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Programmability & Portability
• Overwhelming parallelism: from chips to supercomputers

• Numerous programming models: Thread-based, Intel TBB, Intel Cilk Plus,   OpenMP, 
MPI, Cuda, OpenCL, OpenAcc, etc, etc...

  Op, OpenCL, OpenAcc, etc, etc...
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One Source Code for all Devices
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From a Data-flow Graph to a Language Abstraction
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An API for Data Dependency Graphs (DDA)
• A Data Dependency Graph will be an implementation 

of a specific DDA API consisting of:

• types: Points (P), Branches (B)

• functions:

• requests: (rp, rb, rg)

• supplies: (sp, sb, sg)

• axioms

http://bldl.ii.uib.no
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An Example: DDA-based Fast Fourier Transform

Language Constructs for Combining Data Dependency Algebras Eva Burrows

1 DIn(p) = ((row(p)=1) && (col(p)<n)) ||
2 ((row(p)=0) && (col(p)<2n))

2. branch indices: B={0,1}

3. request components (rg,rp,rb) where:
1 rg(p,b) = (row(p)=1)
2 rp(p,b) = if (b=0) FKn(0,col(p))
3 else FKn(0,col(p)+n)
4 rb(p,b) = 0

4. supply components (sg,sp,sb) where:
1 sg(p,b) = (row(p)=0) && (b=0)
2 sp(p,b) = if (col(p)<n) FKn(1,col(p))
3 else FKn(1,col(p)-n)
4 sb(p,b) = if (col(p)<n) 0
5 else 1

⇤

For all branches across, branch index 1 identifies the request direction and branch index 0 the supply
direction. The vertical branches are labelled for both directions with branch index 0. Request directions
exist only for points of the top row, whereas supply directions exist only for the points of the bottom row.
These properties are captured by the corresponding guards. The rest of both components are defined as
simple functional expressions which return the desired values for guarded pair of inputs of a point and
a branch index.
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Figure 2: The Radix-2 Fast Fourier Transform DDA for 23 inputs.

The Radix-2 Fast Fourier Transform (FFT) is an e�cient algorithm to compute the Discrete Fourier
Transform (DFT) which plays an important role in numerous scientific applications. It is based on a
divide and conquer technique that recursively breaks down a DFT into smaller DFTs. In some appli-
cations, the indices of inputs and outputs need to be aligned, requiring a shu✏ing step finally. (CT65)
The underlying dependency of this computation is given in Fig. 2. In this case, all branches will have
the same index at both ends: in the butterfly pattern (rows 0-3), vertical branches have branch index 0,
and all branches across have branch index 1. In the final shu✏ing step, branch index 0 is used for all
branches.

Example 2.3. The Radix-2 Fast Fourier Transform DDA for 2h inputs, h 2 N, DFFTh, is defined by:

1. DDA points: FFTh = row Nat * col Nat | DIh where:

4

• let DFFTh be the DDA defined for the FFT graph  

• let V be a global complex array indexable by  
the point type FFTh of the DDA:
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Example 2.3. The Radix-2 Fast Fourier Transform DDA for 2h inputs, h 2 N, DFFTh, is defined by:

1. DDA points: FFTh = row Nat * col Nat | DIh where:
1 DIh(p) = (row(p)<=h+1) && (col(p)<2h)

2. branch indices: B={0,1}
3. request components (rg,rp,rb) where:

1 rg(p,b) = (row(p)>0) && ((row(p)<h+1)||(b=0))
2 rp(p,b) =
3 if (row(p)=h+1) FFTh(h,revh(col(p)))
4 else if (b=0) FFTh(row(p)-1,col(p))
5 else FFTh(row(p)-1,flip(row(p),col(p)))
6 rb(p,b) = b

4. supply components (sg,sp,sb) where:
1 sg(p,b) = (row(p)<=h) && ((row(p)<h)||(b=0))
2 sp(p,b) =
3 if (row(p)=h) FFTh(h+1,revh(col(p)))
4 else
5 if (b=0) FFTh(row(p)+1,col(p)
6 else FFTh(row(p)+1,flip(row(p)+1,col(p)))
7 sb(p,b) = b

where flip(i,m) flips the ith bit in the binary representation of m, and revh(m) reverses the bits-order
in the h-bit binary representation of m. ⇤

2.1 Repeat Statements
At each FFTh point an FFT-specific computation takes place using the data received along the request di-
rections, i.e., from the row below. The inputs reside on the bottom row points and the outputs will reside
on the top row points. The DDA does not specify the computation itself, only the underlying depen-
dency. We can declare the computations to be performed at each point using the repeat statement. This
construct has been proposed by BurHav09jlap, and we instantiate it first for the FFT, before presenting
it for the general case.

