
Techniques and Tools for the Analysis of
Timed Workflows

Jiri Srba

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, 9220 Aalborg East, Denmark

NWPT’15, Iceland, October 22nd, 2015

Joint work with Peter G. Jensen, José A. Mateo and Mathias G. Sørensen.



Workflow Definition

Workflows [Wikipedia]

A workflow consists of

an orchestrated and repeatable pattern of business activity

enabled by the systematic organization of resources into
processes that transform materials, provide services, or process
information.

Examples:

Car assembly line.

Insurance claim.

Blood transfusion.

All these are examples of time-critical workflows.

There is a need for methods and tools for timed workflow analysis.

2 / 26



Workflow Definition

Workflows [Wikipedia]

A workflow consists of

an orchestrated and repeatable pattern of business activity

enabled by the systematic organization of resources into
processes that transform materials, provide services, or process
information.

Examples:

Car assembly line.

Insurance claim.

Blood transfusion.

All these are examples of time-critical workflows.

There is a need for methods and tools for timed workflow analysis.

2 / 26



Introduction — Workflow Nets

Workflow nets by Wil van der Aalst [ICATPN’97] are widely
used for workflow modelling.

Based on Petri nets.

Abstraction from data, focus on execution flow.

Early detection of design errors like deadlocks, livelocks and
other abnormal behaviour.

Classical soundness for workflow nets:

option to complete,
proper termination, and
absence of redundant tasks.

3 / 26



Focus of the Talk

Theory of workflow nets based on timed-arc Petri nets.

Definition of soundness and strong soundness.

Results about decidability/undecidability of soundness.

Minimum and maximum execution time of workflow nets.

Integration within the tool TAPAAL and case studies.

Discrete vs. continuous time.

4 / 26



Timed-Arc Petri Net: Booking/Payment Example

0

in

inv: ≤ 5

booking

inv: ≤ 10

payment

successful

out

start

book pay

success

[2, 5]

5 / 26



Timed-Arc Petri Net: Booking/Payment Example

in

0

inv: ≤ 5

booking

inv: ≤ 10

payment

successful

out

start

book pay

success

[2, 5]

5 / 26



Timed-Arc Petri Net: Booking/Payment Example

in

1

inv: ≤ 5

booking

inv: ≤ 10

payment

successful

out

start

book pay

success

[2, 5]

5 / 26



Timed-Arc Petri Net: Booking/Payment Example

in

2

inv: ≤ 5

booking

inv: ≤ 10

payment

successful

out

start

book pay

success

[2, 5]

5 / 26



Timed-Arc Petri Net: Booking/Payment Example

in

5

inv: ≤ 5

booking

inv: ≤ 10

payment

successful

out

start

book pay

success

[2, 5]

5 / 26



Timed-Arc Petri Net: Booking/Payment Example

in

inv: ≤ 5

booking

5

inv: ≤ 10

payment

successful

out

start

book pay

success

[2, 5]

5 / 26



Timed-Arc Petri Net: Booking/Payment Example

in

inv: ≤ 5

booking

8

inv: ≤ 10

payment

successful

out

start

book pay

success

[2, 5]

5 / 26



Timed-Arc Petri Net: Booking/Payment Example

in

inv: ≤ 5

booking

inv: ≤ 10

payment

0

successful

out

start

book pay

success

[2, 5]

5 / 26



Timed-Arc Petri Net: Booking/Payment Example

in

inv: ≤ 5

booking

inv: ≤ 10

payment

successful

0

out

start

book pay

success

[2, 5]

5 / 26



Timed-Arc Petri Net: Booking/Payment Example

in

inv: ≤ 5

booking

inv: ≤ 10

payment

successful

out

start

book pay

restart restart success

fail

[5,5]

fail

[10,10]

[2, 5]

5 / 26



Timed-Arc Petri Net: Booking/Payment Example

in

inv: ≤ 5

booking

inv: ≤ 10

payment

successful

out

attempts

start 3×

book pay

restart restart empty success

fail

[5,5]

fail

[10,10]

[2, 5]

5 / 26



Timed-Arc Petri Net: Booking/Payment Example

0

in

inv: ≤ 5

booking

inv: ≤ 10

payment

successful

out

attempts

start 3×

book pay

restart restart empty success

fail

[5,5]

fail

[10,10]

[2, 5]

