
Using Typings as Types

Casper Bach Poulsen
TU Delft, The Netherlands

Peter Mosses, Neil Sculthorpe
Swansea University, UK

NWPT 2015, Reykjavík, Iceland, October 2015

1

computation
states

Computations and values

2

computation
states

Computations and values

values

2

computation
states

Computations and values

values

2

computation
states

Computations and values

abstraction
(procedural)

body

2

computation
states

Computations and values

abstraction
(procedural)

body

2

let f = (�x. x+ y) in let y = 2 in f 1

An example of dynamic scope
(�f. (�y. f 1) 2) (�x. x+ y)

({y : int} ` (int ! int)) int

3

Static scope

 M,N ::= n | x | (M +N) | (�x.M) | (M N)

�, ⌧ ::= int | t | (� ! ⌧)

A

x

[{x : �} ` M : ⌧

A ` (�x.M) : (� ! ⌧)

A ` M : (� ! ⌧) A ` N : �

A ` (M N) : ⌧

A ` M : ⌧

A0 ` M : ⌧
A✓A0

4

A ` M : ⌧

; ` (�x.M) : (A
x

` (� ! ⌧))
(A(x)=�)

Dynamic scope
M,N ::= n | x | (M +N) | (�x.M) | (M N)

�, ⌧ ::= int | t | (� ! ⌧) | (A ` ⌧) | (� ^ ⌧)

5

Dynamic scope

A

x

[{x : �} ` M : ⌧

; ` (�x.M) : (A
x

` (� ! ⌧))

A ` M : (A0 ` (� ! ⌧)) A ` N : �

(A ^A0) ` (M N) : ⌧

A ` M : �

A0 ` M : ⌧
(A`�) <: (A0`⌧)

M,N ::= n | x | (M +N) | (�x.M) | (M N)

�, ⌧ ::= int | t | (� ! ⌧) | (A ` ⌧) | (� ^ ⌧)

5

Explicit closures
M ::= · · · | close(M)

A ` M : (A0 ` (� ! ⌧))

(A ^A0) ` close(M) : (; ` (� ! ⌧))

A

x

[{x : �} ` M : ⌧

; ` (�x.M) : (A
x

` (� ! ⌧))

A ` M : (; ` (� ! ⌧)) A ` N : �

(A ^ ;) ` (M N) : ⌧

; ^A

x

` close(�x.M) : (; ` (� ! ⌧))

6

Some subtyping rules
�0 <: � ⌧ <: ⌧ 0

(� ! ⌧) <: (�0 ! ⌧ 0)

A0 <: A � <: ⌧

(A ` �) <: (A0 ` ⌧)

(A
x

[{x : ⌧}) <: A
x

A

x

<: A0
x

⌧ <: ⌧ 0

(A
x

[{x : ⌧}) <: (A0
x

[{x : ⌧ 0})

7

Related work

Implicit Parameters: Dynamic Scoping with Static Types

Jeffrey R. Lewis* Mark B. Shields* Erik Meijert John Launchbury*

*Oregon Graduate Institute of Science & Technology
tuniversity of Utrecht

Abstract

This paper introduces a language feature, called implicit pa-
rameters, that provides dynamically scoped variables within
a statically-typed Hindley-Milner framework. Implicit pa-
rameters are lexically distinct from regular identifiers, and
are bound by a special with construct whose scope is dy-
namic, rather than static as with let. Implicit parameters
are treated by the type system as parameters that are not
explicitly declared, but are inferred from their use.
We present implicit parameters within a small call-by-name
X-calculus. We give a type system, a type inference algo-
rithm, and several semantics. We also explore implicit pa-
rameters in the wider settings of call-by-need languages with
overloading, and call-by-value languages with effects. As a
witness to the former, we have implemented implicit param-
eters as an extension of Haskell within the Hugs interpreter,
which we use to present several motivating examples.

1 A Scenario: Pretty Printing

You have just finished writing the perfect pretty printer. It
takes as input a document to be laid out, and produces a
string.

pretty :: Dot -> String

You have done the hard part-your code is lovely, concise
and modular, and your pretty printer produces output that
is somehow even prettier than anything you would bother
to do by hand. You’re thinking: JFP: Functional Pearl.

But, there are just a few fussy details left.
For example, you were not focusing on the unimportant de-
tails, so you hard-coded the width of the display to be 78
characters. The annoying thing is that the check to see if
YOU have exceeded the display width is buried deep within
the code.