The repeat statement is focused on an array type to collect the values computed at DDA-points. Let
V be an array of type A with index type FFTh, some element type C corresponding to complex numbers,
and a partial indexing operation _[_]:A,FFTh !C. Partial indexing allows us to di↵erentiate between
DDA-points that have been computed and those that have not. In the beginning, V is initialised with the
input sequence, x[0],x[1],. . .,x[2h-1], such that V[FFTh(0,i)]=x[i] for all indices i:{0,1,. . .,2h-1},
making V defined only on these points. The actual computation of FFT would require that V becomes
defined on all its indices.

The FFT computation is given by the following repeat statement, where w denotes !, the primitive
n-th root of unity (needed in FFT), the function revh(m) reverses the bits-order in the h-bit binary
representation of m, and >> stands for the bit-wise shift operation:

1 repeat p:FFTh along DFFTh from V in
2 V[p]=
3 if (row(p)<h+1)
4 if (col(p)<col(rp(p,1)))
5 V[rp(p,0)]+V[rp(p,1)]*wrevh(col(p)>>h�row(p))

6 else V[rp(p,1)]+V[rp(p,0)]*wrevh(col(p)>>h�row(p))
7 else V[rp(p,0)]

5

http://bldl.ii.uib.no


http://bldl.ii.uib.no

Embeddings from DDA to the HW
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Compound DDAs
• complex DDAs from existing DDA implementations 

using algebraic combinators on the DDA API

• parallel, serial, sub-DDA, nesting, etc…

• compound DDAs are declared in the source code, 
but generated at compile time

• repeat statements and embeddings are defined on 
compound DDAs of custom complexity

• compound DDAs are genuine = combinators 
preserve the DDA API axioms

http://bldl.ii.uib.no
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Parallel Combinator
• Given two DDAs: 

• Parallel combination:

• Source code: 
P = D1 par D2

7. Algebraic Properties of DDAs

Claessen et al., 2003]. Lava is a domain specific languages embedded in
the functional programming language Haskell. It is designed to help spe-
cify the layout of circuits in order to improve performance and reduce area
utilization.

In the fashion of Lava combinators, DDAs can be either combined relat-
ive to each other with no communication, i.e. in parallel – along space, or
connected serially with explicit communication – along time.

In addition to these, the sub-DDA-combinator and the nesting-DDA-
combinator are presented. The first entails the selection of a sub-DDA of an
existing DDA, the latter provide means for more elaborate constructions.

7.1.1 The Parallel DDA-Combinator

Intuitively, the parallel DDA-combinator allows two (possibly different)
DDAs to be placed next to each other in space, thus resulting in a new,
larger DDA. All points and all dependency arcs from both DDAs are pre-
served, no new points nor new dependency branches are being created.

Definition 7.1.1 (Parallel DDA-Combinator). Let D1 = ⟨P1, B1, req1, sup1⟩
and D2 = ⟨P2, B2, req2, sup2⟩ be two DDAs. Then the parallel combination of
D1 and D2 is a 4-tuple

D1 ∥ D2 De f
= P = ⟨PP , BP , reqP , supP ⟩

where:

• PP = P1 $ P2,

• BP = B1 ∪ B2

• reqP consists of (rPg , rPp , rPb ) where:

rPg (⟨n, i⟩, d) = (d ∈ Bi) ∧ rig(n, d)

rPp (⟨n, i⟩, d) = ⟨rip(n, d), i⟩

rPb (⟨n, i⟩, d) = rib(n, d)

• supP consists of (sPg , sPp , sPb ) where:

sPg (⟨n, i⟩, d) = (d ∈ Bi) ∧ sig(n, d)

sPp (⟨n, i⟩, d) = ⟨sip(n, d), i⟩

sPb (⟨n, i⟩, d) = sib(n, d)
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7. Algebraic Properties of DDAs

to combine DDAs even when |O| ̸= |I|, or when we want to create several
new supply directions from some point of O. (See Fig. 7.2.) In such cases,
it is sufficient to require t to only be a total function instead of a bijection.
For each point n ∈ I a new branch index is introduced to identify the
corresponding supply direction that leads back to the point n from t(n).