5 / 26



Timed-Arc Petri Net: Booking/Payment Example

in

0

inv: ≤ 5

booking

inv: ≤ 10

payment

successful

out

0 0 0attempts

start 3×

book pay

restart restart empty success

fail

[5,5]

fail

[10,10]

[2, 5]

5 / 26



Timed-Arc Petri Net: Booking/Payment Example

in

2

inv: ≤ 5

booking

inv: ≤ 10

payment

successful

out

2 2 2attempts

start 3×

book pay

restart restart empty success

fail

[5,5]

fail

[10,10]

[2, 5]

5 / 26



Timed-Arc Petri Net: Booking/Payment Example

in

0

inv: ≤ 5

booking

inv: ≤ 10

payment

successful

out

2 2attempts

start 3×

book pay

restart restart empty success

fail

[5,5]

fail

[10,10]

[2, 5]

5 / 26



Timed-Arc Petri Net: Booking/Payment Example

in

3

inv: ≤ 5

booking

inv: ≤ 10

payment

successful

out

5 5attempts

start 3×

book pay

restart restart empty success

fail

[5,5]

fail

[10,10]

[2, 5]

5 / 26



Timed-Arc Petri Net: Booking/Payment Example

in

inv: ≤ 5

booking

3

inv: ≤ 10

payment

successful

out

7 7attempts

start 3×

book pay

restart restart empty success

fail

[5,5]

fail

[10,10]

[2, 5]

5 / 26



Timed-Arc Petri Net: Booking/Payment Example

in

inv: ≤ 5

booking

5

inv: ≤ 10

payment

successful

out

9 9attempts

start 3×

book pay

restart restart empty success

fail

[5,5]

fail

[10,10]

[2, 5]

5 / 26



Timed-Arc Petri Net: Booking/Payment Example

in

inv: ≤ 5

booking

inv: ≤ 10

payment

0

successful

out

9 9attempts

start 3×

book pay

restart restart empty success

fail

[5,5]

fail

[10,10]

[2, 5]

5 / 26



Timed-Arc Petri Net: Booking/Payment Example

in

inv: ≤ 5

booking

inv: ≤ 10

payment

0

successful

out

9attempts

start 3×

book pay

restart restart empty success

fail

[5,5]

fail

[10,10]

[2, 5]

5 / 26



Timed-Arc Petri Net: Booking/Payment Example

in

inv: ≤ 5

booking

inv: ≤ 10

payment

0

successful

out

attempts

start 3×

book pay

restart restart empty success

fail

[5,5]

fail

[10,10]

[2, 5]

5 / 26



Timed-Arc Petri Net: Booking/Payment Example

in

inv: ≤ 5

booking

inv: ≤ 10

payment

successful

0

out

attempts

start 3×

book pay

restart restart empty success

fail

[5,5]

fail

[10,10]

[2, 5]

5 / 26



Monotonic Timed-Arc Petri Nets

Timed-Arc Petri Nets (TAPN) Modelling Features:

Timed tokens, intervals (guards) on arcs.

Weighted arcs.

Transport arcs.

Inhibitor arcs.

Age invariants.

Urgent transitions.

Monotonic Timed-Arc Petri Nets (MTAPN)

No inhibitor arcs, no age invariants, no urgent transitions.

We consider the integer-delay (discrete-time) semantics (for now).

6 / 26



Monotonic Timed-Arc Petri Nets

Timed-Arc Petri Nets (TAPN) Modelling Features:

Timed tokens, intervals (guards) on arcs.

Weighted arcs.

Transport arcs.

Inhibitor arcs.

Age invariants.

Urgent transitions.

Monotonic Timed-Arc Petri Nets (MTAPN)

No inhibitor arcs, no age invariants, no urgent transitions.

We consider the integer-delay (discrete-time) semantics (for now).

6 / 26



Marking Extrapolation

Marking in TAPN

M : P → B(N0)

Problem

Infinitely many markings even for bounded nets.

We define cut(M) extrapolation for a marking M:

compute for each place maximum relevant token ages

Cmax : P → (N0 ∪ {−1})

change the age of each token in place p exceeding the bound
Cmax(p) into Cmax(p) + 1.

7 / 26



Monotonicity Lemma for MTAPN

Monotonicity Lemma (t is transition, d is delay)

Let M and M ′ be markings in an MTAPN s.t. cut(M) v cut(M ′).

If M
t−→ M1 then M ′

t−→ M ′1 and cut(M1) v cut(M ′1).

If M
d−→ M1 then M ′

d−→ M ′1 and cut(M1) v cut(M ′1).

