEL-CM-2013 within the NILS Science and Sustainability Programme and the project Nominal SOS
(project nr. 141558-051) of the Icelandic Research Fund
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outs(p) = {o! | o! ∈ O, p o!−−→}, the set of initial outputs of a state p.
ins(p) = {a? | a? ∈ I, p a?−−→}, the set of initial inputs of a state p.

Definition 1. We say that a binary relation R of states in a labelled transition system is a
iocos-relation if and only if for any (p, q) ∈ R the following conditions hold:

1. ins(q) ⊆ ins(p)
2. ∀a? ∈ ins(q) if p a?−−→ p′ then ∃q′ such that q a?−−→ q′ ∧ (p′, q′) ∈ R .
3. ∀o! ∈ outs(p) if p o!−−→ p′ then ∃q′ such that q o!−−→ q′ ∧ (p′, q′) ∈ R .

We define the input-output conformance simulation (iocos) as the union of all iocos-relations (the
biggest iocos-relation). We will denote by iocos≡ the kernel of the iocos preorder.

2 Contribution: Logic for iocos
We present for the first time a logical characterization of the iocos relations, both the preorder and
equivalence. This logic is a non-standard subset of Hennessy-Milner Logic and is rather minimal
although convenient to characterize clearly the discriminating power of the iocos relation.
Definition 2. The syntax of the logic for iocos, denoted by Liocos, is defined by the following
grammar.

φ ::= tt | ff | φ ∧ φ | φ ∨ φ | 〈|a?|〉φ | 〈x!〉φ,
where a? ∈ I and x! ∈ O. The semantics of the atomic propositions tt and ff and of the Boolean
connectives ∧ and ∨ is defined as usual. The modalities 〈|a?|〉 and 〈x!〉, are defined as follows:
• p |= 〈x!〉φ iff p′ |= φ for some p x!−−→ p′.
• p |= 〈|a?|〉φ iff p a?−−−−6→ or p′ |= φ for some p a?−−→ p′.
It is well-known that every logic naturally induces a preorder on a given set of processes given

by: p ≤L q iff ∀φ ∈ L p |= φ then q |= φ. Hence, the logic Liocos induces the preorder ≤Liocos .The main contribution is that this logical preorder coincides with the iocos relation. That is, we
have:
Theorem 2.1 (Logical characterization for iocos). p iocos q iff ∀φ ∈ Liocos p |= φ then q |= φ.
Corollary 2.2. p iocos≡ q iff (∀φ ∈ Liocos p |= φ iff q |= φ).
Corollary 2.3. For all φ in Liocos if we want to check p |= φ, it is equivalent to minimise p to q
(using the generalized coarsest partitioning algorithm from [12, 6] and decide whether q |= φ.

Finally, applying the results in [1] we cen define the characteristic formula for each process in
a finite LTS modulo the iocos preorder.

3 Future work
It seems natural to compare the previous logics for iocos with similar logics that are already in
the literature. In particular, we find it interesting to explore its relation with the logics for ready
simulation [11, 2], covariant-contravariant simulation and conformance simulation [4]. Since the
study of property preservation for expressive logics is of great interest for the model checking
community, we also plan to study how the properties preserved by iocos are related with those
expressible in fragments of Action Based CTL and of the µ-calculus.
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[3] René G. de Vries and Jan Tretmans. On-the-fly conformance testing using spin. STTT, 2(4):382–393,
2000.
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[7] Carlos Gregorio-Rodŕıguez, Luis Llana, and Rafael Mart́ınez-Torres. Extending mcrl2 with ready simu-
lation and iocos input-output conformance simulation. In SAC-SVT to appear, 2015.

[8] Luis Llana and Rafael Mart́ınez-Torres. IOCO as a simulation. In Steve Counsell and Manuel Núñez,
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Abstract

In languages with dynamic scope, the free variables of an abstraction correspond to implicit param-

eters. The values of these parameters are determined by the bindings current where the abstraction is

applied, but their allowed types can be checked statically. We give a novel type system for dynamic

scope using types that involve type environments and intersections. We also explore how to give typing

rules with a high degree of modularity using typings themselves as types.

1 Introduction and Background

Dynamic scope arises when the values of the free variables of a function body are those current
when the function is applied, rather than when it was formed. Table 1 shows a conventional
type system for a simply-typed λ-calculus with static scope (using notation following [4]). These
rules are clearly unsound when the semantics requires dynamic scope.

In Sect. 2 we present a novel type system for a λ-calculus with dynamic scope. Here,
abstractions with dynamic scope are first-class values: we let them be passed as arguments and
returned by other abstractions, in contrast to previous type systems [1, 2, 6]. The required
types include typings A ` τ and intersections σ ∧ τ .

The benefits of higher-order abstractions with dynamic scope in programming are debatable
[6]. Our motivation for considering them comes from component-based semantics (CBS) [3, 7].
In this framework, the semantics of a programming language is defined by translating it to
so-called fundamental programming constructs (‘funcons’). Functions with static scope are
translated to funcon compositions of the form close(thunk(e)), where close takes an abstraction
and returns its closure. The abstraction funcon thunk(e) is a value incorporating an unevaluated
expression e; the free variables of e inherently have dynamic scope unless close is used.

CBS uses a modular variant of SOS for defining the dynamic semantics of each funcon
independently [3]. In Sect. 3, we explore how to obtain modularity and scalability in type
systems using richer forms of typings as types. As noted by Wells [8], typings in arbitrary type
systems contain all the information from typing judgements other than the term being typed.

M,N ::= n | x | (M +N) | (λx.M) | (M N)

σ, τ ::= int | t | (σ → τ)

∅ ` n : int (1)

{x : τ} ` x : τ (2)

A `M : int A ` N : int

A ` (M +N) : int
(3)

Ax ∪ {x : σ} `M : τ

A ` (λx.M) : (σ → τ)
(4)

A `M : (σ → τ) A ` N : σ

A ` (M N) : τ
(5)

A `M : τ

A′ `M : τ
A⊆A′ (6)

Table 1: A conventional type system for static scope
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2 A Type System for Dynamic Scope

When an abstraction λx.M with dynamic scope is applied to an argument, the context should
provide a bound value for each of its free variables. The types of these bound values, along
with the type of the argument to be associated with x, should ensure that M is well-typed.
We obtain types for abstractions with dynamic scope by enriching the types used in Table 1
with typings A ` τ , indicating the requirement of a context providing variables according to
the type environment A:

σ, τ ::= int | t | (σ → τ) | (A ` τ) | (σ ∧ τ)

The type of an abstraction with dynamic scope is of the form A ` (σ → τ), where σ and τ may
also involve type environments.

Rules (7–9) in Table 2 replace (4–6) in Table 1. The type environment Ax is as A except
that any type constraint for x is ignored. Type environment union A1 ∪A2 assumes A1 and A2

have disjoint domains, whereas intersection A1∧A2 combines the type constraints of A1 and A2

with intersection of the types of any common variables. The intersection A ∧ A′ is needed in
(8) because x may be required to have one type when evaluating M to an abstraction, and a
different type when evaluating the body of the abstraction; similarly in (10).

A `M : τ

∅ ` λx.M : (Ax ` (σ → τ))
(A(x)=σ) (7)

A `M : (A′ ` (σ → τ)) A ` N : σ

(A ∧A′) ` (M N) : τ
(8)

A `M : σ

A′ `M : τ
(A`σ) <: (A′`τ) (9)

M ::= · · · | close(M)

A `M : (A′ ` (σ → τ))

(A ∧A′) ` close(M) : (∅ ` (σ → τ))
(10)

Table 2: A type system for dynamic scope, and an extension with explicit closures

A typing rule corresponding to (4) can be derived for the term close(λx.M) from (7) and (10),
showing that such abstractions are supposed to have static scope (cp. [3, §3.4]).

The subtype relation on types (implicit in the use of σ∧τ) is also used on type environments
and typings. Some of its properties are shown in Table 3.

σ′ <: σ τ <: τ ′

(σ → τ) <: (σ′ → τ ′)
(11)

A′ <: A σ <: τ

(A ` σ) <: (A′ ` τ)
(12)

(Ax ∪ {x : τ}) <: Ax (13)

Ax <: A′x τ <: τ ′

(Ax ∪ {x : τ}) <: (A′x ∪ {x : τ ′}) (14)

Table 3: Some subtyping rules

As an illustrative example, consider the dynamically scoped term

M = (λf. (λy. f 1) 2) (λx. x+ y)

The abstraction λx. x+y has a free variable y that has to be bound to a value of type int when
the abstraction gets applied, and we can derive ∅ ` (λx. x + y) : ({y : int} ` (int → int)). The
application (λy. f 1) 2 satisfies this constraint, and we can derive ∅ `M : int.
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3 Modularity

For specifying a transition from M to M ′ in dynamic semantics, CBS provides the notation

R ` 〈M,S〉 W−→ 〈M ′, S′〉 where R consists of read-only entities (e.g. environments ρ), S and S′

consist of mutable entities (e.g. stores σ), and W consists of write-only entities (e.g. outputs α).
Entities can be omitted, and are then implicitly propagated in transition rules. For instance,

ρ ` 〈M,σ〉 α−→ 〈M ′, σ′〉
ρ ` 〈(M ;N), σ〉 α−→ 〈(M ′;N), σ′〉

can be abbreviated to
M →M ′

(M ;N)→ (M ′;N)

and ρ ` 〈(( );N), σ〉 ·−→ 〈N, σ〉 abbreviated to (( );N) → N . Modular foundations for such
abbreviations are provided by a rule-by-rule translation to MSOS (see [3]) where all auxiliary
entities are incorporated in labels.

To obtain a similar degree of modularity for typing rules, we propose to let the types of
terms be general typings that contain the corresponding types of all auxiliary entities. For

example, consider R ` 〈τ, S〉 W
=⇒ 〈τ ′, S′〉 where R may include the type environment (A), S

and S′ may include store types (Σ), and W may include interactive behaviour types (α). The
type τ is for explicit arguments of abstractions, and τ ′ for computed values. Using implicit
propagation for omitted entities, we could abbreviate

M : A ` 〈τ,Σ1〉 α1=⇒ 〈int,Σ2〉 N : A ` 〈τ,Σ2〉 α2=⇒ 〈int,Σ3〉
(M +N) : A ` 〈τ,Σ1〉 α1∪α2====⇒ 〈int,Σ3〉

to
M :⇒ int N :⇒ int

(M +N) :⇒ int

and abbreviate n : ∅ ` 〈·,Σ〉 ·=⇒ 〈int,Σ〉 to n :⇒ int.