The bijective serial DDA-combinator (Definition 7.1.6) becomes a simpli-
fied version of the general serial DDA-combinator which is defined next.

Definition 7.1.8 (Serial DDA-Combinator). LetD1 = ⟨P1, B1, req1, sup1⟩ and
D2 = ⟨P2, B2, req2, sup2⟩ be two DDAs, and t : I → O a total function where
I ⊆ P2 and O ⊆ P1. Then the serial combination of D1 and D2 along the (total)
function t,

D1 t
'→ D2 De f

= St = ⟨PSt , BSt , reqSt , supSt⟩

Figure 7.1: Serial combination of DDAs D1 and D2 along the bijection t.

Figure 7.2: Serial combination of DDAs D1 and D2 along a total function t.
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Serial Combinator
• Given two DDAs: 

• Serial combination wrt. a total function: 

• Source code: 
S = D1 seq D2 via t  
or  
S = D1 seq D2 bij t

7. Algebraic Properties of DDAs

Claessen et al., 2003]. Lava is a domain specific languages embedded in
the functional programming language Haskell. It is designed to help spe-
cify the layout of circuits in order to improve performance and reduce area
utilization.

In the fashion of Lava combinators, DDAs can be either combined relat-
ive to each other with no communication, i.e. in parallel – along space, or
connected serially with explicit communication – along time.

In addition to these, the sub-DDA-combinator and the nesting-DDA-
combinator are presented. The first entails the selection of a sub-DDA of an
existing DDA, the latter provide means for more elaborate constructions.

7.1.1 The Parallel DDA-Combinator

Intuitively, the parallel DDA-combinator allows two (possibly different)
DDAs to be placed next to each other in space, thus resulting in a new,
larger DDA. All points and all dependency arcs from both DDAs are pre-
served, no new points nor new dependency branches are being created.

Definition 7.1.1 (Parallel DDA-Combinator). Let D1 = ⟨P1, B1, req1, sup1⟩
and D2 = ⟨P2, B2, req2, sup2⟩ be two DDAs. Then the parallel combination of
D1 and D2 is a 4-tuple

D1 ∥ D2 De f
= P = ⟨PP , BP , reqP , supP ⟩

where:

• PP = P1 $ P2,

• BP = B1 ∪ B2

• reqP consists of (rPg , rPp , rPb ) where:

rPg (⟨n, i⟩, d) = (d ∈ Bi) ∧ rig(n, d)

rPp (⟨n, i⟩, d) = ⟨rip(n, d), i⟩

rPb (⟨n, i⟩, d) = rib(n, d)

• supP consists of (sPg , sPp , sPb ) where:

sPg (⟨n, i⟩, d) = (d ∈ Bi) ∧ sig(n, d)

sPp (⟨n, i⟩, d) = ⟨sip(n, d), i⟩

sPb (⟨n, i⟩, d) = sib(n, d)

148

7. Algebraic Properties of DDAs

Claessen et al., 2003]. Lava is a domain specific languages embedded in
the functional programming language Haskell. It is designed to help spe-
cify the layout of circuits in order to improve performance and reduce area
utilization.

In the fashion of Lava combinators, DDAs can be either combined relat-
ive to each other with no communication, i.e. in parallel – along space, or
connected serially with explicit communication – along time.

In addition to these, the sub-DDA-combinator and the nesting-DDA-
combinator are presented. The first entails the selection of a sub-DDA of an
existing DDA, the latter provide means for more elaborate constructions.

7.1.1 The Parallel DDA-Combinator

Intuitively, the parallel DDA-combinator allows two (possibly different)
DDAs to be placed next to each other in space, thus resulting in a new,
larger DDA. All points and all dependency arcs from both DDAs are pre-
served, no new points nor new dependency branches are being created.

