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Introduction

I Modern software systems are increasingly concurrent and
distributed

I Increased number of processer cores, heterogenous systems etc.
I Developing software that efficiently exploits the capacity of such

platforms is hard
I New programming paradigms have been proposed to solve this

problem
I Within the signal processing domain, the dataflow paradigm has

received a lot of attention
I A dataflow program consists of a network actors, communicating

exclusively via asynchronous order-preserving channels
I Exploits parallelism, as actors can execute concurrently whenever

the required data is available on the incoming channels
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Introduction

I Dataflow programs have a high level of abstraction, enabling
synthesis of hardware or software implementations from the same
description

I Actors can easily be mapped to different processing units
I There are typically fewer processing units than actors, which

means that actors have to be scheduled
I Scheduling has to be done dynamically in the general case, which

can cause significant runtime overhead
I Different techniques to decrease the number of runtime

scheduling decisions have been investigated
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Introduction

I We present an approach to contract-based specification and
verification of dataflow programs

I Contracts refer to functional specifications, consisting of
preconditions and postconditions

I Fully automatic verification of correctness properties given as
contracts as well as deadlock freedom

I Only aided by annotations in the source code
I Based on translation to the Boogie intermediate verification

language
I Contracts can also be used to express and prove properties that

can be utilised in compile-time scheduling
I The use of contracts can improve both functional quality and

performance
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Dataflow programs

I We consider dataflow programs in a language similar to the CAL
actor language

I CAL is a domain-specific language for dataflow programs
I Has received much recent attention within the signal processing

domain
I A subset of CAL has been standardised by ISO/IEC MPEG as

part of the Reconfigurable Video Coding standard
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Dataflow programs

I CAL actors are allowed to have state and consist of a set of
actions

I An actor executes by firing an eligible action
I An action is eligible depending on the tokens available on the

inputs and the current state
I Actions consume/produce a predefined amount of tokens on the

inputs/outputs when firing
I Actions written in a simple imperative programming language

I Dataflow programs considered here consist of hierarchical
networks of actors

I Networks are also actors
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Basic actors

actor Add() int x1, int x2 ==> int y:

action x1:[i], x2:[j] ==> y:[i+j]

end

actor Delay(int k) int x ==> int y:

initialize ==> y:[k] end

action x:[i] ==> y:[i] end

end

actor Sum() int x ==> int y:

int sum := 0;

action x:[i] ==> y:[sum] do

sum := sum+i;

end

end
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Data-dependent actors

I Data-dependent actors: the amount of tokens consumed or
produced depends on the input values

actor Split() int x ==> int q, int u:

action x:[i] ==> q:[i]

guard i < 0

end

action x:[i] ==> u:[i]

guard i >= 0

end

end
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Actor networks

network Sum() int x ==> int y:

entities

a = Add();

d = Delay(0);

end

structure

x1: x --> a.x1;

x2: d.y --> a.x2;

y: a.y --> y;

z: a.y --> d.x;

end

end
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Example

I Without any restrictions on the input, the program might
deadlock

I Deadlock is avoided if x is either 0 or 1. Need a precondition:
x == 0 || x == 1

I This type of information is also useful for compile-time
scheduling: Can conclude that action a will always be followed by
action d and action b will be followed by action c
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Specification – basic actors

I Actors and networks annotated with contracts
I Actions are annotated with preconditions and postconditions

I Standard requires and ensures annotations

I Actor invariants for actors with state

actor Sum() int x ==> int y:

inv 0 <= sum

int sum := 0;

action x:[i] ==> y:[sum]

requires 0 <= i

ensures sum == old(sum)+i

do

sum := sum+i;

end

end

12 / 20



Specification – networks

I To specify networks, we give them actions with preconditions and
postconditions as for basic actors

I Networks in pure CAL do not have actions, but we use them here
to describe the intended behaviour of the network

I We provide network invariants, which should hold before and
after executing a network action

I Additionally we also provide channel invariants
I Used to express the relationship between data on different

channels in the network
I Required to hold during execution of a network action

I If nothing else is specified in the network invariants, network
channels should be empty after executing a network action
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Specification – networks
network Sum() int x ==> int y:

...

action x:[i] ==> y:[(0::y)[last]+i] end

inv delay(x2,1)

inv x2[next] == (0::y)[last]

chinv total(y) == read(x1)

chinv total(y) == read(x2)

chinv total(z) == read(x1)

chinv total(z) == read(x2)

chinv total(x2) == read(z)+1

chinv (forall int i . 0 <= i && i < total(y)

==> y[i] == x1[i]+x2[i])

chinv (forall int i . 0 <= i && i < total(z)

==> z[i] == x1[i]+x2[i])

chinv (forall int i . 1 <= i && i < total(x2)

==> x2[i] == z[i-1])

end
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Verification

I Automatic verification with respect to contracts of both basic
actors and networks

I Verification based on translation to the Boogie language
I Boogie is a program verifier and programming language

I Designed to bridge the gap between programs with specifications
and verification conditions suitable for an SMT solver

I The Boogie verifier generates verification conditions and
discharges them with the Z3 SMT solver
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Verification – basic actors

I Each action of a basic actor is verified separately
I Assume that the invariant, guard and precondition hold
I Check that the postcondition and invariant hold after executing

the action

actor A() int x ==> int y:

inv I
action x:[i] ==> y:[j]

guard G
requires P
ensures Q

do

S;
end

end

assume I;
assume G;

assume P;

trans(S);
assert Q;

assert I;
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Verification – networks

I Networks can be verified by checking that firing any eligible actor
in the network preserves the channel invariants

I For a network with network invariants I , channel invariants C and
postcondition Q, where F1, . . . ,Fn are the firing rules of all
actions A1, . . . ,An of every actor in the network we:

I Assume that C hold and check that C hold again after executing
any action Ai for which Fi evaluates to true

I If no action can be fired, the postcondition Q and the network
invariants I must hold: ¬F1 ∧ . . .¬Fn ∧ C =⇒ Q ∧ I
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Verification – networks

network N() int x ==> int y:

entities A1, A2, ... end

structure ... end

inv I
chinv C
action x:[i] ==> y:[j]

requires P
ensures Q

end

end

assume I;
assume P;

assert C;

assume C;

assume Fi;

actor(Ai );
assert C;

assume C;

assume ¬F1 ∧ · · · ∧ ¬Fn;

assert I;
assert Q;
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Future work

I Tool support, complete support for the CAL language
I Invariant inference

I To make the approach usable in practice, channel invariants
should be inferred automatically whenever possible

I We plan to investigate automatic inference of invariants for
special classes of actors

I Dynamic networks
I The approach is now limited to static networks
I We plan to investigate if the approach can be extended to also

consider networks that are created dynamically
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Conclusions

I Presented an approach to specification and verification of
dataflow programs

I Actors are specfied by giving actions preconditions and
postconditions

I Verification by translation to the Boogie language
I Contracts useful both to ensure correctness and for compile-time

scheduling
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