4 Conclusion and Future Work

We have given a novel type system for a λ-calculus with dynamic scope, illustrated the typing of
terms where abstractions with free variables are passed as arguments, and suggested a technique
to obtain modularity in type systems. We now aim to prove the soundness of the type system,
extend it with universal quantification and recursive types, and obtain principal typings [4, 5, 8].
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Appendix

This appendix shows how we derived the typing claimed in Sect. 2, and sketches a
denotational semantics for dynamic scope. It is not intended for inclusion in the
final version.

The claimed typing is:

∅ ` (λf. (λy. f 1) 2) (λx. x+ y) : int (15)

For any A and τ ′ we derive:

{f : (A ` (int→ τ ′))} ∧A ` f 1 : τ ′ (16)

∅ ` (λy. f 1) : ( ({f : (Ay ∪ {y : τ} ` (int→ τ ′))} ∧Ay) ` (τ → τ ′) ) (17)

{f : (Ay ∪ {y : int} ` (int→ τ ′))} ∧Ay ` (λy. f 1) 2 : τ ′ (18)

∅ ` λf. (λy. f 1) 2 : (Ayf ` ((Ay ∪ {y : int} ` int→ τ ′)→ τ ′)) (19)

Taking A = {y : int} gives:

∅ ` λf. (λy. f 1) 2 : (∅ ` ({y : int} ` int→ τ ′)→ τ ′)) (20)

We also have:

∅ ` (λx. x+ y) : ({y : int} ` (int→ int)) (21)

Taking τ ′ = int, the claimed typing follows.

A denotational semantics for dynamic scope

V = Z + F

F = Env → V → V

Env = V ar → V

[[M ]] : Env → V

[[n]]ρ = n

[[x]]ρ = ρ(x)

[[M +N ]]ρ = [[M ]]ρ|Z + [[N ]]ρ|Z
[[λx.M ]]ρ = λρ′.λv.[[M ]](ρ′[x 7→ v])

[[M N ]]ρ = ([[M ]]ρ|F )(ρ)([[N ]]ρ)
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In Model-driven engineering (MDE), structural models (also called static models in [6])
represent software at the early phases of software development. They identify the artifacts
and their relationships in the problem domain. These models can be specified as graph-based
structures and constraints in different formalisms, e.g., UML class diagram [8] and the Object
Constraint Language (OCL) invariants [7]; in the structures, nodes represent the artifacts while
edges represent the relationships; the constraints express requirements of the problem domain.
An instance of a structural model is a graph which is well-typed by the underlying graph of the
model, and, in addition, satisfies all the constraints of the model.

Usually, structural models are specified by a modelling language within a modelling tool;
this may cause errors. Thus, these models should be verified to ensure correctness. In addition,
in MDE, models are gradually refined in subsequent phases which then finally result in soft-
ware. Therefore, the verification of models can avoid propagating of errors into the software.
Moreover, it is obvious that finding design mistakes as early as in the modelling phase helps to
build better software at a lower cost.

Different properties of structural models are studied in MDE [3]. For instance, consistency
requests that a model has at least one instance; lack of redundant constraints requests that,
given a model, there exists no constraint C1 that can be derived from another constraint C2, i.e.,
there exists at least one instance of the model which satisfies C1 but not C2. These properties
can be categorised into validity, i.e., whether all the instances of a model satisfy a property,
and satisfiability, i.e., whether there exists an instance which satisfies a property.

Several approaches have been presented to verify such properties on structural models [6].
Generally, they translate a structural model and a property into a specification in some for-
malism, e.g., Relational Logic [2, 4], etc. Then the specification is analysed by theorem provers
or constraint solvers to answer whether the model satisfies the property. But these approaches
are not integrated into the modelling tools; to use these approaches, the model designers have
to switch from the modelling tool to a verification tool and need background in the verification
methods. Moreover, most approaches present instances when the properties are satisfied, but
give no feedback when the properties are violated. This is not convenient for model designing.

Figure 1: Workflow for analysing structural models using Alloy

In this work, we present a bounded verification approach of structural models using Alloy [1]
and integrate it into a modelling tool DPF Model Editor [10]. The procedure of the approach is

1
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illustrated in Fig. 1. It translates a structural model specified in Diagram Predicate Framework
(DPF) [9] and a property into an Alloy specification. Then, the specification is examined by the
Alloy Analyzer to check if the model satisfies the property or not. If the property is satisfied
(violated), an instance (counterexample) of the model is generated. Otherwise, it means that
there are some problems with the model. Then, the problematic part of the model will be
highlighted and displayed in the DPF Model Editor to assist the model designer to identify the
problem. For example, a civil status model which modifies the traditional civil status model
in [5] originally specified in UML and OCL is present in Figure 2. It is inconsistent and the
constraints which contradict each other are highlighted and presented in Figure 3. Thus, the
model designer can verify the model under design and receive user-friendly feedback which he
can understand, without knowing the underlying verification technique1.

Figure 2: Civil Status Model in DPF Figure 3: Hightlight the problem

The approach is bounded; the approach finds instances or counterexamples which satisfies
or violated properties within a bounded search space. The space is determined by a scope; i.e.,
a user-defined number which restricts the number of instances of each model element. However,
there is no systematic way to decide which scope is needed, and, although different scopes could
be sufficient for different model elements, the same size is usually used for all model elements.
In addition, this approach has scalability problems since the search space grows exponentially
along with the scope. It means that the verification of large models with a large search space
may take long time or become intractable.

P1:Person

h1 &&
w1 --

h3

��
w3





P2:Person

c1

		
c2

��
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g2 11

h2
gg w2mm G1:Gender
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h4
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g3 ++

C2:CivilStatus

c3

""

Figure 4: The scope graph for the civil status model

To solve these issues, we propose two contributions. The first one is to initialise a systematic
way to decide the search space based on constraints (properties) definitions; here we focus on
constraints which can be expressed in FOL. Given such constraints, we assume that there exists
a scope graph such that, for each instance (counterexample) of the model, there exists smaller
or equal instances (counterexamples) that are contained by the scope graph. However, since
FOL is undecidable, such a scope graph do not exist for arbitrary constraints. In this work,
we construct an approximation of the scope graph based on the syntax of the constraints. The

1This part which verifies structural models and presents the result of verification user-friendly, along with
the splitting technique which is present in the sequel, is submitted to and accepted by Modevva2015.
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approximation of the scope graph can be used to derive a scope to verify a structural model. For
example, the approximation of the scope graph for the civil status model is shown in Figure 4.
It contains 3 Person, 4 husband, 4 wife, 3 pGender, 3 pCiviStat, 2 Gender, 2 CivilStatus. This can be used
as the scope for the consistence check of the model.

Person Person
[1..1]

[surj] pGender
// Gender

M1 CivilStatus M2
[1..1]

[surj] pCivstat
//

wife

[irr]

//

husband

[irr]

//[xor]

[inv]

[enum{married,single,divorced,widowed}]

[enum{male,female}]

Figure 5: Submodels

The second contribution is a splitting technique for verification. A model can be split into
submodels based on the factors of the constraints, i.e., the model elements which are affected
by the constraints. We will look for submodels which are left-total, i.e. submodels of which
the instances can be extended to instances of the model. We outline an approach to find these
left-total submodels based on forbidden patterns of the constraints. That is, these submodels
do not contain any match of patterns which violate (or are forbidden by) any constraints of
the model. Then the validation of a model can be reduced to the validation of its left-total
submodels. The civil status model can be split into two submodels which are shown in Figure 5.
The submodel M1 is left-total and the consistence check of the model can be reduced to the
consistence check of M1 rather than the whole model. An experimental result shows that it
alleviates the scalability problem.
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The definition of workflows is a complex task, comprising aspects such as time constraints,
failure detection and recovery. Executable modelling is a promising concept for the simpli-
fication of workflow modelling, verification and execution. Hence, the verification of execut-
able models, especially using runtime verification and monitoring, is required. We present a
metamodelling approach to the combined modelling of workflows and the temporal properties
used to define requirements and constraints on them. Here, a model at a certain level describes
a modelling language which can be used to specify models in the level below. First, we give an
overview of a generic workflow modelling framework for executable models. Then, we highlight
the design and implementation of the property specification language. Both the workflows and
their temporal properties are specified as graph-based structures. For the temporal properties,
we draw on the well-known Linear Time Logic (LTL), which has already been used success-
fully in checking whether an (execution) path satisfies a given property [3]. A key point of the
proposed language is its direct applicability on the running instances of the workflows, instead
of the execution logs as it is usually done. Because of this, the atomic propositions of our
language are graphs which are matched against the actual running instances while monitoring,
and hence translating match/no match to true/false respectively. In our approach we exploit
facilities from deep metamodelling [4] to establish links between the running instances of the
workflows and the atomics propositions, using the typing relationship. Deep metamodelling en-
ables us to define types for other levels in the hierarchy than the one directly below. In addition,
we will borrow the concept of linguistic extension and double typing of model elements [4].

Model execution and verification

This work is framed in a bigger proposal for the creation of a metamodelling framework which
allows for the definition of executable modelling languages. To achieve this goal, we have out-
lined a deep metamodelling hierarchy where the two topmost levels are fixed (see Fig. 1).
In them, the common elements for any executable language are defined. With these two
levels as a starting point, the user can define her own modelling language using as many
levels as required. The bottommost level will contain the running instances that the exe-
cution runtime can interpret and modify in every time step through model transformations.
Note that the modelling levels M2 through M4 are displayed only to be used as examples
and are inspired by the workflow modelling language defined in [6, 5], while M0 and M1 are
fixed. The syntax of the language defined at level M2 is out of the scope of this paper; the
interested reader may consult the references above. It is worth pointing out, however, the
meaning of the dashed arrows: they represent the typing relationship, which indicates the
type of the element according to the metamodel in the level above. Formally, this relation-
ship is defined as a graph homomorphism from lower level models to upper level models.
We can also indicate this relation with the colon notation “:”, e.g. Task:Executable. Note
that in Fig. 1 we have used the concrete syntax for the models M2 through M4, meaning
that, e.g. a Flow instance, which should be a node, is actually represented as an arrow.
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Figure 1: Global modelling hierarchy

The same applies to the [and] and [xor] constraints
in M3. For the sake of clarity, not all the typ-
ing relationships are displayed. Next, we fo-
cus on the property definition language which is
defined as a linguistic extension (i.e. a paral-
lel metamodel) on the left-hand side. This tech-
nique consists of a separate model aside the ver-
tical hierarchy, whose elements can be instanti-
ated at any level of the hierarchy. In our work,
this technique allows to apply such properties in
any level using double typing. Further explana-
tions of this can be found in the next section.