. . . if i >= 78 then . .

permission to make digital or hard copies of all or part ofthis work for
PersOXll Or &SSrOOnl USC is granted witllout fee provided that copies
are not nn& or distributed for prolit or commercial advantage a$ld that
copies bar this notice and the full citation on the first page. ~l‘o cC,py
@henvise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
POPL 2000 Boston MA USA
W-Wght ACM 2000 l-58113-t25-9/00/1...$5.00

It is on line 478 of one thousand lines of code, and it is 5
levels deep in the recursion. You have basically two choices.
You can define a global named width, and use it on line 478,
or you can add an extra parameter to nearly every function
in the pretty printer and percolate width up through all the
levels of recursion. Neither choice is very satisfactory.
All this fuss is especially annoying because the change that
you wish to make is conceptually rather small, yet imple-
menting it will require a significant change to the program.
What you would really like to do is get the best of both-
make the definition parameterized, but not have to thread
the additional parameter through all that code. What you
would like to use is an implicit parameter.
With the system proposed in this paper, you only need to
change line 478, the place where the display width is checked
(and perhaps a handful of type signatures-this is discussed
in Section 5.4). The rest of the pretty printer will remain
completely unaffected. The idea is to introduce a parameter
to the program whose presence is inferred, rather than the
programmer having to spell it out everywhere.
To introduce an implicit parameter, we change line 478 as
follows:

. . . if i >= ?width then . . .

The ? is an annotation on an identifier that indicates an
implicit parameter. After this small change, when we ask
what the type of pretty is again, the answer is now:

pretty :: (?width :: Int) => Dot -> String

This means that pretty is a function from Dot to String
with an implicit parameter named width, of type Int. All
we had to do was ase the implicit parameter, and its pres-
ence was inferred.
The most striking difference between implicit and regular
explicit parameters is that once an implicit parameter is in-
troduced, it is propagated automatically. In other words,
when a function with implicit parameters is called, its im-
plicit parameters are inherited by the caller. If we examine
the definition of pretty, we find that it is defined in terms
of a function worker, which is itself implicitly parameterized
by ?uidth.

pretty d = worker d Cl
worker :: (?width :: Int) =>

Dot -> CDocl -> String

108

[POPL 2000]

A Polymorphic Modal Type System for Lisp-Like Multi-Staged
Languages ∗

Ik-Soon Kim
Seoul National University
iskim@ropas.snu.ac.kr

Kwangkeun Yi
Seoul National University
kwang@ropas.snu.ac.kr

Cristiano Calcagno
Imperial College

ccris@doc.ic.ac.uk

Abstract
This article presents a polymorphic modal type system and its prin-
cipal type inference algorithm that conservatively extend ML by
all of Lisp’s staging constructs (the quasi-quotation system). The
combination is meaningful because ML is a practical higher-order,
impure, and typed language, while Lisp’s quasi-quotation system
has long evolved to comply with the demands from multi-staged
programming practices. Our type system supports open code, un-
restricted operations on references, intentional variable-capturing
substitution as well as capture-avoiding substitution, and lifting
values into code, whose combination escaped all the previous sys-
tems.
Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features; F.3.3 [Logics
and Meanings of Programs]: Studies of Program Constructs—Type
structure
General Terms Languages, Theory
Keywords Multi-staged languages, Type systems, Polymorphic
types, Modal types, ML, Let-polymorphism, Quasi-quotation,
Lisp, Scheme, Record type, Type inference

1. Introduction
Staged computation, which explicitly divides a computation into
separate stages, is a unifying framework for the existing program-
generation systems. Partial evaluation [12, 5], runtime code genera-
tion [9, 19, 15, 16], function inlining, and macro expansion [23, 10]
are all instances of staged computation. The stage levels can be ar-
bitrarily large, determined by the nesting depth of program gen-
erations: stage 0 is for conventional non-staged programs, and a
program of stage 0 generates a program of stage 1 that generates a
program of stage 2, and so on.
The key aspect of multi-staged languages is to have code tem-

plates (program fragments) as first-class objects. Code templates

∗This work is partially supported by Brain Korea 21 Project of Korea
Ministry of Education and Human Resources, by IT Leading R&D Support
Project of Korea Ministry of Information and Communication, and by
Microsoft Research Asia.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’06 January 11–13, Charleston, South Carolina, USA.
Copyright c⃝ 2006 ACM 1-59593-027-2/06/0001. . . $5.00.