Fact: inhibitor arcs, age invariants and urgency break monotonicity.

8 / 26



Timed-Arc Workflow Net

Definition

A TAPN is called a timed-arc workflow net if

it has a unique place in ∈ P s.t. •in = ∅ and in• 6= ∅,
it has a unique place out ∈ P s.t. out• = ∅ and •out 6= ∅,
•p 6= ∅ and p• 6= ∅ for all p ∈ P \ {in, out}, and
•t 6= ∅ for all t ∈ T .

in outstart working

inv: ≤ 10

finish
[5, 10]

An initial marking has just one token of age 0 in the place in.

A final marking has exactly one token in place out and all
other places are empty.

9 / 26



Timed-Arc Workflow Net

Definition

A TAPN is called a timed-arc workflow net if

it has a unique place in ∈ P s.t. •in = ∅ and in• 6= ∅,
it has a unique place out ∈ P s.t. out• = ∅ and •out 6= ∅,
•p 6= ∅ and p• 6= ∅ for all p ∈ P \ {in, out}, and
•t 6= ∅ for all t ∈ T .

in outstart working

inv: ≤ 10

finish
[5, 10]

An initial marking has just one token of age 0 in the place in.

A final marking has exactly one token in place out and all
other places are empty.

9 / 26



Timed-Arc Workflow Net

Definition

A TAPN is called a timed-arc workflow net if

it has a unique place in ∈ P s.t. •in = ∅ and in• 6= ∅,
it has a unique place out ∈ P s.t. out• = ∅ and •out 6= ∅,
•p 6= ∅ and p• 6= ∅ for all p ∈ P \ {in, out}, and
•t 6= ∅ for all t ∈ T .

0

in outstart working

inv: ≤ 10

finish
[5, 10]

An initial marking has just one token of age 0 in the place in.

A final marking has exactly one token in place out and all
other places are empty.

9 / 26



Timed-Arc Workflow Net

Definition

A TAPN is called a timed-arc workflow net if

it has a unique place in ∈ P s.t. •in = ∅ and in• 6= ∅,
it has a unique place out ∈ P s.t. out• = ∅ and •out 6= ∅,
•p 6= ∅ and p• 6= ∅ for all p ∈ P \ {in, out}, and
•t 6= ∅ for all t ∈ T .

in outstart

0

working

inv: ≤ 10

finish
[5, 10]

An initial marking has just one token of age 0 in the place in.

A final marking has exactly one token in place out and all
other places are empty.

9 / 26



Timed-Arc Workflow Net

Definition

A TAPN is called a timed-arc workflow net if

it has a unique place in ∈ P s.t. •in = ∅ and in• 6= ∅,
it has a unique place out ∈ P s.t. out• = ∅ and •out 6= ∅,
•p 6= ∅ and p• 6= ∅ for all p ∈ P \ {in, out}, and
•t 6= ∅ for all t ∈ T .

in outstart

7

working

inv: ≤ 10

finish
[5, 10]

An initial marking has just one token of age 0 in the place in.

A final marking has exactly one token in place out and all
other places are empty.

9 / 26



Timed-Arc Workflow Net

Definition

A TAPN is called a timed-arc workflow net if

it has a unique place in ∈ P s.t. •in = ∅ and in• 6= ∅,
it has a unique place out ∈ P s.t. out• = ∅ and •out 6= ∅,
•p 6= ∅ and p• 6= ∅ for all p ∈ P \ {in, out}, and
•t 6= ∅ for all t ∈ T .

in

0

outstart working

inv: ≤ 10

finish
[5, 10]

An initial marking has just one token of age 0 in the place in.

A final marking has exactly one token in place out and all
other places are empty.

9 / 26



Soundness of Timed-Arc Workflow Nets

Definition

A timed-arc workflow net is sound if for any marking M reachable
from the initial marking holds:

1 from M it is possible to reach some final marking, and

2 if M(out) contains a token then M is a final marking.

Soundness Implies Boundedness

If N is a sound and monotonic timed-arc workflow net then N is
bounded.

10 / 26



Soundness of Timed-Arc Workflow Nets

Definition

A timed-arc workflow net is sound if for any marking M reachable
from the initial marking holds:

1 from M it is possible to reach some final marking, and

2 if M(out) contains a token then M is a final marking.

Soundness Implies Boundedness

If N is a sound and monotonic timed-arc workflow net then N is
bounded.

