
..
hh.se

.
..

From Explicit to Implicit Dynamic Frames
in Java Dynamic Logic and KeY

.

Wojciech Mostowski
Halmstad University

.

NWPT 2015, 21st October 2015

.



..
hh.se

.

Overview

1 Context

2 Permission-based verification

3 Permissions with explicit framing

4 From self framing to implicit frames

5 Translation of Separation Logic

6 Wrap-up

.



..
hh.se

.

Projects.

VerCors:
Verification of Concurrent Data Structures
Permission-based Separation Logic for Java
JML with permissions on the specification layer
Automated tool support, Chalice/Silicon based
http://fmt.cs.utwente.nl/research/projects/VerCors/

KeY:
Deductive Verification of Object-Oriented Programs
Emphasis on Java, based on Dynamic Logic
Specification language JML with dynamic frames – JML*
Self-contained, automated interactive verifier
http://www.key-project.org

Both work with Design-by-Contract principles and (modified) JML

Marriage of the two to enable interactive verification with permissions

.

http://fmt.cs.utwente.nl/research/projects/VerCors/
http://www.key-project.org


..
hh.se

.

Projects.

VerCors:
Verification of Concurrent Data Structures
Permission-based Separation Logic for Java
JML with permissions on the specification layer
Automated tool support, Chalice/Silicon based
http://fmt.cs.utwente.nl/research/projects/VerCors/

KeY:
Deductive Verification of Object-Oriented Programs
Emphasis on Java, based on Dynamic Logic
Specification language JML with dynamic frames – JML*
Self-contained, automated interactive verifier
http://www.key-project.org

Both work with Design-by-Contract principles and (modified) JML

Marriage of the two to enable interactive verification with permissions

.

http://fmt.cs.utwente.nl/research/projects/VerCors/
http://www.key-project.org


..
hh.se

.

Projects.

VerCors:
Verification of Concurrent Data Structures
Permission-based Separation Logic for Java
JML with permissions on the specification layer
Automated tool support, Chalice/Silicon based
http://fmt.cs.utwente.nl/research/projects/VerCors/

KeY:
Deductive Verification of Object-Oriented Programs
Emphasis on Java, based on Dynamic Logic
Specification language JML with dynamic frames – JML*
Self-contained, automated interactive verifier
http://www.key-project.org

Both work with Design-by-Contract principles and (modified) JML

Marriage of the two to enable interactive verification with permissions

.

http://fmt.cs.utwente.nl/research/projects/VerCors/
http://www.key-project.org


..
hh.se

.

Classical Permission-Based Reasoning

Specifications provide permission annotations (fractions)

Programs are verified (thread locally) w.r.t. these annotations

Each heap read access guarded by p≤ 1 (or 100%)

Each heap write access guarded by p= 1

Synchronisation:
Forking & locking
Permission transfers (produce/consume style)

[Resource invariants]

Verification guarantees non-interference for heap access
(absence of data races)

Representatives: Separation Logic and Implicit Dynamic Frames

.



..
hh.se

.

Classical Permission-Based Reasoning

Specifications provide permission annotations (fractions)

Programs are verified (thread locally) w.r.t. these annotations

Each heap read access guarded by p≤ 1 (or 100%)

Each heap write access guarded by p= 1

Synchronisation:
Forking & locking
Permission transfers (produce/consume style)

[Resource invariants]

Verification guarantees non-interference for heap access
(absence of data races)

Representatives: Separation Logic and Implicit Dynamic Frames

.



..
hh.se

.

Classical Permission-Based Reasoning

Specifications provide permission annotations (fractions)

Programs are verified (thread locally) w.r.t. these annotations

Each heap read access guarded by p≤ 1 (or 100%)

Each heap write access guarded by p= 1

Synchronisation:
Forking & locking
Permission transfers (produce/consume style)

[Resource invariants]

Verification guarantees non-interference for heap access
(absence of data races)

Representatives: Separation Logic and Implicit Dynamic Frames

.



..
hh.se

.

Classical Permission-Based Reasoning

Example

class Counter {
int c;

//@ requires Perm(this.c, 1); ensures Perm(this.c, 1);
void increase() { this.c++; }

void use() { lock(); increase(); unlock(); }

//@ requires true; ensures Perm(this.c, 1);
native void lock();

//@ requires Perm(this.c, 1); ensures true;
native void unlock();

}

.



..
hh.se

.

Explicit and Implicit Framing

In Separation Logic-like reasoning framing is implicit:
Write permission indicates that a location might be changed

Read permission indicates that a location might be read

Both are very important for modular reasoning

Heap locations without permission are out of scope

JML* and Java Dynamic Logic are based on the original dynamic frames idea
where framing is explicit:

Explicitly listed read and write frames (accessible & assignable)

Explicit heap (logic) variable

Changes specified in terms of old and new values (\old)

Frames can be abstract

.