As a consequence of the choice of models for
the representation of both the workflows and the
temporal properties, we propose two disjoint sets
of model transformations. The first one defines
the semantics for the evolution of the running
workflow instances in every time step (see [5, 2]).
The second one defines the expansion of the tem-
poral properties in the same stepwise manner,
and determines how the properties are checked
against the running workflow instances. This
second set of model transformations is briefly introduced at the end of the next section. We dis-
cuss the design space of this construction and show its applicability to runtime verification and
monitoring, where the properties are checked against the running system, as opposed to model
checking, where the whole state space of the model is explored. In the case of the violation of
a temporal property some actions could be taken, e.g. generating a warning.

Property Specification Language

The language, as inspired by LTL, contains the the main temporal operators: F (eventually),
G (always), U (Until), R (release) and X (next). It also contains the well-known boolean
operators ¬, ∧, ∨ and ⇒ and the terminal symbols > and ⊥.

In order to create a consistent syntax for the language, all these operators inherit from one
of the abstract classes UnaryOperator, BinaryOperator or AtomicProposition (see Fig. 1). All these,
in turn, inherit from Formula, and can contain instances of Formula elements at the same time.
This allows, in a grammar-like style, for the nesting of operators with the correct cardinality.
Hence, a Property contains a single operator, which then contains the remaining operators in a
tree structure; i.e. the models represent abstract syntax trees.

The two remaining elements in the language are Model and Element. In these elements lies
the expressive power of our language: any element in any model in any level can be typed by
Element (hence the redundancy) in addition to a type in their corresponding metamodel. One
of the examples of this double typing shown in Fig. 1 is Start crane operation, which is both typed
by Task and Element. This allows us to specify properties on any modelling level, or even across
modelling levels, i.e. the same property can use Model instances which contain Element instances
at different levels of the hierarchy. We call these cross-level properties.

In the sample hierarchy (levels M2-M4) in Fig. 1, properties specified using elements from M3

as well as properties connecting elements from M3 and M4 can be understood as requirements
specifications. In general, this consideration can be applied to the second-to-last level, where
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the workflow itself is designed, right above the running instance. To illustrate our proposal, we
show a possible temporal property liveness for the preceding workflow (Fig. 1). Note that this
property is deliberately convoluted for the sake of exemplification.

Figure 2: Liveness property

Fig. 2 shows the model version of the liveness property which
reads as follows in natural language: “For every X:Task, if we
find a :X with the state enable, we should eventually find a :X
with the state run and eventually after that a :X with the state
finish”. The main highlights are (1) the expressiveness of the
language, which allows for the definition of a strict requirement
which includes the sequence of states that the element must go
through; and more importantly, (2) the inclusion of a variable
element, X:Task, of the level above the running instances, M3.

Finally, the semantics of the language is specified using model transformation rules. These
rules check in a stepwise manner the specified properties against the running instance of the
workflow. In order to do that, we use LTL expansion rules [ref], e.g. G(f) = f ∧X(G(f)), for
any formula f . This expansion is necessary to decompose the rules and extract atomic properties
that can be checked in the current point in time in the workflow execution. Checking an atomic
proposition in a workflow instance means finding a graph homomorphism (i.e. a match) from
the underlying graph of the proposition to the underlying graph of the workflow instance, and
hence translating match/no match to true/false respectively. We have already implemented a
prototype with this semantics using EMF [1] and ATL [1].

Conclusions and future work

We have presented a modelling language for the specification of temporal properties. While
the idea of applying LTL monitoring to workflows is not new, cf. [8], our focus here is on the
integration into a generic modelling framework for the specification and execution of workflows.
We have also showed its two main characteristics: (1) the focus on the specification of temporal
properties that have to be checked by means of runtime verification, instead of model checking;
and (2) the flexibility it offers for the specification of cross-level properties. In this context, we
plan to address in the immediate future what we call multi-instance properties, i.e. the ones
that are checked against more than one workflow instance running in parallel. For this, it is
required to extend the language with a means of quantification over instances [7].
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It is well known that higher-order systems, i.e. systems which can pass around systems of the
same kind, like the λ-calculus [1,3], CHOCS [18], the higher-order π-calculus [14], HOcore [10],
etc., are difficult to reason about. Many bisimulations and proof methods have been proposed
also in recent works [4, 9, 11, 12, 15–17]. This effort points out that a definition of abstract
higher-order behaviour is still elusive. In this work, we show how these abstract behaviours can
be modeled as the final coalgebras of suitable higher-order behavioural functors.

Coalgebras are a well established framework for modelling and studying concurrent and
reactive systems [13]. In this approach, we first define a behavioural endofunctor B over Set
(or other suitable category), modelling the computational aspect under scrutiny; for X a set
of states, BX is the type of behaviours over A. Then, a system over A corresponds to a
B-coalgebra, i.e. a map α : X → BX associating each state with its behaviour. The crucial
step of this approach is defining the functor B, as it corresponds to specify the behaviours
that the systems are meant to exhibit. Once we have defined a behavioural functor, many
important properties and general results can be readily instantiated, such as the existence
of the final B-coalgebra (containing all abstract behaviours), the definition of the canonical
coalgebraic bisimulation (which is the abstract generalization of Milner’s strong bisimilarity) and
its coincidence with behavioural equivalence [2], the construction of canonical trace semantics [8]
and weak bisimulations [5], the notion of abstract GSOS [19], etc. We stress the fact that
behavioural functors are syntax agnostic: they define the semantic behaviours, abstracting
from any particular concrete representation of the systems.

Despite these results, a general coalgebraic treatment of higher-order systems is still missing.
In fact, defining these functors for higher-order behaviours is challenging. In order to describe
the problem, let us consider first a functor for representing the behaviour of a first-order calculus,
like CCS with value passing:

B : Set→ Set BX = Pf (L× V ×X + L×XV +X) (1)

where L is the set of labels and V is the set of values. This functor is well-defined, and it admits
a final coalgebra which we denote by νB; the carrier of this coalgebra is the set of all possible
behaviours, i.e., synchronization trees labelled with nothing, input or output actions. Now, in a
higher-order calculus like HOπ, the values that processes can communicate are processes them-
selves. Semantically, this means that a higher-order behaviour can communicate behaviours;
hence, in the definition (1) we should replace V with the carrier of νB, as follows:

Bho : Set→ Set BhoX = Pf (L× |νBho| ×X + L×X |νBho| +X) (2)

But this means that we are defining Bho using its own final coalgebra νBho, which can be
defined (if it exists) only after Bho is defined—a circularity!

We think that this circularity is the gist of higher-order behaviours: any attempt to escape
it would be restricting and distorting. One may be tempted to take as V some (syntactic)
representation of behaviours (e.g., processes), but this would fall short. First, the resulting
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behaviours would not be really higher-order, but rather behaviours manipulating some ad hoc
representation of behaviours. Secondly, we would need some mechanism for moving between
behaviours and their representations–which would hardly be complete. Third, the resulting
functor would not be abstract and independent from the syntax of processes, thus hindering
the possibility of reasoning about the computational aspect on its own, and comparing different
models sharing the same kind of behaviour.

Endofunctors describing behaviours with input and outputs as (1) can be seen as endofunc-
tors with mixed-variance parameters, e.g. F : Setop×Set→ [Set,Set] where F (A,B) = IdA +B.
Since we are interested in endofunctors with a final coalgebra we shall consider “schemes of
endofunctors” in some suitable subcategory E of [C,C]. Actually, parameters do not have to be
in C, for instance, the functor IdA : Top → Top can be seen as parametric in the exponentiable
space A ∈ ExpTop. In this situation, we need some coherent way back to the category of pa-
rameters i.e. a functor from E to D. An example of such situation is offered by taking E to be
the category of biconinuous endofunctors over Set, as shown in [?]: every such functor admits
a final coalgebra whose carrier set is endowed with a complete partial order naturally induced
by the final sequence. Therefore, given:

F : Dop × D→ E and N : E→ D

(the driving example being N = |ν − |) we are interested in finding B : C→ C ∈ E s.t.:

B ∼= F (NB,NB)

or, equivalently, Z ∈ C s.t.:
Z ∼= NF (Z,Z)

since B ∼= F (Z,Z) and Z ∼= NB.
A ωCat-category is a 2-category whose hom-categories have colimits for all ω-chains and

composition preserves them. A ωCat0-category is a ωCat-category whose hom-categories have
initial objects and composition preserves them. Any category enriched over Cpo, the category
of continuous maps between complete partial orders, such as Cpo itself is an ωCat-category.
Likewise, any category enriched over Cpo⊥ is an ωCat0-category.

Theorem 1. Assume D and E to be ωCat0-categories with pseudo initial objects and pseudo
colimits of ω-chains of coreflections. Assume F and N to be a pseudo ωCat-functors. There
exist G : C→ C ∈ E and Z ∈ C as above.

Example 2 (Higher-order deterministic processes). Let C and D be Cpo⊥ and consider the para-
metric family of endofunctors IdA + Id+ B. The components of the coproduct model inputs,
internal moves, and termination with outputs, respectively. In the higher-order version of this
behaviour inputs and outputs are behaviours of the same kind. If we set aside for a moment
syntax and binders (which can be modelled in suitable presheaf categories [6,7]), this behaviour

offers an operational semantics for the λ-calculus: intuitively, inputs are transitions t
z−→ t z

whereas internal reductions and outputs are transitions (λx.t) z −→ t[x/z].
The functor F (A,B) = IdA + Id + B is Cpo-enriched and each endofunctors in its image

has a final coalgebra in Cpo⊥. By restricting to the image of F , the assignment |ν − | defines a
Cpo-enriched functor N : E→ Cpo⊥. Thus, we have Bλ : Cpo⊥ → Cpo⊥ and Zλ ∈ Cpo⊥ s.t.:

Bλ ∼= IdZλ + Id+ Zλ and Zλ ∼= |νBλ|.
A Bλ-coalgebra (X → XZλ +X + Zλ) is a strict continuous map assigning to each state of its
carrier (a) a strict continuous function assigning a continuation to any value in input, (b) or a
new state (internal step), (c) or a value (output). Indeed values are elements of the CPO⊥ Zλ
carrying the final coalgebra of Bλ i.e. behaviours for Bλ itself.
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Finite-order approximations It might not be so easy to work with the solution B ∼=
F (Nop(B), N(B)) since it is defined in terms of its own final coalgebra. The reason of this is
rooted in the inherent circularity of higher-order definitions; circularity that resurfaces in the
definition of B and many related constructions such as B-bisimulations.