are freely passed, stored, composed with code of other stages, and
executed when appropriate.
This article presents a polymorphic type system and its prin-

cipal type inference algorithm that conservatively extend ML by
all of Lisp’s multi-staged programming constructs. The combina-
tion is meaningful because ML is a practical higher-order, im-
pure, and typed language, while Lisp has long evolved to com-
ply with the demands from multi-staged programming practices.
Lisp’s staged programming features are all included in its so-called
“quasi-quote” system. This system supports open code templates,
imperative operations with code templates, intentional variable-
capturing substitution (at the sacrifice of alpha-equivalence) as well
as capture-avoiding substitution (as “gensym” does) of free vari-
ables in open code templates, and lifting values into code templates.
Our type system supports all of these features, allowing a program-
mer both type safety as well as the expressiveness that has so far
been only available using the quasi-quotation operators in Lisp (or
Scheme).

Contributions Our contributions are as follows.
• We present a polymorphic type system for a higher-order multi-
staged language that supports all features of Lisp’s quasi-quote
programming:

Open code: code with free variables can be constructed and
composed without restrictions.
Imperative operations with open code: open code can be
stored, dereferenced, and overwritten without restrictions.
Intentional variable-capturing substitution at stages > 0
(“unhygienic” macros): hence alpha-equivalence at stages
> 0 (i.e., during code definitions and expansions) is not
preserved. This sacrifice, which may be unacceptable to a
purely functional language, is a feature that Lisp’s quasi-
quote programmers have long enjoyed for efficiency and
programming convenience.
Capture-avoiding substitution at stages > 0 (“hygienic”
macros [14]): the target language has an explicit new-name
generation construct like Lisp’s “gensym.” Programmers
use this construct to rename bound variables at runtime in
order to avoid an unintentional variable-capture.

• Our type system conservatively extends ML with Lisp’s quasi-
quote system. ML’s let-polymorphism with the value restriction
is conservatively extended for imperative staged programs that
handle open code templates as first-class objects. Also, ML’s
let-polymorphism is orthogonally combined with a record poly-
morphism to allow a single open code template in multiple en-
vironments.

• We present the type system’s principal type inference algo-
rithm.

257

[POPL 2006]

ISOLATE: A Type System for Self-recursion

Ravi Chugh

University of Chicago
rchugh@cs.uchicago.edu

Abstract. A fundamental aspect of object-oriented languages is how recursive
functions are defined. One semantic approach is to use simple record types and
explicit recursion (i.e. fix) to define mutually recursive units of functionality.
Another approach is to use records and recursive types to describe recursion
through a “self” parameter. Many systems rely on both semantic approaches
as well as combinations of universally quantified types, existentially quantified
types, and mixin operators to encode patterns of method reuse, data encapsula-
tion, and “open recursion” through self. These more complex mechanisms are
needed to support many important use cases, but they often lack desirable theo-
retical properties, such as decidability, and can be difficult to implement, because
of the equirecursive interpretation that identifies mu-types with their unfoldings.
Furthermore, these systems do not apply to languages without explicit recursion
(such as JavaScript, Python, and Ruby). In this paper, we present a statically
typed calculus of functional objects called ISOLATE that can reason about a pat-
tern of mixin composition without relying on an explicit fixpoint operation. To
accomplish this, ISOLATE extends a standard isorecursive type system with a
mechanism for checking the “mutual consistency” of a collection of functions,
that is, that all of the assumptions about self are implied by the collection itself.
We prove the soundness of ISOLATE via a type-preserving translation to a cal-
culus with F-bounded polymorphism. Therefore, ISOLATE can be regarded as a
stylized subset of the more expressive calculus that admits an interesting class of
programs yet is easy to implement. In the future, we plan to investigate how other,
more complicated forms of mixin composition (again, without explicit recursion)
may be supported by lightweight type systems.