10 / 26



Sound and Unbounded Net with Age Invariants

in

p1

inv: ≤ 0

p2

out

t1

[0, 0]

[1,∞]

t2

Sound and Unbounded Net with Urgent Transitions

Remove age invariant ≤ 0 at place p2 and make t2 urgent.

11 / 26



Sound and Unbounded Net with Age Invariants

0

in

p1

inv: ≤ 0

p2

out

t1

[0, 0]

[1,∞]

t2

Sound and Unbounded Net with Urgent Transitions

Remove age invariant ≤ 0 at place p2 and make t2 urgent.

11 / 26



Sound and Unbounded Net with Age Invariants

in

0

p1

inv: ≤ 0

p2

out

t1

[0, 0]

[1,∞]

t2

Sound and Unbounded Net with Urgent Transitions

Remove age invariant ≤ 0 at place p2 and make t2 urgent.

11 / 26



Sound and Unbounded Net with Age Invariants

in

0

p1

0 inv: ≤ 0

p2

out

t1

[0, 0]

[1,∞]

t2

Sound and Unbounded Net with Urgent Transitions

Remove age invariant ≤ 0 at place p2 and make t2 urgent.

11 / 26



Sound and Unbounded Net with Age Invariants

in

0

p1

0 0 inv: ≤ 0

p2

out

t1

[0, 0]

[1,∞]

t2

Sound and Unbounded Net with Urgent Transitions

Remove age invariant ≤ 0 at place p2 and make t2 urgent.

11 / 26



Sound and Unbounded Net with Age Invariants

in

0

p1

0 inv: ≤ 0

p2

out

t1

[0, 0]

[1,∞]

t2

Sound and Unbounded Net with Urgent Transitions

Remove age invariant ≤ 0 at place p2 and make t2 urgent.

11 / 26



Sound and Unbounded Net with Age Invariants

in

0

p1

inv: ≤ 0

p2

out

t1

[0, 0]

[1,∞]

t2

Sound and Unbounded Net with Urgent Transitions

Remove age invariant ≤ 0 at place p2 and make t2 urgent.

11 / 26



Sound and Unbounded Net with Age Invariants

in

1

p1

inv: ≤ 0

p2

out

t1

[0, 0]

[1,∞]

t2

Sound and Unbounded Net with Urgent Transitions

Remove age invariant ≤ 0 at place p2 and make t2 urgent.

11 / 26



Sound and Unbounded Net with Age Invariants

in

p1

inv: ≤ 0

p2

0

out

t1

[0, 0]

[1,∞]

t2

Sound and Unbounded Net with Urgent Transitions

Remove age invariant ≤ 0 at place p2 and make t2 urgent.

11 / 26



Sound and Unbounded Net with Age Invariants

in

p1

////inv://////≤ 0

p2

out

t1

[0, 0]

[1,∞]

t2

Sound and Unbounded Net with Urgent Transitions

Remove age invariant ≤ 0 at place p2 and make t2 urgent.

11 / 26



Decidability of Soundness

Theorem

Soundness is undecidable for timed-arc workflow nets.

Undecidable even for monotonic nets with only inhibitor arcs, or
only age invariants, or only urgent transitions.

Theorem

Soundness is decidable for

bounded timed-arc workflow nets, and for

monotonic timed-arc workflow nets.

Proof: Forward and backward search through the extrapolated
state-space (using the function cut). Termination for MTAPN due
to the monotonicity lemma.

12 / 26



Decidability of Soundness

Theorem

Soundness is undecidable for timed-arc workflow nets.

Undecidable even for monotonic nets with only inhibitor arcs, or
only age invariants, or only urgent transitions.

Theorem

Soundness is decidable for

bounded timed-arc workflow nets, and for

monotonic timed-arc workflow nets.

Proof: Forward and backward search through the extrapolated
state-space (using the function cut). Termination for MTAPN due
to the monotonicity lemma.

12 / 26



Compare Decidability of Soundness with Reachability

Notice that for the subclass of monotonic timed-arc Petri nets

reachability is undecidable [Ruiz, Gomez, Escrig’99], but

soundness is decidable.

Question

Is soundness always sufficient for timed workflows?

13 / 26



Compare Decidability of Soundness with Reachability

Notice that for the subclass of monotonic timed-arc Petri nets

reachability is undecidable [Ruiz, Gomez, Escrig’99], but

soundness is decidable.

Question

Is soundness always sufficient for timed workflows?

13 / 26



Customer Complaint Workflow

in out

start

req info provide info

decision

Sound workflow, no timing information, no progress.

