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who?

• Robin Kaarsgaard, PhD student at DIKU, Dept. of Computer
Science, University of Copenhagen.

• Project: Logical Methods in Reversible Computing (category
theory, type theory, logic, …) – Dec. 2014 to Dec. 2017 (expected).

• Jointly advised by Robert Glück, Holger Bock Axelsen, Andrzej
Filinski.
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reversible computing: what?
why?



what is reversible computing?

• Reversible computing: The study of time invertible
computations.

• Deterministic in both forward and backward directions.

• In a functional programming setting, reversible functions are
injective.

• Note that totality is not required, nor necessarily desirable, in
order to guarantee reversibility.
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why reversible computing?

• Originally motivated by the potential to reduce power
consumption of computing processes, due to Landauer’s
principle: Irreversibility costs energy.

• Has since seen a number of applications independent of this
property; personal favorites include

• unified parser/pretty printer specifications and
• fast parallel discrete event simulations.

• Plays an important role in quantum computing.

R. Landauer, “Irreversibility and heat generation in the computing process,” IBM Journal of Research
and Development, vol. 5, no. 3, pp. 261–269, 1961.
T. Rendel and K. Ostermann, “Invertible syntax descriptions: unifying parsing and pretty printing,”
ACM SIGPLAN Notices, vol. 45, no. 11, pp. 1–12, 2010.
M. Schordan, D. Jefferson, P. Barnes, et al., “Reverse code generation for parallel discrete event
simulation,” in Reversible Computation, ser. LNCS, vol. 9138, 2015, pp. 95–110.
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reversible functional program-
ming



rfun20 T. Yokoyama, H.B. Axelsen, and R. Glück

fib n ! case n of

Z → ⟨S(Z), S(Z)⟩
S(m) → let ⟨x, y⟩ = fib m in

let z = plus ⟨y, x⟩ in z

(12)

plus ⟨x, y⟩ ! case y of

Z → ⌊⟨x⟩⌋
S(u) → let ⟨x′, u′⟩ = plus ⟨x, u⟩ in ⟨x′, S(u′)⟩

(13)

Fig. 4. Fibonacci-pair function fib and addition plus⟨x, y⟩ = ⟨x, x+ y⟩2

Because of the symmetric semantics of case-expressions, we can compute the
increment function from above both forward and backward:

{n !→ Z} ⊢q inc n ↪→ S(Z) (11)

where q is a program which includes the function definition of inc in Eq. 1.
Without the symmetric first-match policy, the value S(Z) could be a consequence
of two different instances of the CaseExp rule because S(Z) matches both of the
underlined left-expressions S(Z) and S(n′′), and we would thus have to search
deeper in the derivation tree to decide which was the right instance. However,
the policy ensures that inverse interpretation is locally deterministic and, in this
example, selects the first branch and never the second.

If a function terminates with an output for a given input, inverse computation
of the function terminates for that output and returns the original input, and
vice versa.

Example program. Given a number n, the Fibonacci-pair function [9] com-
putes a tuple containing the (n + 1)-th and (n + 2)-th Fibonacci number. The
functions fib and plus are defined for Peano numbers in Fig. 4. Note the use of
the ⌊·⌋-operator on the right-hand side of the first branch of plus to duplicate
x in forward computation and to check equality of a pair of values in backward
computation. We can relate numbers to the corresponding Fibonacci pairs via
an expression judgment. For example, for the second pair we have:

{n !→ S(S(Z))} ⊢q fib n ↪→ ⟨S(S(Z)), S(S(S(Z)))⟩ (14)

2.4 Reversibility and Semantics

In this section, we show in what sense the functional language defined above
is reversible. We first examine the matching operation (left-expression judg-
ments) and then continue with the rules of the operational semantics (expression
judgments).

2 For simplicity, x+ y represents the Peano number for the sum of x and y.

• Untyped first-order reversible functional programming language.
• Patterns are linear: All variables defined by a pattern must be
used exactly once.