1 Introduction

Researchers have studied numerous foundational models for typed object-oriented pro-
gramming in order to understand the theoretical and practical aspects of these languages.
Many of these models are based on the lambda-calculus extended with combinations
of explicit recursion, records, prototype delegation, references, mixins, and traits. Once
the dynamic semantics of the language has been set, various type theoretic constructs
are then employed in order to admit as many well-behaved programs as possible. These
mechanisms include record types and recursive types [7], bounded universal quantifi-
cation [9], bounded existential quantification [30], F-bounded polymorphism [6,2], and
variant parametric types [20,34]. A classic survey by Bruce et al. [5] compares many
of the core aspects of these systems.

c⃝ Springer-Verlag Berlin Heidelberg 2015
J. Vitek (Ed.): ESOP 2015, LNCS 9032, pp. 257–282, 2015.
DOI: 10.1007/978-3-662-46669-8_11

[ESOP 2015]

8

Typings as types

M : (A ` (� ! ⌧)) N : (A ` �)

(M N) : (A ` ⌧)

A

x

[{x : �} ` M : ⌧

A ` (�x.M) : (� ! ⌧)

A ` M : (� ! ⌧) A ` N : �

A ` (M N) : ⌧

M : (A
x

[{x : �} ` ⌧)

(�x.M) : (A ` (� ! ⌧))

A ` M : ⌧ M : (A ` ⌧)

9

Conclusion

Novel type system

‣ motivated by considering abstractions as values

‣ applicable to general dynamic scope

‣ exploits typings and intersection types

Future work

‣ meta-theory (soundness, …)

‣ generalise to include stores, exceptions, …

‣ achieve modularity

- implicit propagation of omitted type features

10

Appendix

11

Implicit parameters … [POPL 2000]

Without lifting a finger, as we saw by type of pretty, the
width parameter is propagated to become a parameter of
pretty as well.
If an implicit parameter is used twice in the same context,
then the two uses will be merged. Thus, if we used pretty
twice, to get something twice as pretty, we would still only
have one width parameter:

twice-as-pretty d = pretty d ++ pretty d
twice-as-pretty :: (?width :: Int) =>

Dot -> String

Implicit parameters are bound using the with construct. We
can express the original behavior of pretty, with the fixed
width of 78, as:

pretty with ?width = 78 :: Dot -> String

Of course, we did not need to extend the language just to
set the display width to 78 in the end. The point is that the
user is in control of the display width. Maybe their display
is only 40 characters wide, or maybe they need, at one point,
to halve the display width:

less-pretty = pretty with ?width = Pwidth / 2
less-pretty :: (?width :: Int) => Dot -> String

Notice that this means that with bindings are not recursive,
and thus the implicit parameters can be easily rebound.
The merging of multiple uses of an implicit parameter in the
same scope is not always what you want, but it is easy to
work around by renaming. For example, consider laying out
two documents side by side, with different display widths.

beside x y =
let lhs = pretty dl with ?width = ?xwidth

rhs = pretty d2 with ?width = ?ywidth
in

zipconcat (fill ?xwidth (lines lhs))
(lines rhs)

beside : : (?xwidth :: Int, ?ywidth : : Int) =>
Dot -> Dot -> String

1.1 The rest of the paper

In Section 2, we introduce a type system for implicit param-
eters, followed in Section 3 by two semantics for implicit
parameters. In Section 4 we offer several illuminating ex-
amples. Section 5 discusses some of the issues associated
with adding implicit parameters to a full language. This is
followed in Section 6 by related work, and finally, we close
in Section 7 with future directions.

2 Types for Implicit Parameters

We now formalize implicit parameters by presenting a type
system and inference algorithm for a small language.

2.1 Syntax and Types

Figure 1 presents the syntax and types of X1’, a call-by-name
X-calculus with let-bound polymorphism, implicit variables

X-vars 5, Y> 2
let-vars P, 4
Implicit vars ?x, ?y, ?2
Terms t, u, v

Type vars
Types

Schemes
Contexts

Type contexts

MVAR

PVAR

IVAR

APP

ABS

LET

WITH

::= x 1 p 1 ?x
1 xx. t 1 t u
1 let p = 21 in t
1 t with 7x = ‘~1

..- ..- a
v--+7-

::= viz. Car
..- ..- ?x1: Tl ,...,?&,c,:T,

?Xl, . , ?x+, distinct
..- ..- x~:c71,...,2&:6,

xl, , x,, distinct

c;r k t:v-+r c;r k u:v
c;r k (t u):7
c;r,xEv c ttr

c;r k (xx. t):v+r
D;r k u:7J u = gen(D, r, W)

c;r,pzm f- tzT
c;r t (let p=u in t):r

C\?X,?X:V;~ t- it:7 c;r k u:v
c;r k (t with ?z= 21):~

Figure 1: Well-typed X” terms.

