Formal Verification using Parity Games

Mathias N. Justesen

DTU Compute

DTU Compute, Technical University of Denmark (DTU)

- Many problems within formal verification can be reduced to solving parity games
 - Model checking (Stirling, 1995)
 - Controller synthesis (Arnold et al. , 2003)
 - Satisfiability (Friedmann & Lange, 2009b)

- Many problems within formal verification can be reduced to solving parity games
 - Model checking (Stirling, 1995)
 - Controller synthesis (Arnold et al. , 2003)
 - Satisfiability (Friedmann & Lange, 2009b)
- Practical work restricted to model checking
 - mCRL2 and LTSmin
 - PBES to parity game

- Many problems within formal verification can be reduced to solving parity games
 - Model checking (Stirling, 1995)
 - Controller synthesis (Arnold et al., 2003)
 - Satisfiability (Friedmann & Lange, 2009b)
- Practical work restricted to model checking
 - mCRL2 and LTSmin
 - PBES to parity game
- Verification framework based on parity game solving

1 Model-checking for the modal μ -calculus

- Semantics based on evaluation games
- Conversion from evaluation game to parity game

1 Model-checking for the modal μ -calculus

- Semantics based on evaluation games
- Conversion from evaluation game to parity game
- **2** Use solution to construct proof or counter-example

(1) Model-checking for the modal μ -calculus

- Semantics based on evaluation games
- Conversion from evaluation game to parity game
- 2 Use solution to construct proof or counter-example
- Backend based on PGSolver
 - Solve parity games in normal form

Parity Game

Modal µ-calculus Model Checking

•
$$\mathbb{M} \models \varphi$$
?

Modal µ-calculus Model Checking

- $\mathbb{M} \models \varphi$?
- $\bullet\ \mathbb{M}$ is a Labelled Transition System

Modal µ-calculus Model Checking

- $\mathbb{M} \models \varphi$?
- $\bullet \ \mathbb{M}$ is a Labelled Transition System

Formulas of modal μ-calculus given proposition variables P and actions A:
 φ ::= ⊤ | ⊥ | p | ¬p | φ ∧ φ | φ ∨ φ | ⟨a⟩φ | [a]φ | μx.φ | νx.φ
 where p, x ∈ P and a ∈ A

 $\mu x.p \lor [a]x$

 $\mu x.p \lor [a]x$

 $\mu x.p \lor [a]x$

7

- Dominion Decomposition Algorithm (Jurdzinski et al., 2008)
 - Runtime: $O(n^{\sqrt{n}})$
 - Bad performance in practice

- Dominion Decomposition Algorithm (Jurdzinski et al., 2008)
 - Runtime: $O(n^{\sqrt{n}})$
 - Bad performance in practice
- Zielonka's Recursive Algorithm (Zielonka, 1998)
 - Runtime: $O(n^d)$
 - Good performance in practice (Friedmann & Lange, 2009a)

- Dominion Decomposition Algorithm (Jurdzinski et al., 2008)
 - Runtime: $O(n^{\sqrt{n}})$
 - Bad performance in practice
- Zielonka's Recursive Algorithm (Zielonka, 1998)
 - Runtime: $O(n^d)$
 - Good performance in practice (Friedmann & Lange, 2009a)
- Normal-Form Algorithm 1 (Vester, 2015)
 - Considers parity games in normal form

- Dominion Decomposition Algorithm (Jurdzinski et al., 2008)
 - Runtime: $O(n^{\sqrt{n}})$
 - Bad performance in practice
- Zielonka's Recursive Algorithm (Zielonka, 1998)
 - Runtime: $O(n^d)$
 - Good performance in practice (Friedmann & Lange, 2009a)
- Normal-Form Algorithm 1 (Vester, 2015)
 - Considers parity games in normal form
- Normal-Form Algorithm 2
 - Improved version of Normal-Form Algorithm 1