14 / 26



Customer Complaint Workflow

in

inv ≤ 14

out

inv ≤ 14

start

req info provide info

decision

Progress is ensured, infinite time-divergent behaviour.

14 / 26



Customer Complaint Workflow

in

inv ≤ 14

out

inv ≤ 14

start

req info provide info

decision

Strongly sound workflow with time-bounded execution.

14 / 26



Strong Soundness

Definition

A timed-arc workflow net is strongly sound if

it is sound,

has no time-divergent markings (except for the final ones), and

every infinite computation is time-bounded.

We can define maximum execution time for strongly sound nets.

Theorem

Strong soundness of timed-arc workflow nets is undecidable.

Theorem

Strong soundness of bounded timed-arc workflow nets is decidable.

Proof: By reduction to reachability on timed-arc Petri nets.

15 / 26



Strong Soundness

Definition

A timed-arc workflow net is strongly sound if

it is sound,

has no time-divergent markings (except for the final ones), and

every infinite computation is time-bounded.

We can define maximum execution time for strongly sound nets.

Theorem

Strong soundness of timed-arc workflow nets is undecidable.

Theorem

Strong soundness of bounded timed-arc workflow nets is decidable.

Proof: By reduction to reachability on timed-arc Petri nets.

15 / 26



Decidability of Strong Soundness (Proof Sketch)

Perform normal soundness check and remember the size S of
its state-space (in the extrapolated semantics).

Let B be the maximum possible delay in any marking.

Check if the given workflow net can delay more than
U = S · B + 1 time units before reaching a final marking.

If yes, it is not strongly sound.
If no, it is strongly sound.

0

in out

0

timer

inv: ≤ U

late nok

workflow net N

tick

[U,U]

ok

ups

16 / 26



Implementation and Experiments

All algorithms implemented within TAPAAL (www.tapaal.net).

Publicly available and open-source.

Graphical editor with components, visual simulator.

Efficient engine implementation (including further
optimizations).

Case studies:

Break System Control Unit, a part of the SAE standard
ARP4761 (certification of civil aircrafts).

MPEG-2 encoding algorithm on multi-core processors.

Blood transfusion workflow, a larger benchmarking case-study
described in little-JIL workflow language.

Home automation system for light control in a family house
with 16 lights/25 buttons, motion sensors and alarm.

17 / 26



TAPAAL Verification of Break System Control Unit

18 / 26



TAPAAL Verification of Break System Control Unit

18 / 26



Recent TAPAAL Development

TAPAAL is being continuously improved and extended
(MPEG-2 workflow analysis with two B-frames took 10s last
year, now it takes only 1.4s).

Memory preserving data structure PTrie.

MPEG-2 with three B-frames

soundness strong soundness

no PTrie 33s / 1071MB 30s / 970MB

PTrie 42s / 276MB 45s / 191MB

Approximate analysis (smaller constants, less precision).

Compositional, resource-aware analysis.

19 / 26



Future TAPAAL Development

Resources with quantitative aspects (cost, energy).

Two player timed workflow games (also with stochastic
opponent).

Integration with UPPAAL Stratego.

Workflow analysis in the continuous time semantics.

20 / 26



Continuous Semantics vs. Discrete Semantics

Theorem (For Closed TAPNs)

Let M0 be a marking with integer ages only. If

M0
d0,t0−→ M1

d1,t1−→ M2
d2,t2−→ . . .

dn−1,tn−1−→ Mn

where di ∈ R≥0 then also

M0
d ′0,t0−→ M ′1

d ′1,t1−→ M ′2
d ′2,t2−→ . . .

d ′n−1,tn−1−→ M ′n

where d ′i ∈ N0.

We construct a set of linear inequalities that describe all
possible delays allowed in the real-time execution.
We only need difference constraints, hence the corresponding
matrix in LP is totally unimodular.
As the instance of LP has a real solution, it has also an
optimal integral solution.

21 / 26



Continuous Semantics Implies Discrete Semantics

Theorem

If a timed-arc workflow net is sound in the continuous semantics
then it is also sound in the discrete semantics.

Proof:

Let N be sound in the continuous semantics.

Let M be a marking reachable from the initial marking Min in
the discrete semantics.

Hence some final marking Mout is reachable from M in the
continuous semantics.

We can conclude using the theorem that a marking M ′out with
the same distribution of tokens as Mout is reachable from M
also in the discrete semantics.