?x, and with bindings. Syntactically, with associates to the
left.

The type system is an extension of a standard Hindley-
Milner type system. What distinguishes it is primarily the
presence of a new context C for implicit parameters. The
C context keeps track of the implicit parameters which are
used in a given term. In addition, type schemes, used to de-
scribe the types of let-bound variables, have been extended
to include implicit parameter contexts. This implies that
the notion of ‘Lgeneralization”, which in traditional Hindley-
Mimer determines which type variables to quantify over,
now also includes the abstraction of implicit parameters.
We write gen(C,r,r) to denote the principal type scheme

109

12

Multi-stage … [POPL 2006]

different results:

{y : box x},S ,V ⊢ λx.unbox1 y
1−→ (λx.x,S ,V)

whereas

{y : box x},S ,V ⊢ λ∗x.unbox1 y
1−→ (λw.x,S ,V)

for some fresh internal variable w. Figure 2 shows the definition of
the staged renaming operator [xn m$→ w]. In (EGENSYM), only the
occurrences of x at stage n are replaced with w, because binders
only act at the current stage. For example, in λx.box x at stage n,
the binder acts at stage n but the occurrence of x in boxx is at stage
n + 1.

λsim
open has additional features to manipulate code templates.

(ELIFT) lifts values to corresponding code templates. (ELIFT)
is the reverse of (EEVAL). Note that a staged value vn can also be
vn+1 (Lemma 3.1). (EOPEN) has no effect on evaluation. The open
construct is a syntactic marker to which our type inference algo-
rithm applies subtyping (See Section 3.3). Inside a code template,
(EABS) reduces the body code in a lambda abstraction. Lambda
expressions are not values but expressions inside a code template.

3.3 Type System
The key idea of the type system of λsimopen is to include a type
environment in a code type. Type environments inside code types
enable us to type open code templates, avoiding the restriction of
Calcagno et al.’s systems [3, 2] that the types of free variables
(even inside code values) are always looked up in the current
type environment. Our type system supports imperative operations
for open code templates, and both hygienic and unhygienic code
manipulation.

Types A, B ∈ Type
Type Environments Γ ∈ TyEnv = Var fin→ Type
Store Typings Σ ∈ ST = Loc fin→ Type

Figure 3 shows a type system for λsimopen in the style of Harper [11];
all type rules need store typing in order to support imperative op-
erations. We use A, B for types. A type environment Γ is a finite
function from variables to types. A store typing Σ is a finite func-
tion from locations to types.

Types A, B ::= ι | A → B | ✷(Γ ◃ A) | A ref

We use ι for base type, A → B for function types, and ✷(Γ ◃ A)
for code template types. ✷(Γ ◃ A) is a conditional modal type in
which the condition Γ specifies the types of free program variables
in the code template of type A. We use A ref for types of store
locations having A-typed values.

DEFINITION 3.1. A store S is well typed with respect to a store
typing Σ, written |= S : Σ, if and only if dom(S) = dom(Σ) and
Σ; ∅ ⊢ S(l) : Σ(l) for every l ∈ dom(S).

DEFINITION 3.2. An environment E is well typed with respect to
a store typing Σ and a type environment Γ, written Σ |= E : Γ, if
and only if dom(E) = dom(Γ) and Σ; ∅ ⊢ E(x) : Γ(x) for every
x ∈ dom(E).

The typing judgment

Σ; Γ0···Γn ⊢ e : A

means that an expression e, under store typing Σ and type environ-
ments Γ0···Γn, has type A at stage n. Γ0···Γn is a sequence of
type environments Γ0, . . . , Γn. Γn is the current type environment.
Subscripts 0, . . . , n are stage numbers.