Definition 7.1.1 (Parallel DDA-Combinator). Let D1 = ⟨P1, B1, req1, sup1⟩
and D2 = ⟨P2, B2, req2, sup2⟩ be two DDAs. Then the parallel combination of
D1 and D2 is a 4-tuple

D1 ∥ D2 De f
= P = ⟨PP , BP , reqP , supP ⟩

where:

• PP = P1 $ P2,

• BP = B1 ∪ B2

• reqP consists of (rPg , rPp , rPb ) where:

rPg (⟨n, i⟩, d) = (d ∈ Bi) ∧ rig(n, d)

rPp (⟨n, i⟩, d) = ⟨rip(n, d), i⟩

rPb (⟨n, i⟩, d) = rib(n, d)

• supP consists of (sPg , sPp , sPb ) where:

sPg (⟨n, i⟩, d) = (d ∈ Bi) ∧ sig(n, d)

sPp (⟨n, i⟩, d) = ⟨sip(n, d), i⟩

sPb (⟨n, i⟩, d) = sib(n, d)

148

Language Constructs for Combining Data Dependency Algebras Eva Burrows

Fig. 3 illustrates the use of new branch indices: hc, 2i identifies a new supply direction in DDA D1

for all points in O, and a new request direction in DDAD2 for all points in I.
The requirement imposed on t, i.e. to be a bijection, comes in very handy, as the existence of t�1

makes the definition of supply well-defined.
However, this requirement might prove be too strong for the general cases. The DDA sizes may

di↵er, therefore it would be natural to be able to combine DDAs even when |O| , |I|, or when we want
to create several new supply directions from some point of O. (See Fig. 4.) In such cases, it is su�cient
to require t to only be a total function instead of a bijection. For each point n 2 I a new branch index is
introduced to identify the corresponding supply direction that leads back to the point n from t(n).

The bijective serial DDA-combinator (Definition 3.6) becomes a simplified version of the general
serial DDA-combinator which is defined next.

Definition 3.8 (Serial DDA-Combinator). Given DDAsD1 = hP1, B1, req1, sup1i andD2 = hP2, B2, req2, sup2i,
and t : I ! O a total function where I ✓ P2 and O ✓ P1. Then the serial combination of D1 and D2

along the (total) function t,

D1 t7! D2 De f
= St = hPSt , BSt , reqSt , supSt i

is defined by:

• PSt = P1 ] P2

• BSt = (B1 [ B2) ] �{c} [ {n| n 2 I}� for some c

• reqSt consists of (rSt
g , r

St
p , r

St
b ) where:

rSt
g (hn, ii, hd, ji) =

�
( j = 1) ^ (d 2 Bi) ^ ri

g(n, d)
�_�

( j = 2) ^ (i = 2) ^ (d = c) ^ (n 2 I)
�

rSt
p (hn, ii, hd, ji) =

(
hri

p(n, d), ii if j = 1
ht(n), 1i if j = 2

rSt
b (hn, ii, hd, ji) =

(
hri

b(n, d), 1i if j = 1
hn, 2i if j = 2

• supSt consists of (sSt
g , s

St
p , s

St
b ) where:

sSt
g (hn, ii, hd, ji) =

�
( j = 1) ^ (d 2 Bi) ^ si

g(n, d)
�_�

( j = 2) ^ (i = 1) ^ (d 2 I) ^ (t(d) = n)
�

sSt
p (hn, ii, hd, ji) =

(
hsi

p(n, d), ii if j = 1
hd, 2i if j = 2

sSt
b (hn, ii, hd, ji) =

(
hsi

b(n, d), 1i if j = 1
hc, 2i if j = 2

Figure 3: Serial combination of DDAsD1 andD2 along the bijection t.
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⇤

Theorem 3.9. The serial combination of D1 and D2 along a total function t as given in Definition 3.8 is
a DDA. ⇤

Proof. See Appendix A. ⇤

3.3 The Sub-DDA-Combinator

We first introduce the concepts of sub-DDA. Intuitively, two DDAs are in the sub-DDA relation, when
the graphs they represent are in the sub-graph relation. The following definition captures this notion
solely in terms of DDA components.