The steps in the computation of the fixed point B are finite-order behaviours Bn (and Zn):

Z0 = 0D Zn = N(Bn) B0 = 0E Bn+1 = F (Zn, Zn)

approximating B (for it is the (co)limit of the resulting ω-chain of coreflections in E). Therefore,
B-bisimulations may be given by induction on n deriving Bn+1-bisimulations from projections
to n-order behaviours and Bn-bisimulations. Embeddings guarantee coherence.
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Transactional memory (TM) has emerged as a promising mechanism to replace locks [1,3].
The basic idea is to mark blocks of code as atomic; then, execution of each block will appear
either if it was executed instantaneously, at some unique point in time, or, if aborted, as if it did
not execute at all. This is obtained by means of optimistic executions: the blocks are allowed
to run concurrently, and eventually if an interference is detected a transaction is restarted
and its effects are rolled back. Differently from lock-based concurrency control mechanisms,
transactions are composable and ensure absence of deadlocks and priority inversions, automatic
roll-back on exceptions, and increased concurrency. Moreover, each transaction can be viewed
in isolation as a single-threaded computation, significantly reducing programmer’s burden.

However, in multi-threaded programming differ-
ent transactions may need to interact and exchange
data before reaching the commit phase. In this situ-
ation, transaction isolation is a severe shortcoming.
A simple example is a synchronization (rendezvous)
between threads belonging to different transactions.
A naive attempt would be to use two semaphores

// Party1

atomically {

// code before

up(c1);

down(c2);

// code after

}

// Party2

atomically {

// code before

down(c1);

up(c2);

// code after

}
c1, c2 as shown aside. Unfortunately, this solution does not work: any admissible execution
requires an interleaved scheduling between the two transactions, thus violating isolation; hence,
the transactions deadlock as none of them can progress. It is important to notice that this
deadlock arises because synchronization occurs between threads in different transactions; in
fact, the solution above works for threads outside transactions, or within the same transaction.

In order to overcome this limitation, we propose a programming model for safe, data-driven
interactions between memory transactions. The key observation is that atomicity and isolation
should be seen as two disjoint computational aspects:

• an atomic non-isolated block of code is executed “all-or-nothing”, but its execution can
overlap that of others and uncontrolled access to shared data is allowed;

• an isolated block of code is intended to be executed “as it were the only one” (i.e., in
mutual exclusion with other threads), but no rollback on errors/exceptions is provided.

Thus, a “normal” block of code is neither atomic nor isolated; a mutex block (like Java syn-
chronized methods) is isolated but not atomic; and a usual transaction is a block which is both
atomic and isolated. Our claim is that atomic non-isolated blocks can be fruitfully used for
implementing safe composable interacting transactions, henceforth called open transactions.

In this model, a transaction is composed by several threads, called participants, which can
cooperate on shared data. A transaction commits when all its participants commit, and aborts
if any thread aborts. Threads participating to different transactions can access to shared data,
but when this happens the transactions are transparently merged into a single one. For instance,
the two transactions of the rendezvous example above would automatically merge becoming the
same transaction, hence the two threads can synchronize and proceed. Thus, this model relaxes
the isolation requirement still guaranteeing atomicity and consistency; moreover, it allows for
loosely-coupled interactions since transaction merging is driven only by run-time accesses to
shared data, without any explicit coordination among the participants beforehand.
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type ITM a

type OTM a

-- t is a placeholder for ITM or OTM --

-- Sequencing, do notation ------------

(>>=) :: t a -> (a -> t b) -> t b

return :: a -> t a

-- Atomic and isolated computations ---

atomic :: OTM a -> IO a

isolated :: ITM a -> OTM a

retry :: ITM a

orElse :: ITM a -> ITM a -> ITM a

-- Exceptions -------------------------

throw :: Exception e => e -> t a

catch :: Exception e => t a ->

(e -> t a) -> t a

-- Threading --------------------------

fork :: OTM () -> OTM ThreadId

-- Transactional memory ---------------

data OTVar a

newOTVar :: a -> ITM (OTVar a)

readOTVar :: OTVar a -> ITM a

writeOTVar :: OTVar a -> a -> OTM ()

Figure 1: The base interface of OTM.

In the rest of this abstract we gradually present the primitives from the OTM library (showed
in Figure 1) by some illustrative examples. The discussion is meant to be introductory and
informal. The formal semantics has been omitted due to space constraints but it is based on
the calculus we presented in [2], with minor variations to accommodate the richer types of OTM.
This library has been implemented in Haskell using the standard STM library.

Suppose we want to delegate some long task to another thread and then collect the result
once it is ready. An intuitive way to achieve this is by means of futures, i.e. “proxy results”
that will be produced by the worker threads.

A future can be implemented it OTM as a transactional variable OTVar holding a value of
type Maybe a i.e. a type that is “not-ready-yet” (Nothing) or actually holds something of type
a (e.g. “Just 42”):

type Future a = OTVar (Maybe a)

To access the promised value a call to getFuture f should block if the value is not ready yet.
In OTM (and also STM) blocking a thread translates into “this thread has been scheduled too
early” and the scheduler is informed of this fact by
means of the primitive retry. Therefore we can
implement getFuture as aside. Note that there is
no point in blindly restarting the transaction until

getFuture::Future a -> ITM a

getFuture f = case (readOTVar f) of

Nothing -> retry

Just val -> return val
at least one of the transactional variables has been modified. Instead an implementation will use
the information contained in the transaction log (which is needed by the optimistic execution
strategy) to watch for f to change. The above snippet is executed in isolation to guarantee
consistency between reading and testing the case (actually, it is also an implementation in STM).

Transaction openness comes into play when a worker is spawn. STM does not allow for thread
creation, thus forcing us to implement spawn in IO. This is indeed possible, but forking and
creating the future cannot be guaranteed to be atomic, let alone the creation of several work-
ers. For instance, being able to create workers and futures inside an open transaction allows us
to propagate exceptions and abort to all workers. Therefore we can implement spawn as follows:

spawn :: OTM a -> OTM (Future a)

spawn work = do

future <- newTVar Nothing

fork (worker future)

return future

worker :: Future a -> OTM ()

worker v = do

res <- work

writeOTVar (Just v) $! res

Because of its type, spawning multiple computations inside the same transaction is as simple
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as function composition:
spawnMany:: [OTM a] -> OTM [Future a]

spawnMany = mapM spawn

getAllFutures:: [Future a] -> ITM [a]

getAllFutures = mapM getFuture
While programming with OTM we should prefer the strictest kind of transactions otherwise we
will loose some information because of a less precise type. For instance, consider the following
alternative implementations of getAllFutures:

get’ = isolated . (mapM getFuture) get’’ = mapM (isolated getFuture)

Although both have type [Future a] -> OTM [a], the first is executed in isolation (like
getFutures) whereas the second allows workers to proceeds during the traversal of the list.
Same type, different degree of concurrency.

Transactions can be composed as alternatives thanks to the primitive orElse which firstly
attempts to execute its first argument as a sub-transaction and its second whenever the first
one retries. The following function collects the value that is made available first:

getAnyFuture (f:fs) = (getFuture f) ‘orElse‘ (getAnyFuture fs)

Example: Petri nets Petri nets might be easily implemented in OTM: places are transac-
tional variables holding a number of tokens (OTvar Peano). Tokens can be added and removed
with the latter operation being blocking.

data Place = OTVar Peano

take :: Place -> ITM ()

take var = do

t <- redOTVar var

case t of

Zero -> retry

Succ v -> writeOTVar var v

newPlace :: Peano -> ITM Place

newPlace = newOTVar

put :: Place -> ITM ()

put var = do

v <- readOTVar var

writeOTVar var (Succ v)

Transitions are IO threads that repeatedly consume tokens from their input places and produce
tokens to their output places, atomically:

transition :: [Place] -> [Place] -> IO ThreadId

transition ins outs = forkIO (forever fire)

where

fire :: IO ()

fire = atomic $ do

(isolated take) ‘all‘ ins

(isolated put) ‘all‘ outs

all :: (a -> OTM b) -> [a] -> OTM ()

all f = mapM_ f

Although each transition fires sequentially, the firing of different transitions happens in a true
concurrent way since transactions are open and isolation is limited to each take/put operation.
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1 Introduction
Automated program analysis and verification requires discovering and proving program prop-
erties. Typical examples of such properties are loop invariants or Craig interpolants. These
properties usually are expressed in combined theories of various data structures, such as integers
and arrays, and hence require reasoning with both theories and quantifiers. Recent approaches
in interpolation and loop invariant generation [9, 7, 4] present initial results of using first-order
theorem provers for generating quantified program properties. First-order theorem provers can
also be used to generate program properties with quantifier alternations [7]; such properties
could not be generated fully automatically by any previously known method. Using first-order
theorem prover to generate, and not only prove program properties, opens new directions in
analysis and verification of real-life programs.

First-order theorem provers, such as iProver [5], E [10], and Vampire [8], lack however
various features that are crucial for program analysis. For example, first-order theorem provers
do not yet efficiently handle (combinations of) theories; nevertheless, sound but incomplete
theory axiomatisations can be used in a first-order prover even for theories having no finite
axiomatisation. Another difficulty in modelling properties arising in program analysis using
theorem provers is the gap between the semantics of expressions used in programming languages
and expressiveness of the logic used by the theorem prover. For example, a standard way to
capture assignment in program analysis is to use a let-in expression, which introduces a local
binding of a variable or a function, to a value. There is no local binding expression in first-order
logic, which means that any modelling of imperative programs using first-order theorem provers
at the backend, should implement a translation of let-in expressions.

Efficiency of reasoning-based program analysis largely depends on how programs are trans-
lated into a collection of logical formulas capturing the program semantics. The boolean struc-
ture of a program property that can be efficiently treated by a theorem prover is however very
sensitive to the architecture of the reasoning engine of the prover. Deriving and expressing
program properties in the “right” format therefore requires solid knowledge about how theorem
provers work and are implemented — something that a user of a verification tool might not
have. Moreover, it can be hard to efficiently reason about certain classes of program properties,
unless special inference rules and heuristics are added to the theorem prover, see e.g. [3] when
it comes to prove properties of data collections with extensionality axioms.

In order to increase the expressiveness of program properties generated by reasoning-based
program analysis, the language of logical formulas accepted by a theorem prover needs to be
extended with constructs of programming languages. This way, a straightforward translation of
programs into first-order logic can be achieved, thus relieving users from designing translations
which can be efficiently treated by the theorem prover. One example of such an extension is
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recently added to the TPTP language [11] of first-order theorem provers, resembling if-then-
else and let-in expressions that are common in programming languages. Namely, special
functions $ite_t and $ite_f can respectively be used to express a conditional statement on
the level of logical terms and formulas, and $let_tt, $let_tf, $let_ff and $let ft can be
used to express local variable bindings for all four possible combinations of logical terms (t)
and formulas (f). While satisfiability modulo theory (SMT) solvers integrate if-then-else and
let-in expressions, in the first-order theorem proving community so far only Vampire supports
such expressions.