..
hh.se

.

Explicit and Implicit Framing

In Separation Logic-like reasoning framing is implicit:
Write permission indicates that a location might be changed

Read permission indicates that a location might be read

Both are very important for modular reasoning

Heap locations without permission are out of scope

JML* and Java Dynamic Logic are based on the original dynamic frames idea
where framing is explicit:

Explicitly listed read and write frames (accessible & assignable)

Explicit heap (logic) variable

Changes specified in terms of old and new values (\old)

Frames can be abstract

.



..
hh.se

.

Example

JML*

class Counter {
int c; //@ model \locset fp = this.c;

//@ ensures this.c == \old(this.c) + 1; assignable fp;
void increase() { this.c++; }

//@ ensures \result == this.c; accessible fp;
int /*@ strictly_pure @*/ get() { return this.c; }

}

.

Java Dynamic Logic

∀o:Object,f:Field (o, f) ∈ fp ∨ o.f@heap= o.f@heapAtPre (assignable)

get() = {heap := anon(heap,allLocs \ fp,anonHeap)}get() (accessible)

.



..
hh.se

.

Example

JML*

class Counter {
int c; //@ model \locset fp = this.c;

//@ ensures this.c == \old(this.c) + 1; assignable fp;
void increase() { this.c++; }

//@ ensures \result == this.c; accessible fp;
int /*@ strictly_pure @*/ get() { return this.c; }

}

.Java Dynamic Logic

∀o:Object,f:Field (o, f) ∈ fp ∨ o.f@heap= o.f@heapAtPre (assignable)

get() = {heap := anon(heap,allLocs \ fp,anonHeap)}get() (accessible)

.



..
hh.se

.

Permissions in JML*

1 Permission system that allows for the new=modified old specification style
Symbolic permissions

Additional flexibility for complex permission flows

2 Second heap to store permissions
Parallel to the regular heap

Separate framing

Heaps named explicitly

Can be switched-off – sequential reasoning

3 Method to show self-framing of specifications w.r.t. permissions
Self-framing is not automatic like in Separation Logic

4 Modular specifications with abstractions – synchronisation through Java API

.



..
hh.se

.

Permissions in JML*

1 Permission system that allows for the new=modified old specification style
Symbolic permissions

Additional flexibility for complex permission flows

2 Second heap to store permissions
Parallel to the regular heap

Separate framing

Heaps named explicitly

Can be switched-off – sequential reasoning

3 Method to show self-framing of specifications w.r.t. permissions
Self-framing is not automatic like in Separation Logic

4 Modular specifications with abstractions – synchronisation through Java API

.



..
hh.se

.

Permissions in JML*

1 Permission system that allows for the new=modified old specification style
Symbolic permissions

Additional flexibility for complex permission flows

2 Second heap to store permissions
Parallel to the regular heap

Separate framing

Heaps named explicitly

Can be switched-off – sequential reasoning

3 Method to show self-framing of specifications w.r.t. permissions
Self-framing is not automatic like in Separation Logic

4 Modular specifications with abstractions – synchronisation through Java API

.



..
hh.se

.

Permissions in JML*

1 Permission system that allows for the new=modified old specification style
Symbolic permissions

Additional flexibility for complex permission flows

2 Second heap to store permissions
Parallel to the regular heap

Separate framing

Heaps named explicitly

Can be switched-off – sequential reasoning

3 Method to show self-framing of specifications w.r.t. permissions
Self-framing is not automatic like in Separation Logic

4 Modular specifications with abstractions – synchronisation through Java API

.



..
hh.se

.

Permissions in JML*

Example

public class ArrayList {
Object[] cnt; int s; //@ model \locset fp = s, cnt, cnt[*];

//@ requires \readPerm(\perm(s));
//@ ensures \result == s;
//@ accessible<heap> fp; accessible<permissions> \nothing;
/*@ pure @*/ int size() { return s; }

//@ requires \readPerm(\perm(cnt));
//@ requires \writePerm(\perm(s)) && \writePerm(\perm(cnt[s]));
//@ ensures size() == \old(size()) + 1;
//@ assignable<heap> fp; assignable<permissions> \strictly_nothing;
void add(Object o) { cnt[s++] = o; }

}

.



..
hh.se

.

Permissions in JML*

Example

public class ArrayList {
Object[] cnt; int s; //@ model \locset fp = s, cnt, cnt[*];

//@ requires \readPerm(\perm(s));
//@ ensures \result == s;
//@ accessible<heap> fp; accessible<permissions> \nothing;
/*@ pure @*/ int size() { return s; }

//@ requires \readPerm(\perm(cnt));
//@ requires \writePerm(\perm(s)) && \writePerm(\perm(cnt[s]));
//@ ensures size() == \old(size()) + 1;
//@ assignable<heap> fp; assignable<permissions> \strictly_nothing;
void add(Object o) { cnt[s++] = o; }

}

.



