
Runtime Verification of

Executable Models

Fernando Macías – fernando.macias@hib.no

Adrian Rutle – adrian.rutle@hib.no

Volker Stolz – volker.stolz@hib.no

NWPT 2015

mailto:fernando.macias@hib.no
mailto:adrian.rutle@hib.no
mailto:volker.stolz@hib.no

Motivation

• Modelling offers one more level of abstraction

above programming

• Close the gap between domain experts and

software engineers

› Different views of the system

› The solution can be specified in the problem space

2

Problem space

Domain experts

Solution space

Software engineers

Two types of models

Structural models

Behavioural models

3

• The metamodel defines

a type of structure

• The model represents a

particular structure

• Semantics given by a

set of instances

(snapshots)

• E.g: Class diagrams

• The metamodel defines

a process language

• The model represent a

process

• Semantics can be

expressed as model

transformations

• E.g: BPMN, Petri nets

Verification of Behavioural Models

• Testing

› Applied on small parts of the model

› Cumbersome in big models

› Not exhaustive

• Model checking

› Exhaustive and strong

› Bad scalability

• Runtime verification

4

Runtime Verification of Behavioural

Models

• Useful when the system is too complex to be

analysed thoroughly1

• Can be performed over simulations or the actual

deployed system

• Based on:

› Temporal properties: Invariants, implications of

present/past events in future events, global properties

(e.g: termination)

› Monitors: Check properties against running instances

1. Leucker et al. A brief account of runtime verification. 5

Executable Modelling

• Definition of models with enough information to be

executed

• Two alternatives

› Interpreted: The model itself is run in a custom runtime

environment. The instances are evolved through model

transformations1

› Compiled: The model is transformed into a machine-

readable representation, e.g: imperative code2

• Focus on definition of interpreted process models

1. Guermazi et al. Executable Modeling with fUML and Alf in Papyrus

2. Dévai et al. UML Model Execution via Code Generation

6

Runtime Verification of

Executable Models

Fernando Macías – fernando.macias@hib.no

Adrian Rutle – adrian.rutle@hib.no

Volker Stolz – volker.stolz@hib.no

mailto:fernando.macias@hib.no
mailto:adrian.rutle@hib.no
mailto:volker.stolz@hib.no

Hierarchy for Executable Modelling

8

• The standardized

solutions are EMF (MOF)

and UML

• Both have a bigger focus

on structure

• Limited number of levels

• In complex architectures,

the levels have to be

collapsed

› Convolution of models

› Bad maintainability

Meta-metamodel

Metamodel

Model

Hierarchy for Executable Modelling

8

• The standardized

solutions are EMF (MOF)

and UML

• Both have a bigger focus

on structure

• Limited number of levels

• In complex architectures,

the levels have to be

collapsed

› Convolution of models

› Bad maintainability

Meta-metamodel

Metamodel

Typed by

Model

Typed by

Hierarchy for Executable Modelling

9

Hierarchy for Executable Modelling

1. De Lara et al. When and How to Use Multilevel Modelling 9

• Our hierarchy exploits

the concept of Multilevel

Modelling

“Enabling modelling at an

arbitrary number of meta-

levels” 1

Model

Model

Model

Model

Instance

Typed by

Typed by

Typed by

Typed by

Hierarchy for Executable Modelling

10

Model

Model

Model

Model

Instance

Typed by

Typed by

Typed by

Typed by

Hierarchy for Executable Modelling

10

• Our hierarchy exploits

the concept of Deep

Metamodelling

“An element in a model

can be typed by another

element several models

above”