• Results of all function calls must be bound in a let-expression.

T. Yokoyama, H. B. Axelsen, and R. Glück, “Towards a reversible functional language,” in Reversible
Computation, ser. LNCS, vol. 7165, 2012, pp. 14–29.
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rfun: recursion

• Recursion in rfun is based on a call stack, as in irreversible
functional programming.

• Recursive functions are inverted by inverting the body of the
let, and replacing the recursive call with a call to the inverse.

T. Yokoyama, H. B. Axelsen, and R. Glück, “Towards a reversible functional language,” in Reversible
Computation, ser. LNCS, vol. 7165, 2012, pp. 14–29.
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theseus and Π0

Another choice, similar to that made by Janus, is to use bounded integers such that
every operation is always well defined through underflows and overflows. Here is a
simple 4-bit Nat4 datatype with its corresponding add1 and sub1 operations:

type Nat4 = Bool ⇤ Bool ⇤ Bool ⇤ Bool

add1 : : Nat4 $ Nat4 : : sub1
| (a , b , c , False ) $ (a , b , c , True )
| (a , b , False , True ) $ (a , b , True , False )
| (a , False , True , True ) $ (a , True , False , False )
| (False , True , True , True ) $ (True , False , False , False )
| (True , True , True , True ) $ (False , False , False , False )

It is easy to see how a math library may be defined in this way. Once an operator can be
defined in Theseus it is always possible to replace its implementation by an equivalent
one that is expressible e�ciently in the underlying hardware. In this case one could
compile down to the CPU’s native integer representation and operators.

4 Parametrized Maps

Now that we can express simple standalone isomorphisms, we explain how to com-
pose such isomorphisms to model more complex behavior. In ⇧o, there are three ways
of composing isomorphisms: sequential composition, parallel composition, and choice
composition. The common idiom underlying these composition combinators is that a
reversible map can be parametrized by another reversible map. This idea is related to
“higher-order functions” but is more limited as we explain below.

4.1 Definition and Examples

A Theseus map f can be parametrized by another map g by adding a labeled argument g
of the appropriate type to f. In the example below treeUnwindf is parametrized over some
map f which it applies to n, if the supplied tree is Leaf n:

treeUnwindf : : f : ( Nat $ a ) ! Tree $ Tree ⇤ Tree + a
| Node t1 t2 $ Left (t1 , t2 )
| Leaf n $ Right (f n )

This parametrization should be thought of as a macro or a meta-language construction.
Theseus does not have high-order maps in the formal sense. In other words, the final
type of a Theseus program must be of the form a$ b and every occurrence of an arrow
type ! must be instantiated at compile time. The notation for instantiating the label
parameter f in the map fun by the map g is fun ˜f:g. For example, treeUnwindf ˜f:expandNat
should be thought of as shorthand for the map:

_ : : Tree $ Tree ⇤ Tree + (1 + Nat )
| Node t1 t2 $ Left (t1 , t2 )
| Leaf 0 $ Right (Right ( ) )
| Leaf ( Succ n ) $ Right (Left n )

which inlines expandNat within the definition of treeUnwindf.
We discuss the reversibility of parametrized maps in the next section. We first point

out that the ⇧o closure primitives can be expressed as parametrized maps:
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• Typed first-order reversible functional programming language
• Supports parametrized maps, maps depending on other maps
given at compile time.

• Patterns are linear and exhaustive, all functions are total.
• Compiles to the reversible combinator calculus Π0.

W. J. Bowman, R. P. James, and A. Sabry, “Dagger traced symmetric monoidal categories and re-
versible programming,” in Reversible Computation, ser. LNCS, vol. 7165, 2011, pp. 51–56.
R. P. James and A. Sabry, “Theseus: A high level language for reversible computing,” Work-in-progress
report presented at Reversible Computation, 2014.
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theseus and Π0: recursion via †-trace

• Recursion in Theseus (indirectly) and Π0 (directly) is
implemented via a reversible trace operator

trace : a+ x ↔ b+ x → a ↔ b
• This is a trace in the categorical sense of traced monoidal
categories (in fact, a †-trace).