Normal Form **Definition**

• A parity game in normal form if

Normal Form **Definition**

- A parity game in normal form if
 - It is truly turn-based,

Normal Form **Definition**

- A parity game in normal form if
 - It is truly turn-based,
 - Player 0 controls only nodes of even priority, and
 - Player 1 controls only nodes of odd priority

Normal Form Advantages and Disadvantages

• Quickly decide if a node is winning for Player 0 or Player 1

Normal Form Advantages and Disadvantages

- Quickly decide if a node is winning for Player 0 or Player 1
- Many recursive calls one per node

- Quickly decide if a node is winning for Player 0 or Player 1
- Many recursive calls one per node
- Normal-Form Algorithm 2 addresses this issue by considering all nodes of the same priority at the same time

- Quickly decide if a node is winning for Player 0 or Player 1
- Many recursive calls one per node
- Normal-Form Algorithm 2 addresses this issue by considering all nodes of the same priority at the same time
- Algorithms restricted to games in normal form

Normal Form Transformation

Benchmark Comparison of Algorithms

	Not NF		Pre-NF			NF			
$n, d, deg_{min}, deg_{max}$	Zie	NF1	NF2	Zie	NF1	NF2	Zie	NF1	NF2
100, 100, 2, 4	0.00	10.55	0.42	0.00	10.58	0.41	0.00	0.04	0.02
100, 100, 2, 10	0.00	6.13	0.29	0.00	6.16	0.28	0.00	0.01	0.01
100, 100, 2, 100	0.00	3.47	0.18	0.00	3.45	0.19	0.01	0.01	0.01
200, 200, 2, 4	0.00		11.01	0.00		10.78	0.01	0.43	0.23
200, 200, 2, 10	0.00		2.37	0.00		2.29	0.01	0.22	0.16
200, 200, 2, 200	0.01	69.29	2.29	0.01	52.05	2.27	0.05	0.05	0.03
500, 500, 2, 4	0.00			0.01			0.07		
500, 500, 2, 10	0.01			0.03			0.10	13.24	6.31
500, 500, 2, 500	0.07		78.01	0.08		77.18	1.11	1.04	0.73
Rec. ladder 5	0.00	0.03	0.01						
Rec. ladder 10	0.01	5.94	0.75						
Rec. ladder 15	0.07		94.36						

$$\varphi_n = \psi_n \vee \neg \psi_n$$

$$\varphi_{\mathbf{n}} = \psi_{\mathbf{n}} \vee \neg \psi_{\mathbf{n}}$$

$$\psi_n = \mu x_1 . \nu x_2 ... \eta_n x_n . \left(q_1 \lor \langle \rangle \left(x_1 \land \left(q_2 \lor \langle \rangle (x_1 \land ... (q_n \lor \langle \rangle x_n)) \right) \right) \right)$$

$$\varphi_{n} = \psi_{n} \vee \neg \psi_{n}$$
$$\psi_{n} = \mu x_{1} . \nu x_{2} ... \eta_{n} x_{n} . \left(q_{1} \vee \langle \rangle \left(x_{1} \wedge \left(q_{2} \vee \langle \rangle (x_{1} \wedge ... (q_{n} \vee \langle \rangle x_{n}) \right) \right) \right) \right)$$
$$\langle \rangle \varphi = \bigvee_{a \in A} \langle a \rangle \varphi$$

$$\varphi_{n} = \psi_{n} \vee \neg \psi_{n}$$

$$\psi_{n} = \mu x_{1} . \nu x_{2} ... \eta_{n} x_{n} . \left(q_{1} \vee \langle \rangle \left(x_{1} \wedge (q_{2} \vee \langle \rangle (x_{1} \wedge ... (q_{n} \vee \langle \rangle x_{n})))\right)\right)$$

$$\langle \rangle \varphi = \bigvee_{a \in A} \langle a \rangle \varphi$$

$$(a) \mathbb{L}_{1}$$

$$(b) \mathbb{L}_{2}$$

$$(c) \mathbb{L}_{3}$$

LTS	Nodes	n	Time
\mathbb{L}_1	12.000	1024	3:27.4
\mathbb{L}_2	786.000	16	0:03.6
\mathbb{L}_2	1.573.000	17	0:03.8
\mathbb{L}_3	413.000	10	0:01.8
L ₃	1.240.000	11	0:05.6
\mathbb{L}_3	3.720.000	12	0:07.6