Model

Model

Model

Model

Instance

Typed by

Typed by

Typed by

Typed by

Typed by

Typed by

Hierarchy for Executable Modelling

11

• This hierarchy allows to

› Define custom executable

modelling languages

› Create models according to

those languages

› Run the instances with

default semantics

› Customize semantics

› Simulation

› Deployment

› Runtime verification over

the running instances

Model

Model

Model

Model

Instance

Typed by

Typed by

Typed by

Typed by

Typed by

Typed by

Property Specification Language

12

Model

Model

Model

Model

Instance

Typed by

Typed by

Typed by

Typed by

Typed by

Typed by

Property Specification Language

1. Rossini et al. A formalisation of deep metamodelling 12

• Using the concept of

Linguistic Extension

“Instantiation within a

linguistic modelling

language used to specify

the models at all

metalevels of the

ontological stack” 1

Model

Model

Model

Model

Instance

Typed by

Typed by

Typed by

Typed by

Typed by

Typed by
P

ro
p
e
rt

y

S
p
e
c
if
ic

a
ti
o
n

L
a
n
g
u
a
g
e

Property Specification Language

13

Property Specification Language

14

Property Specification Language

14

• Linguistic Extension

allows to create

properties connected to

model elements

• Temporal properties

expressed over types

and instances of the

models

Property Specification Language

14

• Linguistic Extension

allows to create

properties connected to

model elements

• Temporal properties

expressed over types

and instances of the

models

• Possibility to define

cross-level properties

Property Specification Language

14

• Linguistic Extension

allows to create

properties connected to

model elements

• Temporal properties

expressed over types

and instances of the

models

• Possibility to define

cross-level properties

• Possibility to link to

several instances

Property Specification Language

15

Model

Model

Model

Model

Instance

Typed by

Typed by

Typed by

Typed by

Typed by

Typed by
P

ro
p
e
rt

y

S
p
e
c
if
ic

a
ti
o
n

L
a
n
g
u
a
g
e
 1

Property Specification Language

15

• The hierarchy allows to

add new languages

(e.g. TLTL, SALT)

Model

Model

Model

Model

Instance

Typed by

Typed by

Typed by

Typed by

Typed by

Typed by
P

ro
p
e
rt

y

S
p
e
c
if
ic

a
ti
o
n

L
a
n
g
u
a
g
e
 1

P
ro

p
e
rt

y

S
p
e
c
if
ic

a
ti
o
n

L
a
n
g
u
a
g
e
 2

Property Specification Language

15

• The hierarchy allows to

add new languages

(e.g. TLTL, SALT)

• Possibility of a

hierarchy of property

languages
P

ro
p
e
rt

y

L
a
n
g
u
a
g
e

M
e
ta

m
o
d
e
l

Model

Model

Model

Model

Instance

Typed by

Typed by

Typed by

Typed by

Typed by

Typed by
P

ro
p
e
rt

y

S
p
e
c
if
ic

a
ti
o
n

L
a
n
g
u
a
g
e
 1

P
ro

p
e
rt

y

S
p
e
c
if
ic

a
ti
o
n

L
a
n
g
u
a
g
e
 2

Property Specification Language

15

• The hierarchy allows to

add new languages

(e.g. TLTL, SALT)

• Possibility of a

hierarchy of property

languages
P

ro
p
e
rt

y

L
a
n
g
u
a
g
e

M
e
ta

m
o
d
e
l

Model

Model

Model

Model

Instance

Typed by

Typed by

Typed by

Typed by

Typed by

Typed by
P

ro
p
e
rt

y

S
p
e
c
if
ic

a
ti
o
n

L
a
n
g
u
a
g
e
 1

P
ro

p
e
rt

y

S
p
e
c
if
ic

a
ti
o
n

L
a
n
g
u
a
g
e
 2

Property Specification Language

16

Syntax

Abstract syntax

Concrete syntax

17

• Internal representation

of the model

• In graph-based models,

nodes and relations

among them

• Created to be human

readable

• Synchronized with the

abstract syntax

• Text, diagrams...

Model Model

F

G

⇒

Semantics

• LTL temporal operator unrolling

›

›

›

• LTL Next operator (X) processing

›

• LTL reduction

›

18

))(( UXU 

 XFF 

 XGG 

)()(1 nn ttX 

 GGG 

Repeat until every property has been reduced to ⊤

or ⊥

Semantics

19

F1 (t)

F2 (t)

Mp(t)

Unrolling

(MT)

F1 (t)

F2 (t)

Mp(t)

Compare

with instance

(query)

Mr (t)

F1 (t+1)

F2 (t+1)

Mp(t+1)

Reduction

(MT)

F1 (t)

F2 (t)
Mp(t+1)

Semantics

• ATL/EMF implementation

abstract rule processX {

 from

 input : mmProperties!X

 to

 output : mmProperties!UnaryOperator (

 formula <- input.formula.formula

)

}

20

Semantics as model transformations

• ATL/EMF implementation

21

Future work

• Integrate our hierarchy of models and languages

into an existing framework (GEMOC), or…

• … create a multilevel modelling editor for EMF

models

• Add new languages for the specification of

temporal properties

• Seamless and automatic linking of property

specification languages with any model in the

hierarchy

22

Summary

• Introduction of flexible hierarchy for executable

modelling

• Definition of abstract syntax, concrete syntax and

semantics for temporal properties on behavioural

models

• Runtime Verification of temporal properties on

interpreted models. No need for

compilation/translation

• Usage of deep metamodelling concepts to achieve

a customizable hierarchy

23

Summary

• Introduction of flexible hierarchy for executable

modelling

• Definition of abstract syntax, concrete syntax and

semantics for temporal properties on behavioural

models

• Runtime Verification of temporal properties on

interpreted models. No need for

compilation/translation

• Usage of deep metamodelling concepts to achieve

a customizable hierarchy

23

Thank you for your attention!