(TSCON) Σ;Γ0···Γn ⊢ c : ι

(TSVAR)
Γn(x) = A

Σ;Γ0···Γn ⊢ x : A

(TSABS)
Σ;Γ0···Γn + x : A ⊢ e : B

Σ; Γ0···Γn ⊢ λx.e : A → B

(TSAPP)
Σ;Γ0···Γn ⊢ e1 : A → B Σ;Γ0···Γn ⊢ e2 : A

Σ;Γ0···Γn ⊢ e1e2 : B

(TSBOX)
Σ;Γ0···ΓnΓ ⊢ e : A

Σ;Γ0···Γn ⊢ box e : ✷(Γ ◃ A)

(TSUNBOX)
Σ;Γ0···Γn ⊢ e : ✷(Γn+k ◃ A) k > 0

Σ;Γ0···Γn···Γn+k ⊢ unboxke : A

(TSEVAL)
Σ;Γ0···Γn ⊢ e : ✷(∅ ◃ A)

Σ; Γ0···Γn ⊢ unbox0 e : A

(TSLIFT)
Σ;Γ0···Γn ⊢ e : A

Σ;Γ0···Γn ⊢ lift e : ✷(Γ ◃ A)

(TSGENSYM)

Σ; Γ0···Γn + w : A ⊢ [xn n$→ w] e : B
w is a fresh prog. var. in (Σ, Γ0···Γn, λ∗x.e)

Σ; Γ0···Γn ⊢ λ∗x.e : A → B

(TSOPEN)
Σ;Γ0···Γn ⊢ e : ✷(∅ ◃ A)

Σ;Γ0···Γn ⊢ open e : ✷(Γ ◃ A)

(TSREF)
Σ;Γ0···Γn ⊢ e : A

Σ;Γ0···Γn ⊢ ref e : A ref

(TSDEREF)
Σ;Γ0···Γn ⊢ e : A ref

Σ;Γ0···Γn ⊢ ! e : A

(TSASSIGN)
Σ; Γ0···Γn ⊢ e1 : A ref Σ; Γ0···Γn ⊢ e2 : A

Σ;Γ0···Γn ⊢ e1:= e2 : A

(TSLOC)
Σ(l) = A

Σ; Γ0···Γn ⊢ l : A ref

(TSCLOS)
Σ |= E : Γ Σ;Γ + x : A ⊢ e : B

Σ;Γ0···Γn ⊢ clos(x, e, E) : A → B

Figure 3. Type system for λsimopen

(TSBOX) makes open code template box e typable since

Σ;Γ0···ΓnΓ ⊢ e : A

may hold for an open expression e. Type ✷(Γ ◃ A) is for code
template box e, indicating that e has type A in all accessible
stages satisfying Γ. Note that the code template type has a subtype
property: if Γ0···Γn ⊢ box e : ✷(Γ ◃ A) holds, then Γ0···Γn ⊢
box e : ✷(Γ′ ◃ A) also holds for Γ′ ⊇ Γ. (TSUNBOX) checks if a
code template from the previous stage is properly captured by the
type environment at the current stage. (TSUNBOX) shows that code
template types have the modal property: if e has type ✷(Γ ◃ A)
at stage Γn, then unboxk e has type A in an accessible stage
satisfying Γ. (TSEVAL) allows only closed code to be evaluated
by the eval construct. Type ✷(∅ ◃ A) is the same as type ✷A in
Davies and Pfenning [7, 8]. (TSOPEN) relaxes closed code types
to behave as open ones. Expression open e, which is first used in
[3], induces a syntax-driven subtyping, by weakening the number
of free variables. Without open, closed code cannot be used both
in evaluation and composition if the composition context requires
a non-empty type environment. For instance, consider

let u = box 1 in
let v = box (λx.(unbox1(open u)) + x) in
(unbox0 u) + 1

261

different results:

{y : box x},S ,V ⊢ λx.unbox1 y
1−→ (λx.x,S ,V)

whereas

{y : box x},S ,V ⊢ λ∗x.unbox1 y
1−→ (λw.x,S ,V)

for some fresh internal variable w. Figure 2 shows the definition of
the staged renaming operator [xn m$→ w]. In (EGENSYM), only the
occurrences of x at stage n are replaced with w, because binders
only act at the current stage. For example, in λx.box x at stage n,
the binder acts at stage n but the occurrence of x in boxx is at stage
n + 1.

λsim
open has additional features to manipulate code templates.

(ELIFT) lifts values to corresponding code templates. (ELIFT)
is the reverse of (EEVAL). Note that a staged value vn can also be
vn+1 (Lemma 3.1). (EOPEN) has no effect on evaluation. The open
construct is a syntactic marker to which our type inference algo-
rithm applies subtyping (See Section 3.3). Inside a code template,
(EABS) reduces the body code in a lambda abstraction. Lambda
expressions are not values but expressions inside a code template.