5.1 Right traced categories
Definition. A right trace on a monoidal category is a family of operations

TrXR : hom(A⊗X,B ⊗X) → hom(A,B),

satisfying the following four axioms. For notational convenience, we assume without
loss of generality that the monoidal structure is strict.

(a) Tightening (naturality inA,B): TrXR ((g⊗idX)◦f ◦(h⊗idX)) = g◦(TrXR f)◦h;

(b) Sliding (dinaturality in X): TrYR (f ◦ (idA ⊗ g)) = TrXR ((idB ⊗ g) ◦ f), where
f : A⊗X → B ⊗ Y and g : Y → X ;

(c) Vanishing: TrIR f = f and TrX⊗Y
R f = TrXR (TrYR (f));

(d) Strength. TrXR (g ⊗ f) = g ⊗ TrXR f .

A (planar) right traced category is a monoidal category equipped with a right trace.

These axioms are similar to those of Joyal, Street, and Verity [24], except that we
have omitted the yanking axioms which does not apply in the planar case, and we have
replaced the non-planar “superposing” axiom by the planar “strength” axiom. I do not
know whether this set of planar axioms appears in the literature.

Graphical language and coherence. The right trace of a diagram f : A ⊗ X →
B⊗X is graphically represented by drawing a loop from the outputX to the inputX ,
as follows:

TrXR f =
X X

A
f

B

(5.1)

Note that in the graphical language of right traced categories, parts of wires can be
oriented right-to-left, but each wire must be oriented left-to-right near the endpoints.
The four axioms of right traced categories are illustrated in the graphical language in
Table 5. The axioms of right traced categories are obviously sound for the graphical
language, up to planar isotopy. We conjecture that they are also complete.

Conjecture 5.2 (Coherence for right traced categories). A well-formed equation be-
tween morphism terms in the language of right traced categories follows from the ax-
ioms of right traced categories if and only if it holds in the graphical language up
planar isotopy.

This is a weak conjecture, in the sense that there is not much empirical evidence to
support it, nor is there an obvious strategy for a proof. If this conjecture turns out to be
false, the axioms for right traced categories should be amended until it becomes true.

33

P. Selinger, “A survey of graphical languages for monoidal categories,” Lecture Notes in Physics, vol.
813, pp. 289–355, 2011.
R. P. James and A. Sabry, “Theseus: A high level language for reversible computing,” Work-in-progress
report presented at Reversible Computation, 2014.
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theseus and Π0: recursion via †-trace

• Recursion in Theseus (indirectly) and Π0 (directly) is
implemented via a reversible trace operator

trace : a+ x ↔ b+ x → a ↔ b
• This is a trace in the categorical sense of traced monoidal
categories (in fact, a †-trace).

Theorem 7.12 (Representation of dagger braided/balanced/symmetric traced categories).
Every dagger braided [balanced, symmetric] traced category can be fully and faithfully
embedded in a dagger braided pivotal [dagger tortile, dagger compact closed] cate-
gory, via a dagger braided [balanced, symmetric] traced functor. ✷

The proof, in each case, is by Joyal, Street, and Verity’s Int-construction [24], which
respects the dagger structure.

Graphical languages. The graphical language of each class of traced categories ex-
tends to the corresponding dagger traced categories, in a way suggested by equation
(7.4). As usual, the dagger of a diagram is its mirror image, thus for example

⎡

⎢

⎢

⎢

⎢

⎢

⎣

X X

A
f

B

⎤

⎥

⎥

⎥

⎥

⎥

⎦

†

=
X X

B
f

A

The coherence theorems of Section 5 extend to this setting.

7.6 Dagger biproducts
In a dagger category, ifA⊕B is a categorical product (with projectionsπ1 : A⊕B → A
and π2 : A ⊕B → B), then it is automatically a coproduct (with injections π†

1 : A →
A ⊕ B and π†

2 : B → A ⊕ B). It therefore makes sense to define a notion of dagger
biproduct.