We aim for facilitation of reasoning-based program analysis by developing new theories for
first-order theorem provers and extending them with features of programming languages. Our
recent result in this direction is formalisation of a first-order logic with first class boolean sort
that can be efficiently treated by a theorem prover and allows for simpler translation of some
program properties, compared to an ordinary many-sorted first-order logic. Our current work
is an implementation of this logic in Vampire. Both the theoretical result and the progress on
the implementation are summarised in the following section.

2 First Class Boolean Sort
Our recent work [6] presented a modification of many-sorted first-order logic that implements
a first class boolean sort. We called this logic FOOL, standing for first-order logic (FOL)
+ boolean sort. FOOL extends ordinary many-sorted FOL with (i) the boolean sort such
that terms of this sort are indistinguishable from formulas and (ii) if-else-else and let-in
expressions. FOOL formulas can be translated to ordinary FOL formulas while preserving
models and can hence be treated by a first-order theorem prover.

FOOL is more expressive than FOL. Function and predicate symbols in FOOL can take
boolean arguments, formulas in FOOL can be quantified over boolean variables and occur as
arguments when the sorts coincide.

We argue that these extensions are useful in reasoning about problems coming from program
analysis. A boolean expression in a programming language can be treated both as a value (for
example, in a form of a boolean flag, passed as an argument to a function) and as a formula
(for example, a loop condition). A translation of a program property into FOOL would not
distinguish these cases, whereas a translation into an ordinary FOL would. In the later case,
a possible solution would be to map the boolean type of programs to a user-defined boolean
sort, postulate axioms about its semantics, and manually convert boolean terms into formulas
where needed. This approach however is cumbersome and possibly inefficient due to the way a
theorem prover might treat one of the boolean theory axioms.

In contrast to that, for a translation from FOOL to FOL given in [6] we described a modi-
fication of superposition calculus that can reason efficiently about the FOL formulas obtained
with the translation. This modification involves replacement of the problematic theory axiom
by an extra inference rule.

At this point we have an initial implementation of FOOL in Vampire that closely follows [6].
We were able to test the implementation on a set of 490 properties about (co)algebraic data-
types, generated by the Isabelle proof assistant. All of these properties feature quantification
over booleans and if-then-else expressions and were not previously directly expressible in
TPTP. The preliminary results of our experiments show that native implementation of FOOL
shows better performance than a naive translation of the boolean type described earlier. How-
ever, more experiments are still needed in order to make a conclusion.

Implementation of FOOL in Vampire allowed us to simplify the syntax of monomorphically
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sorted TPTP, called TFF0 [12]. The lack of distinction between boolean terms and formulas
made the distinction between $ite_t and $ite_f obsolete. They were replaced by a single
$ite expression. Similarly, four variations of let-in expression were replaced by a single $let.

3 Future Work
Whereas we proposed a technique for efficient treatment of the boolean sort by a superposition-
based theorem prover, no efficient translation of if-then-else and let-in expressions has been
presented. This is left for future work.

Treatment of boolean terms as formulas was implemented in some other logics used in the
automated deduction community. The core language of SMT-LIB [1], the collection of bench-
marks for SMT-solvers, is a language of first-order logic with this property. The language of
higher-order logic supported by theorem provers such as Isabelle is another example. FOOL
is a novel result in the area of first-order reasoning and it bridges the semantic gap between
logics. Particularly, FOOL is the smallest superset of the core language of SMT-LIB and mono-
morphically typed subset of TPTP. It means that a first-order theorem prover that supports
FOOL can understand SMT-LIB problems without a special translation and we are planning
to conduct experiments in reasoning about the corpus of SMT-LIB problems in Vampire.

FOOL is monomorphically typed. It is not hard however to extend it to a polymorphic case.
TPTP defines a language of many-sorted FOL with rank-1 polymorphism called TFF1 [2], and
implementation of a combination of FOOL and TFF1 is an interesting future work.
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Motivations Concurrent and distributed systems are the pillars of modern IT infrastruc-
tures. It is of great importance that such systems work properly. However, quality assurance
of such systems is non-trivial since they depend on unpredictable factors, such as different pro-
cessing speeds of independent components. Besides, it is non-trivial to ensure communication
(composed by interactions) safety: as developers implement applications locally, the sending
application’s expected sequence of interactions may not fit the receiving application’s. Thus
interactions between endpoints could become inconsistent and unexpected messages may dam-
age endpoint applications such that extra cost is caused to the overall system. These challenges
motivate compositional frameworks combining precise modeling and analysis with suitable tool
support for such kind of systems. In particular, it is crucial to provide a verification framework
which is able to analyze the overall interactions and structurally verify endpoint applications
in an intuitive way with respect to endpoint behavior.

Object orientation is the leading framework for concurrent and distributed systems. Con-
current objects combine object-orientation with the actor model [7]. Actors communicate with
one another by asynchronous message passing, which allows the caller to continue with its
own activity without blocking while waiting for the reply. Moreover, the notion of futures [6]
improves this paradigm by providing a decoupling of the process invoking a method and the
process reading the returned value. By sharing future identities, the caller enables other objects
to wait for the same method results.

The Proposed Framework In this work, we take ABS [5] as a modeling language for
concurrent and distributed systems. ABS is based on Creol [10]. It is imperative, object-
oriented, executable and it supports concurrent objects and shared futures.

The observable behavior of a system can be described by communication histories over
observable events [8]. Due to asynchronous message passing in ABS , [3, 4] propose a disjoint
event semantics, in which events are separated for method invocation, reacting upon a method
call, resolving a future, and for fetching the value from a future. Each event is observable to
only one object, which is the one that generates the event.

The theorem prover KeY-ABS [2] based on KeY [1] is developed for verifying history-based
class invariants for ABS models. The class invariants can (1) relate the internal object states
with the interactions between the current object and the surrounding environment, or (2)
express the structure of histories local to the current object. The proof rule for compositional
reasoning about ABS programs is given and proved sound in [4], by which system invariants
can be obtained from the class invariants proved by KeY-ABS through history composition.
This bottom-up verification approach by KeY-ABS is based on relay-guarantee mechanism for
each class in the model. In this work, we propose a top-down verification approach to verify
the overall behavior between concurrent and distributed endpoints.

∗The work has been supported by the EU project FP7-610582 Envisage: Engineering Virtualized Services
(http://www.envisage-project.eu).
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Figure 1: Session-Based Compositional Verification Framework

Session types [9] establish a means of typing concurrent and asynchronous interactions
among distributed components. In this work, we propose a session-based verification framework
for concurrent and distributed ABS models. We type applications’ behaviors, which include
the usage of future, with respect to sessions where the applications are participating in, and
partition those behaviors based on sessions. We call the extended session types as protocol
types, which not only enjoy all features defined in session types, but also specify the timing for
invoking feature. Let p, q, .. range over endpoint process identifiers, let l be labels for options
in a branching, and let f be future identities. The syntax of protocol types is defined below:

(Sorts) S ::= T | 〈G〉
(Data types) T ::= unit | bool | int | string | Fut〈T 〉

(Protocol Types) G ::= p
fj−→ q : {lj(Tj).Gj}j∈J | Rel(f ) | G ‖ G | t | µt.G | end

(Protocol Local Types) L ::= q!fj{lj(Tj).Lj}j∈J | p?fj{lj(Tj).Lj}j∈J | Rel(f ) | t | µt.L | end
Sorts, denoted by S , range over data types, and 〈G〉, a closed protocol type (i.e. having
no type variable) of a content. This implies that we can deliver a behavior (typed by G)
from one endpoint to another. Data types, T , include standard value types and future types,
Fut〈T 〉, for the types of method parameters and method return results. A protocol type

p
fj−→ q : {lj(T ).Gj}j∈J globally describes an interaction behavior in which an endpoint process

p sends a content of type Tk to another endpoint process q, where fj is a future identity and
label lk ∈ {lj}j∈J , k ∈ J = {1..n}. Then the global behavior continues with Gk. If J = ∅, then

conventially we write p
fj−→ q : (T ).G to represent a simple sending and receiving interaction.

In the protocol local types, q!fj{lj(Tj).Lj}j∈J and p?fj{lj(Tj).Lj}j∈J are corresponding to the

interacting endpoints’ behaviors defined in p
fj−→ q : {lj(Tj).Gj}j∈J . The former types the

sender’s behavior to send a message to q, while the later types the receiver’s behavior to receive
a message from p. The new type Rel(f ) captures the process release point upon waiting for the
future f to be resolved, i.e. containing method results.

For example, we can write

p1
f1−→ q1 : {BigD(string).Rel(f1).p2

f2−→ q1 : (unit).end, SmallD(bool).q1
f1−→ p1 : (int).end}

to globally describe the following interactional features between p1, q1, and p2: there are two

branches for the first interaction p1
f1−→ q1. Branch BigD leads to compute a very big data at q1
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(requested by p1), while branch SmallD is for computing a small data. q1
f1−→ p1 : (int) implies

that p1 will need to wait for the response from q1 before proceeding to the next action end (i.e.
terminate). Since it is just a small data, p1 should not wait for a long time. However, for a
very big data, p1 may waste lots of time for the response. Thus type Rel(f1) is used in branch
BigD to specify that p1 encounters a process release point and can proceed other actions while
waiting for f1 to be resolved. It further specifies that, only when future f1 has been resolved,

the whole global behavior can go to the next interaction p2
f2−→ q1 : (unit). We use G ‖ G for

parallel composition, and t for type variable, and µt.G for a recursive type, where every t in the
recursion body G is guarded by prefixes (i.e. contractive). Other terms for local types can be
similarly explained.

