Using Typings as Types

Casper Bach Poulsen

TU Delft, The Netherlands

Peter Mosses, Neil Sculthorpe

Swansea University, UK

NWPT 2015, Reykjavík, Iceland, October 2015

computation states

computation states values

An example of dynamic scope

$$(\lambda f. (\lambda y. f 1) 2) (\lambda x. x + y)$$

$$let f = (\lambda x. \ x + y) in let y = 2 in f 1$$

$$(\{y: \mathsf{int}\} \vdash (\mathsf{int} \to \mathsf{int}))$$
 int

Static scope

$$M, N ::= n \mid x \mid (M + N) \mid (\lambda x.M) \mid (M \mid N)$$
$$\sigma, \tau ::= \text{int} \mid t \mid (\sigma \to \tau)$$

$$\frac{A_x \cup \{x : \sigma\} \vdash M : \tau}{A \vdash (\lambda x.M) : (\sigma \to \tau)}$$

$$\frac{A \vdash M : (\sigma \to \tau) \quad A \vdash N : \sigma}{A \vdash (M \ N) : \tau}$$

$$\frac{A \vdash M : \tau}{A' \vdash M : \tau} \ ^{A \subseteq A'}$$

Dynamic scope

$$M, N ::= n \mid x \mid (M + N) \mid (\lambda x.M) \mid (M \mid N)$$
$$\sigma, \tau ::= \text{int} \mid t \mid (\sigma \to \tau) \mid (A \vdash \tau) \mid (\sigma \land \tau)$$

$$\frac{A \vdash M : \tau}{\emptyset \vdash (\lambda x.M) : (A_x \vdash (\sigma \to \tau))} \ ^{(A(x) = \sigma)}$$

Dynamic scope

$$M, N ::= n \mid x \mid (M + N) \mid (\lambda x.M) \mid (M \mid N)$$
$$\sigma, \tau ::= \text{int} \mid t \mid (\sigma \to \tau) \mid (A \vdash \tau) \mid (\sigma \land \tau)$$

$$A_{x} \cup \{x : \sigma\} \vdash M : \tau$$

$$\emptyset \vdash (\lambda x.M) : (A_{x} \vdash (\sigma \to \tau))$$

$$\frac{A \vdash M : (A' \vdash (\sigma \to \tau)) \quad A \vdash N : \sigma}{(A \land A') \vdash (M \ N) : \tau}$$

$$\frac{A \vdash M : \sigma}{A' \vdash M : \tau} \stackrel{(A \vdash \sigma) <: (A' \vdash \tau)}{}$$

Explicit closures

$$M ::= \cdots \mid \mathsf{close}(M)$$

$$A \vdash M : (A' \vdash (\sigma \to \tau))$$

$$(A \land A') \vdash \mathsf{close}(M) : (\emptyset \vdash (\sigma \to \tau))$$

$$\frac{A_x \cup \{x : \sigma\} \vdash M : \tau}{\emptyset \vdash (\lambda x.M) : (A_x \vdash (\sigma \to \tau))}$$
$$\frac{\emptyset \land A_x \vdash \mathsf{close}(\lambda x.M) : (\emptyset \vdash (\sigma \to \tau))}{\emptyset \land A_x \vdash \mathsf{close}(\lambda x.M) : (\emptyset \vdash (\sigma \to \tau))}$$

$$\frac{A \vdash M : (\emptyset \vdash (\sigma \to \tau)) \quad A \vdash N : \sigma}{(A \land \emptyset) \vdash (M \ N) : \tau}$$

Some subtyping rules

$$\frac{\sigma' <: \sigma \qquad \tau <: \tau'}{(\sigma \to \tau) <: (\sigma' \to \tau')}$$

$$(A_x \cup \{x : \tau\}) <: A_x$$

$$\frac{A' <: A \qquad \sigma <: \tau}{(A \vdash \sigma) <: (A' \vdash \tau)}$$

$$\frac{A_x <: A'_x \quad \tau <: \tau'}{(A_x \cup \{x : \tau\}) <: (A'_x \cup \{x : \tau'\})}$$

Related work

Implicit Parameters: Dynamic Scoping with Static Types

Jeffrey R. Lewis*

Mark B. Shields*

Erik Meijer[†]

John Launchbury*

[POPL 2000]

A Polymorphic Modal Type System for Lisp-Like Multi-Staged Languages *

Ik-Soon Kim

Kwangkeun Yi

Cristiano Calcagno

[POPL 2006]

ISOLATE: A Type System for Self-recursion

Ravi Chugh

[ESOP 2015]

Typings as types

$$A \vdash M : \tau \longrightarrow M : (A \vdash \tau)$$

$$\frac{A_x \cup \{x : \sigma\} \vdash M : \tau}{A \vdash (\lambda x.M) : (\sigma \to \tau)} \longrightarrow \frac{M : (A_x \cup \{x : \sigma\} \vdash \tau)}{(\lambda x.M) : (A \vdash (\sigma \to \tau))}$$

$$\frac{A \vdash M : (\sigma \to \tau) \quad A \vdash N : \sigma}{A \vdash (M \ N) : \tau} \qquad \longrightarrow$$

$$\frac{M: (A \vdash (\sigma \to \tau)) \quad N: (A \vdash \sigma)}{(M \ N): (A \vdash \tau)}$$

Conclusion

Novel type system

- motivated by considering abstractions as values
- applicable to general dynamic scope
- exploits typings and intersection types

Future work

- meta-theory (soundness, ...)
- generalise to include stores, exceptions, ...
- achieve modularity
 - implicit propagation of omitted type features

Appendix

Implicit parameters ... [POPL 2000]

t
τ_n
stinct
n
nct

Multi-stage ... [POPL 2006]

Types $A, B \in Type$ Type Environments $\Gamma \in TyEnv = Var \xrightarrow{fin} Type$ Store Typings $\Sigma \in ST = Loc \xrightarrow{fin} Type$

Types $A,B \quad ::= \quad \iota \mid A \to B \mid \Box(\Gamma \triangleright A) \mid A \operatorname{ref}$

IsoLate ... self-recursion [ESOP 2015]

Types
$$R,S,T::=$$
 unit $\mid \{\overline{f}:\overline{T}\}\mid S\to T\mid A\mid \mu A.T\mid \forall A.T$ pre-type $\mid (A:S)\Rightarrow T$
Type Environments $\Gamma::=-\mid \Gamma,x:T\mid \Gamma,A\mid \Gamma,A<:T$