3.3 Type System
The key idea of the type system of λsimopen is to include a type
environment in a code type. Type environments inside code types
enable us to type open code templates, avoiding the restriction of
Calcagno et al.’s systems [3, 2] that the types of free variables
(even inside code values) are always looked up in the current
type environment. Our type system supports imperative operations
for open code templates, and both hygienic and unhygienic code
manipulation.

Types A, B ∈ Type
Type Environments Γ ∈ TyEnv = Var fin→ Type
Store Typings Σ ∈ ST = Loc fin→ Type

Figure 3 shows a type system for λsimopen in the style of Harper [11];
all type rules need store typing in order to support imperative op-
erations. We use A, B for types. A type environment Γ is a finite
function from variables to types. A store typing Σ is a finite func-
tion from locations to types.

Types A, B ::= ι | A → B | ✷(Γ ◃ A) | A ref

We use ι for base type, A → B for function types, and ✷(Γ ◃ A)
for code template types. ✷(Γ ◃ A) is a conditional modal type in
which the condition Γ specifies the types of free program variables
in the code template of type A. We use A ref for types of store
locations having A-typed values.

DEFINITION 3.1. A store S is well typed with respect to a store
typing Σ, written |= S : Σ, if and only if dom(S) = dom(Σ) and
Σ; ∅ ⊢ S(l) : Σ(l) for every l ∈ dom(S).

DEFINITION 3.2. An environment E is well typed with respect to
a store typing Σ and a type environment Γ, written Σ |= E : Γ, if
and only if dom(E) = dom(Γ) and Σ; ∅ ⊢ E(x) : Γ(x) for every
x ∈ dom(E).

The typing judgment

Σ; Γ0···Γn ⊢ e : A

means that an expression e, under store typing Σ and type environ-
ments Γ0···Γn, has type A at stage n. Γ0···Γn is a sequence of
type environments Γ0, . . . , Γn. Γn is the current type environment.
Subscripts 0, . . . , n are stage numbers.

(TSCON) Σ;Γ0···Γn ⊢ c : ι

(TSVAR)
Γn(x) = A

Σ;Γ0···Γn ⊢ x : A

(TSABS)
Σ;Γ0···Γn + x : A ⊢ e : B

Σ; Γ0···Γn ⊢ λx.e : A → B

(TSAPP)
Σ;Γ0···Γn ⊢ e1 : A → B Σ;Γ0···Γn ⊢ e2 : A

Σ;Γ0···Γn ⊢ e1e2 : B

(TSBOX)
Σ;Γ0···ΓnΓ ⊢ e : A

Σ;Γ0···Γn ⊢ box e : ✷(Γ ◃ A)

(TSUNBOX)
Σ;Γ0···Γn ⊢ e : ✷(Γn+k ◃ A) k > 0

Σ;Γ0···Γn···Γn+k ⊢ unboxke : A

(TSEVAL)
Σ;Γ0···Γn ⊢ e : ✷(∅ ◃ A)

Σ; Γ0···Γn ⊢ unbox0 e : A

(TSLIFT)
Σ;Γ0···Γn ⊢ e : A

Σ;Γ0···Γn ⊢ lift e : ✷(Γ ◃ A)

(TSGENSYM)

Σ; Γ0···Γn + w : A ⊢ [xn n$→ w] e : B
w is a fresh prog. var. in (Σ, Γ0···Γn, λ∗x.e)

Σ; Γ0···Γn ⊢ λ∗x.e : A → B

(TSOPEN)
Σ;Γ0···Γn ⊢ e : ✷(∅ ◃ A)

Σ;Γ0···Γn ⊢ open e : ✷(Γ ◃ A)