Concluding Remarks and Future Works The main contributions in this work include (1)
protocol types are extended by adding terms suitable for capturing the notion of futures, (2) the
communication between different ABS endpoints, grouped by sessions, can be captured in pro-
tocol types and verified by the corresponding session-based composition verification framework,
and (3) the local protocol types, projected from protocol types, of each endpoints can be trans-
lated and reformulated into history-based class invariants for KeY-ABS, see Figure 1. Based
on this achievement, we also expect to extend the verification framework for ABS exception
handling [11].
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Wolfgang Ahrendt1, Jesús Mauricio Chimento1, Gordon Pace2 and Gerardo
Schneider3

1 Chalmers University of Technology, Sweden.
ahrendt@chalmers.se, chimento@chalmers.se

2 University of Malta, Malta.
gordon.pace@um.edu.mt

3 University of Gothenburg, Sweden.
gerardo@cse.gu.se

1 Introduction

Over the past decades, several forms of automated verification techniques have been proposed
and explored in the literature. These techniques mostly fall in one of two categories: static
and dynamic verification. Runtime verification is a dynamic technique concerned with the
monitoring of software, providing guarantees that observed runs comply with specified properties.
It is strong in analysing systems of a complexity that is difficult to address by static verification,
like systems with numerous interacting sub-units, heavy usage of mainstream libraries, real (as
opposed to abstract) data, and real world deployments. On the other hand, the major drawbacks
of runtime verification are the impossibility to extrapolate correct observations to all possible
executions, and that monitoring introduces runtime overheads. In the work we present here,
these issues are addressed by combining runtime verification with static verification, such that:
(i) Static verification attempts to ‘resolve’ those parts of the properties which can be confirmed
statically; (ii) the static results, even if only partial, are used to change the property specification
such that generated monitors will not check dynamically what was confirmed statically.

In addition to combining static and runtime verification, we introduce the specification
language ppDATE [3], and a verification tool which embodies this approach, called StaRVOOrS
[7], which captures both control-oriented properties (like the DATE language used in the runtime
verification tool Larva [9]) and data-oriented properties (like the Java Modelling Language
JML [6, 10]).

2 The StaRVOOrS Framework

Below we show an abstract view of the framework, which was initially sketched in [4].

Program'P'
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Given a Java program P and a specification π of the properties to be verified (given in
the language ppDATE, see Sec. 3), these are transformed into suitable input for the deductive
verifier KeY [5] which attempts to statically verify the properties related to pre/post-conditions.
What is not proved statically will then be left to be proven at runtime. Here, not only the
completed but also the partial proofs will be used by the Partial Specification Evaluator module
in order to rewrite the original π into π′ which triggers runtime checks for the parts which were
not possible to prove statically. To achieve this, the original pre-conditions from π are refined to
express also path conditions for not statically verified executions.

The ppDATE specification π′ is then translated into a specification D, written in the DATE
formalism [8] — a formalism suitable for the runtime verifier Larva [9]. As DATE does not
handle pre/post-conditions, these are simulated by pure DATE concepts. This also requires
changes to the code base (done by the Code Instrumentation module), like adding counters to
distinguish different executions of the same code unit, or adding methods which operationalise
pre/post-condition evaluation. The instrumented program P ′ and the DATE specification D
are passed on to the runtime verification tool Larva, which uses aspect-oriented programming
techniques to capture relevant system events and monitors, thus producing a monitored program,
essentially equivalent to running the original program in parallel with a monitor of the original
property, albeit more efficiently.

3 A Specification Language for Static and Runtime Veri-
fication of Data and Control Properties

StaRVOOrS uses ppDATE as the input language for its properties, which enables the combina-
tion of data- and control-based properties in a single formalism. ppDATEs are a composition of
the control-flow language DATE, and of data-oriented specifications in the form of Hoare triples
with pre-/post-conditions expressed using JML boolean expression syntax [10], which is designed
to be easily usable by Java programmers. The data-oriented features of the specification appear
in the states. A state may have a number of Hoare triples assigned to it. Intuitively, if Hoare
triple {π}f{π′} appears in state q, the property ensures that: if the system enters code block f

while the monitor lies in state q and precondition π holds, upon reaching the corresponding exit
from f, postcondition π′ should hold. To ensure efficient execution of monitors, ppDATEs are
assumed to be deterministic by giving an ordering in which transitions are executed.

For a full and detail description of ppDATE, refer to [3].

4 StaRVOOrS Tool

The tool is a fully automated implementation of the theoretical results presented in [3, 4]. Given
a property specification and the original Java program, our tool chain produces a statically
optimised monitor and the weaved Java program to be monitored. This includes the automated
triggering of numerous verification attempts of the underlying static verification tool, the analyses
of resulting partial proofs, and the monitor generation.

The tool works following these steps: (1) A property is written using our script language for
ppDATE; (2) Hoare triples are extracted from the specification of the property, are translated
into JML contracts to be added to the Java files; (3) KeY attempts to verify all JML contracts,
generating (partial) proofs, the analysis of which results in an XML file; (4) The ppDATE is
refined based on the XML file; (5) Declarative pre/post-conditions are operationalised; (6) The
code is instrumented with auxiliary information for the runtime verifier; (7) The ppDATE

2

114 Aceto et al.

Reykjavík University



StaRVOOrS W. Ahrendt, J. M. Chimento, G. Pace and G. Schneider

specification is encoded into DATEs; (8) The Larva compiler generates a runtime monitor. See
[7] for more details about the tool.

5 Conclusion

In [3] we have formalised the language for combining (partial) static and (optimised) runtime
verification, which we called ppDATE, we have introduced an algorithm to transform a ppDATE
specification in a DATE specification (the input language of the runtime verifier Larva). In [7]
we have introduced the fully automated tool StaRVOOrS, which implements the theoretical
results presented in [3, 4]. StaRVOOrs combines the deductive theorem prover KeY and the
runtime verification tool Larva, and uses properties written using the ppDATE specification
language. In addition, we have demonstrated the effectiveness of the tool by applying it to
Mondex [1], an electronic purse application for smart cards products.

At the moment we are working on the proof of soundness of the ppDATE transformation
algorithm introduced in [3] and we are analysing a new and larger case study based on SoftSlate
[2], a full-featured, high-performance, open-source Java shopping cart that powers various of
e-commerce websites.

Our future work includes: (i) improving the automation of the ‘operationalisation’ of
pre/post-conditions containing algorithmic content; (ii) introduction of a mechanism to deal
with the runtime verification of private information; (iii) development of an analyser for the
output produced by the monitors generated by StaRVOOrS.
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1 Introduction

Asynchronous programming has been a challenge for a long time. A multitude of programming
models have been proposed that aim to simplify the task. Interestingly, there are elements of
a convergence arising, at least with respect to the basic building blocks: futures and promises
have begun to play an increasingly important role in a number of languages like Java, C++,
ECMAScript, and Scala. The Async extensions of F# [9], C# [1], and Scala [4] provide language
support for programming with futures in direct style, by avoiding an inversion of control that
is inherent in designs based on callbacks.

In this paper we present an integration of the Async model with a richer underlying ab-
straction, the asynchronous observables of the Reactive Extensions model [8]. An asynchronous
observable is a stream of observable events which an arbitrary number of observers can sub-
scribe to. The set of possible event patterns of asynchronous observables is strictly greater
than those of futures. An observable (or stream) can (a) produce zero or more regular events,
(b) complete normally, or (c) complete with an error (it is even possible for a stream to never
complete.) Given the richer substrate of observables, the Async model has to be generalized in
several dimensions.

We call our model RAY, inspired by its main constructs, reactive async, await, and yield.
This paper makes the following contributions:

• The design of a new programming model, RAY, which integrates the Async model and
the Reactive Extensions model;

• Structural operational semantics of the proposed programming model. Our operational
semantics generalizes the formal model presented in [1] for C#’s async/await to asyn-
chronous observables.

2 Background

Scala Async. Scala Async provides constructs that aim to facilitate programming with asyn-
chronous events in Scala. The introduced constructs are inspired by extensions that have been
introduced in C# version 5 [5]. The goal is to enable expressing asynchronous code in direct
style, i.e., in a familiar blocking style where suspending operations look as if they were blocking
while at the same time using efficient non-blocking APIs under the hood. Example:

val respFut = async {

val dayOfYear = await(futureDOY).body

val daysLeft = await(futureDaysLeft).body

Ok("" + dayOfYear + ": " + daysLeft + " days left!")

}

1
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The await on line 2 causes the execution of the async block to suspend until futureDOY

is completed (with a successful result or with an exception). When the future is completed
successfully, its result is bound to the dayOfYear local variable, and the execution of the async

block is resumed. When the future is completed with an exception (e.g., because of a timeout),
the invocation of await re-throws the exception that the future was completed with. In turn,
this completes future respFut with the same exception. Likewise, the await on line 3 suspends
the execution of the async block until futureDaysLeft is completed.

The principle methods, async and await, have the following type signatures:

def async[T](body: => T): Future[T]

def await[T](future: Future[T]): T

Notably, async and await “cancel each other out:” await(async { <expr> }) = <expr>

Reactive Extensions. The Rx programming model is based on two interface traits:
Observable and Observer. Observable represents observable streams, i.e., streams that pro-
duce a sequence of events. These events can be observed by registering an Observer with
the Observable. The Observer provides methods which are invoked for each kind of event
produced by the Observable. In Scala, the two traits can be defined as follows:

trait Observable[T] { def subscribe(obs: Observer[T]): Closable }

trait Observer[T] {

def onNext(v: T): Unit

def onFailure(t: Throwable): Unit

def onDone(): Unit

}

The idea of the Observer is that it can respond to three different kinds of events, (1) the next
regular event (onNext), (2) a failure (onFailure), and (3) the end of the observable stream
(onDone). Thus, the two traits constitute a variation of the classic subject/observer pattern [2].
Note that Observable’s subscribe method returns a Closable; Closable has only a single
close method which removes the subscription from the observable.

3 Direct-style asynchronous observables

The following example demonstrates our programming model:

val filter = async*[Int] {

var next: Option[Int] = await(input)

while (next.nonEmpty) {

val evt = next.get

if (p(evt)) yield(evt)

next = await(input)

}

}

Here, we create a simple filter observable which publishes an Int event for each event observed
on the input observable that satisfies predicate p.

We provide a complete formalization in the context of an object-based core language remi-
niscent of Creol [7] and ABS [6]. Figure 1 shows a subset of expressions of the core language.
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t ::= terms
| ... (omitted)
| yield(x) yield event

e ::= expressions
| ... (omitted)
| async*[σ](ȳ) {e} observable creation (reactive async)
| await(x) await event
| t term

Figure 1: RAY expressions and terms.

Operational semantics. The core concepts of our operational semantics are heaps, frames,
and frame stacks (threads). Frames have the form 〈L, e〉l where L maps local variables to their
values, e is an expression, and l is a label. A label is either s denoting a regular, synchronous
frame, or a(o, p̄) denoting an asynchronous frame; in this case, o is the heap address of a
corresponding observable object, and p̄ is a sequence of object identifiers of observables that
observable o has itself subscribed to.