LTS	Nodes	n	Time
\mathbb{L}_1	12.000	1024	3:27.4
\mathbb{L}_2	786.000	16	0:03.6
\mathbb{L}_2	1.573.000	17	0:03.8
L ₃	413.000	10	0:01.8
L ₃	1.240.000	11	0:05.6
L ₃	3.720.000	12	0:07.6

State space: $O(|\mathbb{M}| \cdot |Sfor(\varphi)|)$

• Parity game solving is well suited for model checking

- Parity game solving is well suited for model checking
- Zielonka's Algorithm works well in practice

- Parity game solving is well suited for model checking
- Zielonka's Algorithm works well in practice
- Future work

- Parity game solving is well suited for model checking
- Zielonka's Algorithm works well in practice
- Future work
 - Specialized algorithms

- Parity game solving is well suited for model checking
- Zielonka's Algorithm works well in practice
- Future work
 - Specialized algorithms
 - Winning cores

- Parity game solving is well suited for model checking
- Zielonka's Algorithm works well in practice
- Future work
 - Specialized algorithms
 - Winning cores
 - Controller synthesis (Arnold et al., 2003; Ramadge & Wonham, 1989)

- Parity game solving is well suited for model checking
- Zielonka's Algorithm works well in practice
- Future work
 - Specialized algorithms
 - Winning cores
 - Controller synthesis (Arnold et al., 2003; Ramadge & Wonham, 1989)
 - Symbolic representation of parity games (Kant & van de Pol, 2014)

References I

- Arnold, A., Vincent, A., & Walukiewicz, I. 2003. Games for synthesis of controllers with partial observation. *Theoretical Computer Science*, 303(1), 7 34. Logic and Complexity in Computer Science.
- Artale, Alessandro. 2011. Formal Methods Lecture III: Linear Temporal Logic. URL: https://www.inf.unibz.it/~artale/FM/slide3.pdf.
- Friedmann, Oliver, & Lange, Martin. 2009a. Solving Parity Games in Practice. Pages 182–196 of: Liu, Zhiming, & Ravn, Anders P. (eds), Automated Technology for Verification and Analysis. Lecture Notes in Computer Science, vol. 5799. Springer Berlin Heidelberg.
- Friedmann, Oliver, & Lange, Martin. 2009b. Tableaux with automata. In: Proc. Workshop on Tableaux vs. Automata as Logical Decision Procedures, AutoTab, vol. 9.
- Jurdzinski, Marcin, Paterson, Mike, & Zwick, Uri. 2008. A deterministic subexponential algorithm for solving parity games. *SIAM Journal on Computing*, **38**(4), 1519–1532.

References II

- Kant, Gijs, & van de Pol, Jaco. 2014. Generating and Solving Symbolic Parity Games. Pages 2–14 of: Proceedings 3rd Workshop on GRAPH Inspection and Traversal Engineering, GRAPHITE 2014, Grenoble, France, 5th April 2014.
- Ramadge, P.J.G., & Wonham, W.M. 1989. The control of discrete event systems. *Proceedings of the IEEE*, **77**(1), 81–98.
- Stirling, Colin. 1995. Local model checking games. Pages 1–11 of: CONCUR'95: Concurrency Theory. Springer.
- Venema, Yde. 2008. Lectures on the modal *µ*-calculus. *Institute for Logic, Language and Computation, University of Amsterdam.*
- Vester, Steen. 2015. A New Algorithm for Solving Parity Games.
- Zielonka, Wieslaw. 1998. Infinite games on finitely coloured graphs with applications to automata on infinite trees. *Theoretical Computer Science*, **200**(1–2), 135 183.

Appendix Implementation

Appendix Mutual Exclusion

Example from (Artale, 2011)

26 DTU Compute