(TSREF)
Σ;Γ0···Γn ⊢ e : A

Σ;Γ0···Γn ⊢ ref e : A ref

(TSDEREF)
Σ;Γ0···Γn ⊢ e : A ref

Σ;Γ0···Γn ⊢ ! e : A

(TSASSIGN)
Σ; Γ0···Γn ⊢ e1 : A ref Σ; Γ0···Γn ⊢ e2 : A

Σ;Γ0···Γn ⊢ e1:= e2 : A

(TSLOC)
Σ(l) = A

Σ; Γ0···Γn ⊢ l : A ref

(TSCLOS)
Σ |= E : Γ Σ;Γ + x : A ⊢ e : B

Σ;Γ0···Γn ⊢ clos(x, e, E) : A → B

Figure 3. Type system for λsimopen

(TSBOX) makes open code template box e typable since

Σ;Γ0···ΓnΓ ⊢ e : A

may hold for an open expression e. Type ✷(Γ ◃ A) is for code
template box e, indicating that e has type A in all accessible
stages satisfying Γ. Note that the code template type has a subtype
property: if Γ0···Γn ⊢ box e : ✷(Γ ◃ A) holds, then Γ0···Γn ⊢
box e : ✷(Γ′ ◃ A) also holds for Γ′ ⊇ Γ. (TSUNBOX) checks if a
code template from the previous stage is properly captured by the
type environment at the current stage. (TSUNBOX) shows that code
template types have the modal property: if e has type ✷(Γ ◃ A)
at stage Γn, then unboxk e has type A in an accessible stage
satisfying Γ. (TSEVAL) allows only closed code to be evaluated
by the eval construct. Type ✷(∅ ◃ A) is the same as type ✷A in
Davies and Pfenning [7, 8]. (TSOPEN) relaxes closed code types
to behave as open ones. Expression open e, which is first used in
[3], induces a syntax-driven subtyping, by weakening the number
of free variables. Without open, closed code cannot be used both
in evaluation and composition if the composition context requires
a non-empty type environment. For instance, consider

let u = box 1 in
let v = box (λx.(unbox1(open u)) + x) in
(unbox0 u) + 1

261

13

IsoLate … self-recursion [ESOP 2015]

18

Expressions e ::= unit | x | lx :T .e | e1 e2 | LA.e | e[T]
| { f = e } | e.f | unfold e | fold T e

premethod and close | Vx :A<: T .e | close e

Types R,S,T ::= unit | { f:T } | S ! T | A | µA.T | 8A. T
pre-type | (A :S)) T

Type Environments G ::= � | G , x :T | G , A | G , A<: T

Fig. 5. ISOLATE Syntax

3.2 Syntax and Typechecking

We now present the formal definition of ISOLATE. Figure 5 defines the syntax of ex-
pressions and types, and Figure 6 defines selected typing rules; § A provides addi-
tional definitions. We often write overbars (such as f :T) to denote sequences (such
as { f1:T1; . . . ; fn:Tn }).

Expressions. Expressions include the unit value, variables, lambdas, function applica-
tion, type abstractions, type application, record literals, and record projection. The type
abstraction and application forms are typical for a polymorphic lambda-calculus, where
type arguments have no computational significance. Expressions also include isorecur-
sive fold and unfold expressions that are semantically irrelevant, as usual. Unique
to ISOLATE are the premethod expression Vx :A<: T .e and the close e expression,
which triggers consistency checking in the type system but serves no computational
purpose. If we consider premethods to be another form of abstraction and close as a
more general form of fold, then, in the notation from earlier sections, the syntax of
ISOLATE programs can be regarded as a subset of L

{},iso,L , the expression language
of LANGMU. The intended meaning of each expression form is standard. Instead of an
operational semantics, we will define an elaboration semantics for ISOLATE in §4.

Types. Types include the unit type, record types, function types, mu-types, univer-
sally quantified types, and type variables A, B, etc. Custom to ISOLATE is the pre-type
(A :S)) T used to describe premethods, where the type A of the self parameter is
bound in S (as defined by the type well-formedness rules in §A). Type environments
including bounds A<: S for type variables that correspond to premethods and their pre-
types. By convention, we use the metavariable R to describe record types.

The typechecking judgment G ` e : T concludes that expression e has type T in an
environment G where variables x1, . . . ,xn have types T1, . . . ,Tn, respectively. In addition
to standard typechecking rules defined in §A, Figure 6 defines four custom ISOLATE
rules that encode a restricted form of F-bounded polymorphism.

The T-PREMETHOD rule derives the pre-type (A :S)) T for Vx :A<: S.e by com-
bining the reasoning for type and value abstractions. The T-UNFOLDSELF rules allows
a self parameter, which is described by bounded type variables A, to be used at its upper
bound T . This allows premethod self parameters to be unfolded as if they were de-
scribed by mu-types (cf. lines 6, 7, and 8 of Figure 2). In order to facilitate abstracting

14