Definition. A dagger biproduct category is a biproduct category carrying a dagger
structure, such that π†

i = ιi : Ai → A1 ⊕A2 for i = 1, 2.

As in Section 6.3, we can equivalently define a dagger biproduct category as a
dagger symmetric monoidal category, together with natural families of morphisms

∆A : A → A⊗A, ✸A : A → I, ∇A : A⊗A → A, ✷A : I → A,

such that∆†
A = ∇A and ✸†

A = ✷A, satisfying the axioms in Table 7.

Graphical language. The graphical language of dagger biproduct categories is like
that of biproduct categories, where the dagger of a diagram is taken to be its mirror
image. For example,

⎡

⎢

⎢

⎣

  f
  g

⎤

⎥

⎥

⎦

†

=   g
  f

56

P. Selinger, “A survey of graphical languages for monoidal categories,” Lecture Notes in Physics, vol.
813, pp. 289–355, 2011.
R. P. James and A. Sabry, “Theseus: A high level language for reversible computing,” Work-in-progress
report presented at Reversible Computation, 2014.
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join inverse categories and re-
versible recursion



motivation

• Wanted: Categorical model rich enough to capture…
• partial injective functions (rfun isn’t total), and
• the two distinct notions of reversible recursion from rfun and
Theseus

• Starting point: Giles’ investigation of inverse categories as
models of reversible functional programming.

• Inverse categories: Special case of restriction categories,
categories with partiality.

B. G. Giles, “An investigation of some theoretical aspects of reversible computing,” PhD thesis,
University of Calgary, 2014.
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inverse categories

• A restriction category is a category where each f : A → B has a
restriction idempotent f : A → A (subject to axioms such as
f ◦ f = f , and others).

• Partial ordered enriched; for parallel morphisms f and g ,

f ≤ g iff g ◦ f = f

• Partial isomorphism: A morphism f : B → A with a partial
inverse f † : B → A such that f † ◦ f = f and f ◦ f † = f †.

• Inverse category: Restriction category with only partial
isomorphisms.

J. R. B. Cockett and S. Lack, “Restriction categories i: categories of partial maps,” Theoretical Com-
puter Science, vol. 270, no. 2002, pp. 223–259, 2002.
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join inverse categories

An inverse category is a join inverse category if it has

• a restriction zero, specifically all zero morphisms 0A,B : A → B ,
• a partial operation ∨ on all compatible subsets of all hom-sets,
satisfying

g ≤
∨
f∈F

f if g ∈ F , and if f ≤ h for all f ∈ F then
∨
f∈F

f ≤ h

and other axioms.
• We consider inverse categories with joins of countable sets.

X. Guo, “Products, joins, meets, and ranges in restriction categories,” PhD thesis, University of Cal-
gary, 2012.
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join inverse categories as cpo-categories

• Observation: The underlying sets for all ω-chains are
compatible.

• Idea: Given an ω-chain {fi}i∈ω , define sup {fi}i∈ω =
∨

i∈ω fi .
• Consequence (by Kleene’s fixed point theorem): Every
monotone and continuous morphism scheme of the form
f : Hom C(A,B) → Hom C(A,B) has a least fixed point
fix f : A → B .

• Morphism schemes in general look a whole lot like parametrized
maps à la Theseus…
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join inverse categories as cpo-categories

• Insight: The family of morphism schemes defined by
invA,B (f ) = f † is monotone, continuous, and an isomorphism
with inverse invB,A in each component.

• Every monotone and continuous morphism scheme of the form
f : Hom C(A,B) → Hom C(A,B) has a fixed point adjoint
f‡ : Hom C(B ,A) → Hom C(B ,A) such that (fix f )† = fix f‡.

• Trick: Define f‡ = invA,B ◦ f ◦ invB,A.