22 / 26



Discrete Semantics Implies Continuous Semantics

Theorem

If a timed-arc workflow net with no age invariants and no urgent
transitions is sound in the discrete semantics then it is sound also
in the continuous semantics.

Proof:

We can arbitrarily delay in any marking.

Hence the token ages exceed the maximum constants.

Now there is no difference between discrete and continuous
semantics.

The theorem does not hold for general timed-arc workflow nets.

23 / 26



Discrete Semantics Implies Continuous Semantics

Theorem

If a timed-arc workflow net with no age invariants and no urgent
transitions is sound in the discrete semantics then it is sound also
in the continuous semantics.

Proof:

We can arbitrarily delay in any marking.

Hence the token ages exceed the maximum constants.

Now there is no difference between discrete and continuous
semantics.

The theorem does not hold for general timed-arc workflow nets.

23 / 26



Continuous Semantics Challenge

0

in out

waiting

deadline

inv: ≤ 1

finished

init

service

late

early

[0, 0]

[1, 1]

Sound in discrete semantics but unsound in continuous semantics.

24 / 26



Continuous Semantics Challenge

in out

0

waiting

0deadline

inv: ≤ 1

finished

init

service

late

early

[0, 0]

[1, 1]

Sound in discrete semantics but unsound in continuous semantics.

24 / 26



Continuous Semantics Challenge

in out

0.5

waiting

0.5deadline

inv: ≤ 1

finished

init

service

late

early

[0, 0]

[1, 1]

Sound in discrete semantics but unsound in continuous semantics.

24 / 26



Continuous Semantics Challenge

in out

waiting

0.5deadline

inv: ≤ 1

0

finished

init

service

late

early

[0, 0]

[1, 1]

Sound in discrete semantics but unsound in continuous semantics.

24 / 26



Continuous Semantics Challenge

in out

waiting

1deadline

inv: ≤ 1

0.5

finished

init

service

late

early

[0, 0]

[1, 1]

Sound in discrete semantics but unsound in continuous semantics.

24 / 26



Continuous Semantics Summary

Continuous soundness implies discrete soundness.

Opposite implication holds only for nets without urgency.

Strong soundness is not an issue.

Theorem

Let N be a workflow net is sound in the continuous-time semantics.

The net N is strongly sound in the discrete-time semantics iff it is
strongly sound in the continuous-time semantics.

25 / 26



Continuous Semantics Summary

Continuous soundness implies discrete soundness.

Opposite implication holds only for nets without urgency.

Strong soundness is not an issue.

Theorem

Let N be a workflow net is sound in the continuous-time semantics.

The net N is strongly sound in the discrete-time semantics iff it is
strongly sound in the continuous-time semantics.

25 / 26



Conclusion

Framework for the study of timed-arc workflow nets.

Undecidability of soundness and strong soundness.

Efficient algorithms for the decidable subclasses.

Relationship to continuous soundness.

Integration into the tool TAPAAL.

www.tapaal.net

Reachability Formulas:
ReachabilityCardinalityComparison 

Trophies for the “Known” Models Trophies for the “Surprise” Models

LoLA
174 (points)

LoLA optimistic
174 (points)

LoLA optimistic
incomplete
148 (points)

marcie
24 (points)

LoLA
12 (points)

LoLA optimistic
12 (points)

LoLA optimistic
incomplete
12 (points)

Trophies for All Models

LoLA
198 (points)

LoLA optimistic
198 (points)

LoLA optimistic
incomplete
172 (points)

Silver medal at Model Checking Contest 2014 and 2015.
(reachability category)

26 / 26



Conclusion

Framework for the study of timed-arc workflow nets.

Undecidability of soundness and strong soundness.

Efficient algorithms for the decidable subclasses.

Relationship to continuous soundness.

Integration into the tool TAPAAL.

www.tapaal.net

Reachability Formulas:
ReachabilityCardinalityComparison 

Trophies for the “Known” Models Trophies for the “Surprise” Models

LoLA
174 (points)

LoLA optimistic
174 (points)

LoLA optimistic
incomplete
148 (points)

marcie
24 (points)

LoLA
12 (points)

LoLA optimistic
12 (points)

LoLA optimistic
incomplete
12 (points)

Trophies for All Models

LoLA
198 (points)

LoLA optimistic
198 (points)

LoLA optimistic
incomplete
172 (points)

Silver medal at Model Checking Contest 2014 and 2015.
(reachability category)

26 / 26