Correctness properties. We show that well-typed programs satisfy desirable properties:

1. Observable protocol. For example, a terminated observable never publishes events again;
this protocol property is captured by a heap evolution invariant which generalizes an
invariant given in [1].

2. Subject reduction. Reduction of well-typed programs preserves types.

The proofs of these properties are based on a typing relation, as well as invariants preserved by
reduction. A forthcoming technical report [3] provides details of the formal model and proofs.
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Probabilistic Timed Rebeca language was proposed in [1] as an extension of Timed Re-
beca language. PTRebeca is an actor-based modeling language that supports modeling of
timing, probabilistic and non-deterministic features of real-time systems. In [1], the semantics
of PTRebeca is presented as a timed Markov decision process (TMDP) which can be regarded
as a discrete-time semantics of a probabilistic timed automaton (PTA). We also developed a
supporting tool for formal analysis of PTRebeca models which uses the back-end model checker
PRISM to provide performance evaluation of models.

The state space generated from TMDP representation of PTRebeca models suffer from the
state space explosion problem. In our semantics, the execution of statements of message servers
are interleaved from various actors concurrently being executed in the real-time system. The
semantics also includes a discrete global time and probabilistic information which make the
state space explosion problem even more serious. In the semantics, the local time of all actors
progresses in a lock step manner with the global time.

In [2], authors proposed floating time transition system (FTTS) as a solution of the state
space explosion problem in model checking of Timed Rebeca models. In FTTS, actors proceed
with their own rates with independent local clocks instead of synchronizing with the global
time. In Timed Rebeca language, and consequently in PTRebeca language, actors can request
a service from other actors by sending a message to them; each actor has a bag of messages which
stores the received messages. The receiver actor takes a message from its bag and executes its
corresponding message server to provide the requested service. In FTTS, by taking a transition,
all statements of a message server of an actor are executed and the execution result is available
in the next state. The execution of statements of the message server do not interleave with the
execution of statements of other message servers from other actors. Since the message server
may include timed statements, the local time of actors can have different values in a state.
Relaxing the synchronization of progress of time among actors and the complete execution of a
message server in a step avoid many interleaves and result in a significant state space reduction
in FTTS.

In this work, we propose a probabilistic version of FTTS, called PFTTS, as a new semantics
for PTRebeca language. Similar to FTTS, the proposed semantics reduces the state space
significantly in comparison to TMDP semantics. Our intuitive understanding is that for a
given PTRebeca model, its TMDP (aka PTTS) interpretation and its PFTTS interpretation are
probabilistic trace-distribution equivalence, but we do not have a formal proof yet. Therefore,
there is no LTL-without-Next formula which distinguishes two semantics in the sense that the
min/max probabilities are the same for whatever formula is picked. As each action is not
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Problem Size Using PFTTS Using TMDP Reduction
#states #trans time #states #trans time #states #trans

Ticket Service

1 customer 13 17 < 1 sec 19 23 < 1 sec 32% 27%
2 customers 315 417 < 1 sec 515 625 < 1 sec 39% 34%
3 customers 3694 4949 2 sec 5962 7462 3 sec 39% 34%
4 customers 23799 33617 11 sec 39528 51372 22 sec 40% 35%
5 customers 92431 137041 72 sec 156919 212211 144 sec 41% 35%

Sensor Network

1 sensor 280 542 < 1 sec 343 605 < 1 sec 19% 19%
2 sensor 3426 7119 1 sec 4254 7947 1 sec 20% 19%
3 sensor 33959 79007 11 sec 40321 85369 15 sec 16% 8%
4 sensor 211579 568603 83 sec 241011 598035 114 sec 12% 5%

TinyOS
1 sensor 2302 3100 < 1 sec 4507 5443 1 sec 49% 43%
2 sensor 22630 38101 5 sec 48155 66765 13 sec 53% 43%

Table 1: Number of states and transitions, time consumption, and reduction ratio in model
checking based on PFTTS and TMDP.

logged in the traces of TMDP, internal actions are not logged in the traces, LTL-without-Next
properties are preserved. Therefore, model checking algorithms proposed for LTL properties
can be applied to PFTTS instead of TMDP.

We also examined different case studies in different sizes to show that PFTTS generates
fewer states and transitions in comparison to TMDP semantics. Apparently, the needed time
for state space generation is decreased. To this goal, a toolset was developed to generate the
state space of PFTTS and TMDP for a given PTRebeca model. The PTRebeca models of
Ticket Service, Sensor Network, and TinyOS examples are accessible from [3]. Table 1 shows
the experimental results.

Here, we briefly explain the first case study. There are a customer, a ticket server, and
an agent. The customer sends a ticket request by sending a message to the agent. The agent
forwards the request to the ticket server. The ticket server issues a ticket and replies to the
agent request, and then the agent sends the ticket to the customer. The customer sends a new
request after a specified amount of time. In order to have different sizes of the ticket service
model, there are different number of customers in the model varying from one to five customers.
We aim at investigating how much PFTTS can reduce the state space size. The experimental
results show that the state space enlarges quickly in accordance with the number of rebecs (i.e.
actors like customer, agent, and ticket server) in the model.
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Abstract

We present work in progress on a method of compiling programs based on SOS specifications. The

idea is to compile programs using SOS rules by translation into labelled blocks with explicit exit points,

which implement a valid computation in the LTS of the program. Under this approach, a correct

compiler can be constructed in a systematic way, based on an SOS specification.

1 Introduction and Background

Small-step SOS is a popular framework for specifying semantics of programming and specification
languages. A collection of SOS rules together define the transitions of a labelled transition
system (LTS). For programming languages, the states of an LTS usually contain a program
term along with auxiliary entities (stores, environments) and labels may contain emitted signals
or output streams. Table 1 contains a small example specification. Under such a specification,
each program is represented by a concrete LTS. We present a compilation method which can be
understood as the translation of the LTS to a corresponding control-flow graph (CFG). The
nodes of the CFG are sequences of instructions with behaviour that should be equivalent to the
states in the LTS.

Atomic Blocks Our method produces a collection of labelled atomic blocks (AB) containing
instructions for a virtual machine. Each AB corresponds to a state in the LTS of the program,
and is essentially a basic block : a sequence of instructions with one entry (at the beginning) and
one exit point (at the end) [1]. However, we relax the second condition and allow multiple exit
points at the end of the block, while requiring that an AB executes atomically as a single unit.

Target Machine Language We are targeting a simple register machine, with an unlimited
supply of temporaries (registers). In this regard it is similar to LLVM [3], which we intend to

ρ ` s1 l−→ s′1

ρ ` let(i, s1, s2)
l−→ let(i, s′1, s2)

(1)
Value v1 ρ[i 7→ v1] ` s2 l−→ s′2

ρ ` let(i, v1, s2)
l−→ let(i, v1, s′2)

(2)

Value v2

ρ ` let(i, v1, v2)
τ−→ v2

(3)
ρ(i) = v

ρ ` bound(i)
τ−→ v

(4)

ρ ` s l−→ s′

ρ ` print(s)
l−→ print(s′)

(5)
Value v

ρ ` print(v)
out v−−−−→ skip

(6)

Table 1: Example language specification. ‘Value s’ asserts that ‘〈ρ, s〉‘ is a value (terminal) state

for any ρ. As usual, ρ ` s l−→ s′ is a shorthand for 〈ρ, s〉 l−→ 〈ρ, s′〉.
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use as the ultimate target. There is no program counter, instead the program is stored as a
set of labelled code blocks β. Each block is (just) a sequence of instructions ‘ι1 · ι2 · . . .’. The
basic control-flow instructions are halt for stopping the machine immediately, and jump for
unconditionally jumping to a labelled AB.

β ` halt · t τ−→ halt

〈l, t2〉 ∈ β
β ` jump l · t1 τ−→ t2

Further instructions will be mentioned in our translation example in the next section.

2 A Small-step Compilation Schema

Let’s take a simple construct like print. If there is a sequence of n transitions starting from term
t, then the computation starting from print(t) will look as follows:

t
L1−−→ t1

L2−−→ · · · Ln−1−−−−→ tn−1
Ln−−→ v

print(t)
L1−−→ print(t1)

L2−−→ · · · Ln−1−−−−→ print(tn−1)
Ln−−→ print(v)

{out=v,...}−−−−−−−−→ skip

The ABs for print(t) should each corresponds to a term (state) in the lower part of the above
sequence. We construct a translator which will generate code blocks that implement the steps
of the construct. A translator for construct f , trf , is a structure of operations next, code, and
label. A translator state is constructed by applying trf to translator states for arguments of f .
We also write [[f(t1, . . . , tn)]] for trf ([[t1]], . . . , [[tn]]), where n is the arity of f . For a translator
tr , next tr is the next translator state, code tr is a code block corresponding to the current state,
and label tr assigns a name to the state. The name can be used as a label for the atomic block
or as the name of a temporary holding the computed value. The value of next tr can be none
if the current state is final. In that case, the instructions in code tr must store a value in the
named temporary label tr . The translator for print, trprint, can be defined as follows:

code[[print(t)]] =

{
code[[t]] if next[[t]] 6= none

code[[t]] · out temp otherwise, temp = label[[t]]
(7)

next[[print(t)]] =

{
trprint(next[[t]]) if next[[t]] 6= none

[[skip]] otherwise
(8)

A translator for a value v just has to put (a representation of) the value to a temporary, for
which we introduce an instruction ldval.

code[[v]] = ldval temp v next[[v]] = none label[[v]] = temp

(where temp is a fresh temporary name)
(9)

The role of a top-level translator trtop is to take the code block for each step and turn it into
an atomic block by appending an explicit exit point (jump or halt):

code[[t]]top =

{
code[[t]] · jump l if next[[t]] 6= none and l = label(next[[t]])

code[[t]] · halt otherwise
(10)

next[[t]]top = next[[t]] label[[t]]top = label[[t]] (11)
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The main compilation function just collects all the atomic blocks for a term, and returns
them together with the initial block label:

C(s) = {〈label[[t]]top, foldtr[[t]]top〉} (12)

where

foldtr tr =

{
{〈label tr , code tr〉} ∪ foldtr(next tr) if tr 6= none

∅ otherwise
(13)

As a further illustration, we look at a definition of code for let. The construct uses an updated
context in the premise of the rule in Eq. (2). The resulting code block also has to provide a
corresponding context for the sub-block. This context has to be explicitly constructed at the
beginning of the premise transition and cleaned up at the end. In this definition we assume
a value translator for sets of mappings ‘{i 7→ v}’ and machine operations for manipulating
environments.