Definition 3.10 (Sub-DDA). Given DDAs D = hP, B, req, supi and D0 = hP0, B0, req0, sup0i, D0 is a
sub-DDA of D, i.e., D0 ✓ D, if and only if the following conditions hold:

1. P0 ✓ P

2. B0 ✓ B

3. r0g ✓ rg

4. r0p = rp

���
r0g

5. r0b = rb

���
r0g

⇤

From a computational point of view, the sub-DDA is most likely to serve as the dependency pattern
of a di↵erent computation, i.e., other than the one allowed by the main DDA. However, the sub-DDA
concept, when applied as a DDA-combinator, serves as a tool to support code reusability as this is
demonstrated in Section 4.3.

We define now the sub-DDA-combinator based on a subset of the point set and a subset of the branch
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SubDDA Combinator
• Given a DDA: 

• SubDDA combinator defined wrt. subsets of P and B: 

• Acts like “forgetting” parts of the graph

• Source code: 
D’= sub D along (P’,B’)
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⇤
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SubDDA: from FFT to …

4. Data Dependency Algebras

4. supply component (sg’,sp’,sb’)where:

sg’(p,b) = rg(p,b)

sp’(p,b) = rp(p,b)

sb’(p,b) = rb(p,b)

where sg, sp, sb and rg, rp, rb denote, respectively, the supply and request
components of the butterfly DDA DBFh=<BFh,B,(rg,rp,rb),(sg,sp,sb)>.

By manipulating the data invariant of the DDA point sort, we may re-
strict further the range of points we are interested in, resulting in a new
DDA, corresponding to a new dependency. E.g., a binary tree DDA can be
defined from the reversed butterfly DDA, see Fig. 4.10.

Example 4.2.4. The binary tree DDA of height h ∈ N, DBTh, is defined by:

1. DDA points: BTh = BFh | DIT where:

DIT(p) = (col(p)%2row(p)=0)

2. branch indices: B = {0, 1}

3. request components (rgt,rpt,rbt)where:

rgt(p,b) = rg’(p,b)

rpt(p,b) = rp’(p,b)

rbt(p,b) = rb’(p,b)
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Figure 4.9: Reversed butterfly DDA of height 4.
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SubDDA: from FFT to Binary Tree

4.3. Space-Time DDAs

4. supply components (sgt,spt,sbt)where:

sgt(p,b) = sg’(p,b)

spt(p,b) = sp’(p,b)

sbt(p,b) = sb’(p,b)

where rg’, rp’, rb’ and sg’, sp’, sb’ denote, respectively, the request and
supply components of the reversed butterfly DDA.

Note that the new data invariant DIT is preserved by rpt and spt, even
though these are defined by the reversed butterly’s corresponding compon-
ents. It is easy to see also that the binary tree DDA is a sub-DDA of the
reversed butterfly DDA, i.e., DBTh⊆DRBFh. This construction also underlines
the fact that a high-level manipulation of the data invariant also endows
code reusability. Similarly, restriction of guards and consequent restric-
tions of the other DDA-components support code reusability. This can be
achieved by the application of the sub-DDA-combinator, which is presented
in details in Chapter 7.

4.3 Space-Time DDAs

Following Miranker and Winkler [1984] we may control the parallel execu-
tion of a computation by embedding the computation into the space-time
connectivity of a parallel machine. DDAs, by their very nature, can abstract
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Figure 4.10: Binary tree DDA of height 4.
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Nesting DDA Combinator
• Global DDA: 

• Family of (local) DDAs, one for 
each point in 

• Nested DDA defined wrt. a 
family of total function 
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Figure 5: Detail of a nested DDA (black coloured), obtained from 4 points of a possibly larger global
DDA (grey coloured in the background), and their associated local DDAs. Several new dependency arcs
have been created as allowed by the global dependencies, labeled with the corresponding new branch
indices.

Definition 3.14 (Nested DDAs). Let G = hPG, BG, reqG, supGi be an acyclic, well-founded (global)
DDA such that IG ⇢ PG, IG , {} is the subset of all points from PG which do not have request directions.
Further let D = (Di)i2PG be a family of (local) DDAs such that each point i 2 PG in the global DDA is
associated with the DDADi = hPi, Bi, reqi, supii. Further let t = (ti)i2PG\IG be a family of total functions
such that ti : Ii ! ] j2rGp (i,BG)P

j where Ii ✓ Pi.

