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Motivation 

• Modelling offers one more level of abstraction 

above programming 

• Close the gap between domain experts and 

software engineers 

› Different views of the system 

› The solution can be specified in the problem space 
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Problem space 

Domain experts 

Solution space 

Software engineers 



Two types of models 

Structural models 

 

Behavioural models 
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• The metamodel defines 

a type of structure 

• The model represents a 

particular structure 

• Semantics given by a 

set of instances 

(snapshots) 

 

• E.g: Class diagrams 

• The metamodel defines 

a process language 

• The model represent a 

process 

• Semantics can be 

expressed as model 

transformations 

 

• E.g: BPMN, Petri nets 



Verification of Behavioural Models 

• Testing 

› Applied on small parts of the model 

› Cumbersome in big models 

› Not exhaustive 

 

• Model checking 

› Exhaustive and strong  

› Bad scalability 

 

• Runtime verification 
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Runtime Verification of Behavioural 

Models 

• Useful when the system is too complex to be 

analysed thoroughly1 

• Can be performed over simulations or the actual 

deployed system 

• Based on: 

› Temporal properties: Invariants, implications of 

present/past events in future events, global properties 

(e.g: termination) 

› Monitors: Check properties against running instances 

1. Leucker et al. A brief account of runtime verification.  5 



Executable Modelling 

• Definition of models with enough information to be 

executed 

• Two alternatives 

› Interpreted: The model itself is run in a custom runtime 

environment. The instances are evolved through model 

transformations1 

› Compiled: The model is transformed into a machine-

readable representation, e.g: imperative code2 

 

• Focus on definition of interpreted process models  

1. Guermazi et al. Executable Modeling with fUML and Alf in Papyrus 

2. Dévai et al. UML Model Execution via Code Generation 
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Hierarchy for Executable Modelling 
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• The standardized 

solutions are EMF (MOF) 

and UML 

• Both have a bigger focus 

on structure 

• Limited number of levels 

• In complex architectures, 

the levels have to be 

collapsed 

› Convolution of models 

› Bad maintainability 

 

Meta-metamodel 
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Model 
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Hierarchy for Executable Modelling 

9 

                         

                           

          

 

                            

                          

          



Hierarchy for Executable Modelling 

1. De Lara et al. When and How to Use Multilevel Modelling 9 

• Our hierarchy exploits 

the concept of Multilevel 

Modelling 

 

“Enabling modelling at an 

arbitrary number of meta-

levels” 1 
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Hierarchy for Executable Modelling 
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Hierarchy for Executable Modelling 
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• Our hierarchy exploits 

the concept of Deep 

Metamodelling 

 

“An element in a model 

can be typed by another 

element several models 

above” 
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Hierarchy for Executable Modelling 
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• This hierarchy allows to 

› Define custom executable 

modelling languages 

› Create models according to 

those languages 

› Run the instances with 

default semantics 

› Customize semantics 

› Simulation 

› Deployment 

› Runtime verification over 

the running instances 

Model 
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Property Specification Language 
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Property Specification Language 

1. Rossini et al. A formalisation of deep metamodelling 12 

• Using the concept of 

Linguistic Extension 

 

“Instantiation within a 

linguistic modelling 

language used to specify 

the models at all 

metalevels of the 

ontological stack” 1 
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Property Specification Language 
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Property Specification Language 
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Property Specification Language 

14 

• Linguistic Extension 

allows to create 

properties connected to 

model elements 

• Temporal properties 

expressed over types 

and instances of the 

models 

                        

                       

                         

                  



Property Specification Language 

14 

• Linguistic Extension 

allows to create 

properties connected to 

model elements 

• Temporal properties 

expressed over types 

and instances of the 

models 

• Possibility to define 

cross-level properties 

                         

                  



Property Specification Language 

14 

• Linguistic Extension 

allows to create 

properties connected to 

model elements 

• Temporal properties 

expressed over types 

and instances of the 

models 

• Possibility to define 

cross-level properties 

• Possibility to link to 

several instances 



Property Specification Language 
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Property Specification Language 

15 

• The hierarchy allows to 

add new languages 

(e.g. TLTL, SALT) 
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Property Specification Language 
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• The hierarchy allows to 

add new languages 

(e.g. TLTL, SALT) 

• Possibility of a 

hierarchy of property 

languages 
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Property Specification Language 

15 

• The hierarchy allows to 

add new languages 

(e.g. TLTL, SALT) 

• Possibility of a 

hierarchy of property 

languages 
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Property Specification Language 
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Syntax 

Abstract syntax 

 

Concrete syntax 
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• Internal representation 

of the model 

• In graph-based models, 

nodes and relations 

among them 

• Created to be human 

readable 

• Synchronized with the 

abstract syntax 

• Text, diagrams... 

Model Model 

F 

G 

⇒ 



Semantics 

• LTL temporal operator unrolling 

›   

›   

›   

 

• LTL Next operator (X) processing 

›   

 

• LTL reduction 

›   
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))((  UXU 

 XFF 

 XGG 

)()( 1 nn ttX 

 GGG 



Repeat until every property has been reduced to ⊤ 

or ⊥ 

Semantics 
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F1 (t) 
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(MT) 
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Mr (t) 
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Reduction 

(MT) 

F1 (t) 

F2 (t) 
Mp(t+1) 



Semantics 

• ATL/EMF implementation 

 
abstract rule processX { 

  from 

    input : mmProperties!X 

  to  

    output : mmProperties!UnaryOperator ( 

      formula <- input.formula.formula 

    ) 

} 
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Semantics as model transformations 

• ATL/EMF implementation 
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Future work 

• Integrate our hierarchy of models and languages 

into an existing framework (GEMOC), or… 

• … create a multilevel modelling editor for EMF 

models 

• Add new languages for the specification of 

temporal properties 

• Seamless and automatic linking of property 

specification languages with any model in the 

hierarchy 
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Summary 

• Introduction of flexible hierarchy for executable 

modelling 

• Definition of abstract syntax, concrete syntax and 

semantics for temporal properties on behavioural 

models 

• Runtime Verification of temporal properties on 

interpreted models. No need for 

compilation/translation 

• Usage of deep metamodelling concepts to achieve 

a customizable hierarchy 
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Thank you for your attention! 