• This is precisely recursion à la rfun!
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join inverse categories as unique decomposition categories

• Unique decomposition categories (UDCs) are categories with…
• a partial sum operator Σ on countable families of parallel
morphisms, and

• a sum-like monoidal tensor · ⊕ ·

both subject to certain axioms.
• Result (Haghverdi): Given the existence of certain sums, UDCs
have a (uniform) trace.

• Idea: Define∑
i∈I fi =

∨
i∈I fi , and get the sum-like monoidal

tensor via a join-preserving disjointness tensor (Giles).

E. Haghverdi, “A categorical approach to linear logic, geometry of proofs and full completeness,”
PhD thesis, Carlton University and University of Ottawa, 2000, pp. 1–239.
B. G. Giles, “An investigation of some theoretical aspects of reversible computing,” PhD thesis,
University of Calgary, 2014.
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join inverse categories as unique decomposition categories

• Result: Not just a trace operator, but one satisfying the †-trace
condition

TrXA,B (f )
† = TrXB,A(f

†)

Theorem 7.12 (Representation of dagger braided/balanced/symmetric traced categories).
Every dagger braided [balanced, symmetric] traced category can be fully and faithfully
embedded in a dagger braided pivotal [dagger tortile, dagger compact closed] cate-
gory, via a dagger braided [balanced, symmetric] traced functor. ✷

The proof, in each case, is by Joyal, Street, and Verity’s Int-construction [24], which
respects the dagger structure.

Graphical languages. The graphical language of each class of traced categories ex-
tends to the corresponding dagger traced categories, in a way suggested by equation
(7.4). As usual, the dagger of a diagram is its mirror image, thus for example

⎡

⎢

⎢

⎢

⎢

⎢

⎣

X X

A
f

B

⎤

⎥

⎥

⎥

⎥

⎥

⎦

†

=
X X

B
f

A

The coherence theorems of Section 5 extend to this setting.

7.6 Dagger biproducts
In a dagger category, ifA⊕B is a categorical product (with projectionsπ1 : A⊕B → A
and π2 : A ⊕B → B), then it is automatically a coproduct (with injections π†

1 : A →
A ⊕ B and π†

2 : B → A ⊕ B). It therefore makes sense to define a notion of dagger
biproduct.

Definition. A dagger biproduct category is a biproduct category carrying a dagger
structure, such that π†

i = ιi : Ai → A1 ⊕A2 for i = 1, 2.

As in Section 6.3, we can equivalently define a dagger biproduct category as a
dagger symmetric monoidal category, together with natural families of morphisms

∆A : A → A⊗A, ✸A : A → I, ∇A : A⊗A → A, ✷A : I → A,

such that∆†
A = ∇A and ✸†

A = ✷A, satisfying the axioms in Table 7.

Graphical language. The graphical language of dagger biproduct categories is like
that of biproduct categories, where the dagger of a diagram is taken to be its mirror
image. For example,

⎡

⎢

⎢

⎣

  f
  g

⎤

⎥

⎥

⎦

†

=   g
  f
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for all f : A⊕X → B ⊕X .
• Reversible recursion à la Theseus and Π0!

P. Selinger, “A survey of graphical languages for monoidal categories,” Lecture Notes in Physics, vol.
813, pp. 289–355, 2011.
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concluding remarks



what i did not cover

• All of the gory details!
• A few more are in the abstract – for the rest, just ask!

• Using Adámek’s fixed point theorem, Guo’s join completion
theorem, and a few lemmas, we can also show faithful
embedding in algebraically ω-compact category: This models
isorecursive data types à la Theseus.
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conclusion

• By viewing join inverse categories as CPO-categories, we get
• fixed points of morphism schemes, modelling reversible recursion
à la rfun.

• Additionally assuming the existence of a join-preserving
disjointness tensor, we get

• a †-trace operator for modelling reversible tail recursion à la
Theseus and Π0.

• Next up:
• Use these insights to inform language design.
• Compact closed inverse categories – relation to partiality in
quantum computing?

• Suggestions? Talk to me!
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Thank you!
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