Then the nesting of G withD along t is given by

NGD,t
De f
= N = hPN , BN , reqN , supN i

where:

• PN = ]i2PGPi

• BN =
S

i2PG Bi ⇥ {`} [ U
i2PG\IG Ii [ {hc, ci}

where c , ` and c, ` < PG

• reqN consists of (rNg , rNp , rNb ) where:

rNg (hn, ii, hd, ji) =
�
( j = `) ^ (d 2 Bi) ^ ri

g(n, d)
�_�

( j = c) ^ (d = c) ^ (n 2 Ii) ^ (i < IG)
�

rNp (hn, ii, hd, ji) =

(
hri

p(n, d), ii if j = `
ti(n) if j = c

rNb (hn, ii, hd, ji) =

(
hri

b(n, d), `i if j = `
hn, ii if j = c
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Nesting Combinator for Divide and Conquer

• Global DDA: 
Binary Tree  
(“Divide”)
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Nesting Combinator for Divide and Conquer

6.1. Bitonic Sort DDA

The bitonic sort DDA the way it is defined, is not suitable for map-
ping it onto an omega network directly. Applying the shuffle projection
on its points (see Sec. 4.4), will result in an irregular succession of differ-
ent shuffles. However, if the DDA is defined such that the sub-butterflies
are not glued together, but pasted with an extra one-step communication,
then the pattern will become more regular. In the following a DDA-based
shuffle network implementation is sketched for the bitonic sorting based on
this extended version of the bitonic sort DDA. The implementation-sketch
underlines the role of DDA-projections in the design process.

In the new bitonic sort DDA new horizontal arcs are added between each
level where sub-butterflies meet, one for each point (Fig. 6.5). This increases

(2,1)

(2,2)

(2,0)

(1,0)

(1,1)

(b)

(4,2)

(3,0)

(4,4)

(4,3)

(3,2)

(3,1)

(3,3)

(4,1)

(a)

(4,0)

Figure 6.6: The alternative bitonic sort DDA with extra communication steps between sub-
butterfly levels for 24 inputs. (a) Layout with the usual row and col projections. (b) Shuffle
layout with the alternative column projection ShuffleCol.
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• Local DDAs : 
“Combine”, 
e.g. FFTs
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Illustration: Polynomial Multiplication

Language Constructs for Combining Data Dependency Algebras Eva Burrows

forward and the inverse FFT (both have the same data dependency pattern). Any polynomial of degree
n�1 is uniquely determined by its values at the n-th roots of unity. Applying the FFT on the coe�cients
of a polynomial of degree n � 1 generates the value of the polynomial at the n roots of unity. Then the
value of the product polynomial at any point is simply the product of the values of the two polynomials
at the point. Then performing the inverse FFT on the values of the product polynomial at the n roots of
unity generates its coe�cients.

The underlying dependency of this computation can be defined as a compound DDA (see Fig. 6).
Consider two polynomials of degrees n1 and n2. The product polynomial will have degree n1+n2. For
each forward and inverse FFTs we need a copy of the radix-2 FFT DDA, DFFTh. In order to make the
product polynomial fit our FFT we choose the size of DFFTh such that 2h>n1+n2.

The evaluation of the two initial polynomials can be done in parallel, therefore we first combine two
copies of DFFTh with par. Then the result of these direct FFTs need to be multiplied pair-wise, hence
we connect DFFTh par DFFTh with a forking DDA of size 2h DFK2h , serially via a bijection t. Finally,
this is further combined serially with a new DFFTh via another bijection t’ along which the product
polynomial’s coe�cients will be obtained in the inverse FFT.

DFK

... seq ... bij t’

... seq ... bij t

2 DFFT  to evaluate each polynomial via FFT

DFFT  par DFFT

2DFFT

4

2

22

Figure 6: The structural composition of the DDA underlying the multiplication of polynomials with
degree n1 and n2 s.t. n1+n2<4.