code[[let(i, t1, t2)]] =





code[[t1]] if next[[t1]] 6= none

code triv · push env tmp · code[[t2]] · pop env

if next[[t1]] = none,

next[[t2]] 6= none,

triv = [[{i 7→ t2}]],
tmp = label(triv )

code[[t2]] otherwise

(14)

3 Conclusion

We have illustrated a schema for small-step compilation on a few simple programming constructs.
For lack of space we didn’t illustrate translations for, e.g., conditional, iterative, or non-
deterministic constructs. The approach could be used with a suitable notion of bisimulation: to
prove its correctness, to develop a compiler calculation method (following [2]), and to explore
(semi-) automatic compiler generation based on SOS rules. To this end, we intend to work with
Modular SOS [4], a modular variant of SOS, which places all auxiliary entities into labels of
transitions, and the corresponding notions of bisimulation [5]. To deal with inherent inefficiencies
(e.g., construction and destruction of contexts in atomic blocks), common optimisation methods,
such as peephole optimisation, could be applied to the resulting translations.
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1 Introduction

Lately there has been some interest in certified parsing of context-free grammars. Attribute
grammars extend context-free grammar with a semantics of parse trees in a declarative way.
Let G “ xN,Σ,P,Fy be a context-free grammar. An attribute grammar extends G by specifying
two disjoint sets for each nonterminal X P N, namely IpXq is a set of inherited and SpXq a set of
synthesized attributes. Let ApXq :“ IpXq Y SpXq; then, for each production X Ñ Y1 . . .Yn, every
synthesized attribute in the set SpXq has its value defined in terms of ApY1q Y . . .Y ApYnq Y IpXq
by so-called semantic equations. Similarly, each inherited attribute IpYiq has its value defined
in terms of ApXq Y SpY1q Y . . .Y SpYnq.

For example, we could specify the semantics of binary strings by the attribute grammar in
Figure 1. Each nonterminal in this grammar has a synthesized attribute v and an inherited
attribute p. The value of the attribute v for nonterminal X represents the semantical value of
the tree starting from X. The value of the attribute p represents the position of the lowest bit
of the subtree in the global tree.

F Ñ L vpFq “ vpLq, spLq “ spFq,
spFq “ 0;

L1 Ñ L2B vpL1q “ vpL2q ` vpBq,
spL2q “ spL1q ` 1,

spBq “ spL1q;
L Ñ B vpLq “ vpBq, spBq “ spLq;
B Ñ 0 vpBq “ 0;

B Ñ 1 vpBq “ 2spLq;

F

L B

L

L B

B

1 0 0

s = 0v = 

v =   +  

v = 0

v = 0

v = 2^

v =  +  

v =    s =   + 1 

s =   + 1

s =    

Figure 1: The attribute grammar specifies a parse tree traversal.

Figure 1 shows the parse tree of a string “100” and the evaluation of its semantic value.
The semantics of that string is given by the value of attribute v of the start nonterminal F
and equals 5. The value is computed by traversing the tree and applying the given semantic
equations.

An attribute grammar is specification for attribute evaluation. However, it is easy to define
grammars such that the dependency between attributes will be cyclic, causing lazy demand-
driven attribute evaluation to diverge. An attribute grammar is called cyclic, if it is possible
to construct a parse tree where an attribute of a particular node depends on itself.

Knuth [1] gave an algorithm for deciding whether an attribute grammar is cyclic or not. In
this work we implement this algorithm in the Agda dependently typed programming language
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together with proofs of correctness (soundness and completeness). This certified implementation
of acyclicity checker is used to define a terminating evaluator for acyclic attribute grammars.

In this abstract, we focus our attention on designing the data structures and proving the
principles that allow us to talk formally about cycles between attribute occurrences on parse
trees.

2 Positions and paths in trees

In this section we will give some basic inductive definitions for trees, positions in trees and paths
between these positions. In these definitions, we stay as general as possible and abstract away
from specifics of attribute grammars such as production rules, attributes, attribute dependencies
etc.

Our work is formalized in the constructive and dependently typed setting of the Agda lan-
guage. But to avoid the notational clutter in definitions and theorems, we adopt an informal
language, still relying on the Curry-Howard isomorphism and dependent type theory (proposi-
tions as types, proofs as programs).

Definition 2.1 (Tree). A finitely branching tree is given by a list of finitely branching subtrees
(this definition is to be read inductively; the base case occurs when the list is empty).

Next we define positions inside a tree. Each subtree of a tree occupies a certain position in the
tree taken as a whole. The position consists of the subtree, along with the directions of how to
navigate from the root to that location.

Definition 2.2 (Position). A position is a proof of a proposition TreePos t1 t2 that states that
t2 is a subtree of t1. The inductive definition has two constructors:

• If t is a finitely branching tree, then top t is a position of type TreePos t t.
• If p is a position of type TreePos t t1 and c is a proof that a tree t2 is an immediate subtree

of t1, then ins p c is a position of type TreePos t t2.

Definition 2.3 (Step). A single step from a position p1 to a position p2 is a proof of a propo-
sition r p1 s d r p2 s where d P tÒ, Óu.

• r p1 s Ó r p2 s iff p2 “ ins p1 c for some c.
• r p1 s Ò r p2 s iff p1 “ ins p2 c for some c.

Next, we would like to concatenate single steps from one position to another by taking
the reflexive-transitive closure of single steps. However, we also want to state that a path is
bounded by some position in the tree (it is confined to the corresponding subtree) and have a
flag telling whether the path is empty (zero steps) or not. Having the bound parameter will
allow us to have a unique decomposition of a cycle into smaller cycles.

Definition 2.4 (Path). A path from a position p1 to a position p2 bounded by a position b is
a proof of a proposition b|r p1 s f r p2 s where f P t;,ýu.

• An empty cycle p1|r p1 s ý r p1 s is constructed by empty p1.
• If s is a single step of type r p1 s d r p2 s, p2 and p1 are bounded by some b, then sngl s is

a path of type b|r p1 s; r p2 s.
• If s is a step r p1 s d r p2 s, and p is a path of type b|r p2 s; r p3 s for some b, and p1

is bounded by b, then step s p is a path of type b|r p1 s; r p3 s.
It is clear that any path on a tree can be represented by a value of type b|r p1 s f r p2 s for

appropriately chosen b, p1, p2 and f. Cycles correspond to special cases when p1 “ p2.

2
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3 Decomposition and induction principle for cycles

Inductive types come with eliminators. We know that any natural number is either zero or
successor of a smaller natural number and this deconstruction process cannot go on infinitely.
The fact that a natural number can be deconstructed like this is the basis for proofs by induction.
What about cycles on trees? To prove some property by induction for all cycles p|r p s f r p s,
we need to argue from how cycles decompose into smaller cycles.

Theorem 3.1 (Decomposition). If c is a cycle of type p|r p s f r p s for some tree position p,
then either c is empty (f “ý) or c ” sngl sd `̀ c1 `̀ sngl su `̀ c2 ( `̀ concatenates paths),
where:

• sd is a single step down of type r p s Ó r ins p c s for some c;
• c1 is a cycle of type pins p cq|r ins p c s f r ins p c s; note that it is bounded by a position

one level lower than the original c;
• su is a single step up of type r ins p c s Ò r p s;
• c2 is another cycle of type p |r p s f r p s.

Moreover, this decomposition is unique.

Now we could prove an induction principle for cycles on trees.

Theorem 3.2 (Induction principle). Let P be a property of paths of type p|r p s f r p s, where
p is any position in any tree. Then to conclude that P holds for all cycles on all trees, we need
to establish the following:

• P holds for empty cycles on all trees.
• Any proofs that P holds for a cycle c1 of type pins p cq|r ins p c s f r ins p c s and P holds

for a cycle c2 of type p |r p s f r p s can be converted into a proof that P holds for the
cycle sngl sd `̀ c1 `̀ sngl su `̀ c2 where sd and su are steps down from and up to p.

4 Conclusion

As we already discussed, an attribute grammar specifies attribute evaluation on parse trees.
We want to know if, for a given attribute grammar, it is possible to construct a parse tree with
a cyclic attribute dependency. In this abstract, we described how cycles on trees can be decom-
posed into smaller cycles. Then we established that this decomposition implies an induction
principle for cycles. The main components of our formalization are an acyclicity checker and
an attribute evaluator. By using the decomposition theorem and induction principle, we prove
that the acyclicity checker is correct (sound and complete). Our attribute evaluator works
on attribute grammars coming with an acyclicity proof. Attribute evaluation is defined by a
recursion that is wellfounded by acyclicity (the length of any acyclic path on a parse tree is
bounded by the total number of attribute occurrences in this tree).
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It is extremely laborious and ineffective to manually test complex software.
Hence, test automation (automated test case generation and execution) has re-
ceived significant attention. To be able to automatically generate test cases, a
model (specification) of the system has to be available. Test cases are then au-
tomatically derived from this (preferably formal) model, and are executed on
the system under test (SUT). This approach is typically known as model-based
testing (MBT) [5].

The key artifact in MBT is a (formal) model that is used to describe a
specification of the system. In an MBT process: (1) a model of the SUT is
defined, (2) test selection criteria are specified, (3) test cases are automatically
generated and executed, and (4) the final verdict of testing is produced.

A substantial challenge associated with MBT is that it is a black-box testing
technique, in which the implementation is only accessible through its interfaces.
Therefore, generated test suites may leave some untested gaps in a given SUT.

This is also a concern in test data selection. A common practice in generating
specification-based test cases is to partition the input domain and then select test
data from partitions, which are assumed to contain equally useful values from the
testing perspective [1]. The theoretical foundations for dealing with the reduction
of test suites have been laid out in [2] as the regularity- and the uniformity
hypothesis. There are different testing techniques developed for partitioning and
selecting representatives from the large input domain of parameters, such as
equivalence-class based testing [3] and category-partition method [4]. In all of
these techniques, partitions are derived from the reference model.

A promising approach to address this issue is to enrich initial test models
with structural information exploited from the implementation domain, and then
effectively generate concrete test cases and choose test data. With such test suites
the coverage of the specification model and the implementation model would be
complemented to each other.

We propose an approach to generate test cases considering both specification
models and implementation models. The proposal is based on the input equiv-
alence class partition (IECP) testing strategy presented by Huang and Peleska
in [3]. We show that, under certain conditions, implementation models can be
used in the equivalence class partition testing.

Our approach goes beyond the existing approaches by refining the initial in-
out partitions obtained the specification using the structural information from
the implementation. The advantages of this approach are twofold: firstly, we
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cover the two models in tandem and hence avoid gaps in the specification or
implementation. Secondly, we detect their possible structural differences (at in-
terface level) during test case generation and steer the test case to exercise such
possibly deviating paths of behavior.
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