Example 4.3. The polynomial multiplication DDA of degree 2h, h 2 N is a DDA DPM2h=<P,B,req,sup>
defined as follows:

1 DPM2h = ((DFFTh par DFFTh) seq DFK2h bij t)

2 seq DFFTh bij t’

where:

• t:Ih !Oh is a bijection with
– Ih = FK2h | DII, where
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• efficient FFT-based 
algorithm

• underlying dependency can 
be expressed as a 
compound DDA: 

• repeat statement:Language Constructs for Combining Data Dependency Algebras Eva Burrows

1 repeat p:PM2h along DPM2h from V for TP in
2 if ((tag(p)=4)&&(row(v4(p))=0)) V[rp(p,i3(c))]
3 else if ((tag(p)=3)&&(row(v3(p))=0)) V[rp(p,i2(c))]
4 else if (tag(p)=1) exp1FFT
5 else if (tag(p)=2) exp2FFT
6 else if (tag(p)=3) V[rp(p,i1(0))]*V[rp(p,i1(1))]
7 else exp3INV�FFT

where exp1FFT, exp2FFT are the forward FFT expressions applied on the related parts of the compound
DDA, i.e., the bottom left and bottom right DFFTh-s, respectively. Likewise exp3INV�FFT is the inverse
FFT applied on the top DFFTh. By adjusting the original computational expression of the forward FFT
presented in Section 2.1 for our current DDA, exp1FFT stands for:

1 if (row(v1(p))<h+1)
2 if (col(v1(p))<col(v1(rp(p,i1(1))))
3 V[rp(p,i1(0))]+V[rp(p,i1(1))]*wrevh(col(v1(p))>>h�row(v1(p)))

4 else V[rp(p,i1(1))]+V[rp(p,i1(0))]*wrevh(col(v1(p))>>h�row(v1(p)))
5 else V[rp(p,i1(0))]

Expressions exp2FFT and exp3INV�FFT are obtained likewise.
In lines 2-3 of the repeat statement, the data is expected along the new connecting arcs of the

compound DDA. Lines 4-5 stand for the forward FFTs. Line 6 multiplies the results pairwise. And line
7 deals with the inverse FFT.

5 Related Work
We are not aware of other approaches or frameworks that promote data dependencies as first class
entities in a program.

The DDA-based approach as a whole is related to many frameworks that seek higher level abstrac-
tions for parallelization with an emphasis on exploiting data dependencies. Our work was originally
inspired by Crystal [CCL91], a language proposed to handle a�ne dependencies present in regular,
loop-based applications.

Our focus on graph-based representation of computations makes us closely related to data-flow
programming [JHM04], however in our approach the focus is on the dependency rather than the data.

The parallel and serial DDA-combinators are primarily inspired by the Lava serial and parallel
composition combinators [CSS03]. Lava is a domain specific language embedded in Haskell. Lava-
combinators are used to specify the layout of circuits in order to improve performance and reduce area
utilization. In our case, combinators are used to declare compound data dependencies in order to define
computations on them, whereas the DDA itself contains layout and placement information about the
computations through the DDA point type projections (e.g. row and col).

6 Conclusion
Extracting data dependencies of computations as program code, and expressing computations on the
points of this dependency allows a parallelizing compiler to generate code for various target platforms.
The formalism to present the data dependency information to the compiler in a meaningful way fo-
cuses on the concept of data dependency algebra (DDA). Computations on DDA-points are presented
syntactically in the form of a repeat statement.

DDAs are programmable entities. In this paper, we primarily investigated their algebraic properties,
i.e., we proposed mechanisms to declare compound DDAs using DDA-combinators. The use of combi-
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forward and the inverse FFT (both have the same data dependency pattern). Any polynomial of degree
n�1 is uniquely determined by its values at the n-th roots of unity. Applying the FFT on the coe�cients
of a polynomial of degree n � 1 generates the value of the polynomial at the n roots of unity. Then the
value of the product polynomial at any point is simply the product of the values of the two polynomials
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unity generates its coe�cients.
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Figure 6: The structural composition of the DDA underlying the multiplication of polynomials with
degree n1 and n2 s.t. n1+n2<4.

Example 4.3. The polynomial multiplication DDA of degree 2h, h 2 N is a DDA DPM2h=<P,B,req,sup>
defined as follows:

1 DPM2h = ((DFFTh par DFFTh) seq DFK2h bij t)

2 seq DFFTh bij t’

where:

• t:Ih !Oh is a bijection with
– Ih = FK2h | DII, where
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Summary

• DDA-based approach for programmability and 
portability across various parallel HW

• algebraic combinators to work on top DDA API to 
ease the definition of complex DDAs in the source 
code while implementations are generated at 
compile time

• combinators preserve the DDA API axioms, hence 
all DDA-based parallelisation strategies apply to the 
compound DDA
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