..
hh.se

.

Specification Self-Framing

Sound

//@ requires \writePerm(\perm(this.f)); ensures this.f == v;
//@ assignable this.f; assignable<permissions> \nothing;
void setF(int v) { this.f = v; }

Additional Proof Obligation in Java DL

Involves on-the-fly building of frame – Implicit Dynamic Frames

.



..
hh.se

.

Specification Self-Framing

Sound

//@ requires \writePerm(\perm(this.f)); ensures this.f == v;
//@ assignable this.f; assignable<permissions> \nothing;
void setF(int v) { this.f = v; }

Unsound

//@ requires \writePerm(\perm(this.f));
//@ ensures this.f == v;
//@ assignable this.f; assignable<permissions> this.f;
void setFandUnlock(int v) { this.f = v; l.unlock(); }

Additional Proof Obligation in Java DL

Involves on-the-fly building of frame – Implicit Dynamic Frames

.



..
hh.se

.

Specification Self-Framing

Sound

//@ requires \writePerm(\perm(this.f)); ensures this.f == v;
//@ assignable this.f; assignable<permissions> \nothing;
void setF(int v) { this.f = v; }

Corrected

//@ requires \writePerm(\perm(this.f));
//@ ensures \readPerm(\perm(this.f)) && this.f == v;
//@ assignable this.f; assignable<permissions> this.f;
void setFandUnlock(int v) { this.f = v; l.unlock(); }

Additional Proof Obligation in Java DL

Involves on-the-fly building of frame – Implicit Dynamic Frames

.



..
hh.se

.

Specification Self-Framing

Sound

//@ requires \writePerm(\perm(this.f)); ensures this.f == v;
//@ assignable this.f; assignable<permissions> \nothing;
void setF(int v) { this.f = v; }

Corrected

//@ requires \writePerm(\perm(this.f));
//@ ensures \readPerm(\perm(this.f)) && this.f == v;
//@ assignable this.f; assignable<permissions> this.f;
void setFandUnlock(int v) { this.f = v; l.unlock(); }

Additional Proof Obligation in Java DL

Involves on-the-fly building of frame – Implicit Dynamic Frames

.



..
hh.se

.

Removing Explicit Frames

assignable & accessible clauses are redundant

Whatever the method reads or writes requires a permission in the precondition

These permissions determine both frames and they are verified

[Can also be easily over-approximated!]

But, this works well for the regular heap, permission heap is usually untouched

In particular, a write frame indicates that a location is possibly modified

Imposing the permission-based frame on the permission heap means that
corresponding permissions might be modified, in particular lost

Not a problem with a dedicated explicit frame
assignable<permissions> \strictly_nothing;

Untouched permissions have to be repeated in postconditions
(like in Separation Logic)

New keyword – \samePerm

.



..
hh.se

.

Removing Explicit Frames

assignable & accessible clauses are redundant

Whatever the method reads or writes requires a permission in the precondition

These permissions determine both frames and they are verified

[Can also be easily over-approximated!]

But, this works well for the regular heap, permission heap is usually untouched

In particular, a write frame indicates that a location is possibly modified

Imposing the permission-based frame on the permission heap means that
corresponding permissions might be modified, in particular lost

Not a problem with a dedicated explicit frame
assignable<permissions> \strictly_nothing;

Untouched permissions have to be repeated in postconditions
(like in Separation Logic)

New keyword – \samePerm

.



..
hh.se

.

Removing Explicit Frames

assignable & accessible clauses are redundant

Whatever the method reads or writes requires a permission in the precondition

These permissions determine both frames and they are verified

[Can also be easily over-approximated!]

But, this works well for the regular heap, permission heap is usually untouched

In particular, a write frame indicates that a location is possibly modified

Imposing the permission-based frame on the permission heap means that
corresponding permissions might be modified, in particular lost

Not a problem with a dedicated explicit frame
assignable<permissions> \strictly_nothing;

Untouched permissions have to be repeated in postconditions
(like in Separation Logic)

New keyword – \samePerm

.



..
hh.se

.

Removing Explicit Frames

assignable & accessible clauses are redundant

Whatever the method reads or writes requires a permission in the precondition

These permissions determine both frames and they are verified

[Can also be easily over-approximated!]

But, this works well for the regular heap, permission heap is usually untouched

In particular, a write frame indicates that a location is possibly modified

Imposing the permission-based frame on the permission heap means that
corresponding permissions might be modified, in particular lost

Not a problem with a dedicated explicit frame
assignable<permissions> \strictly_nothing;

Untouched permissions have to be repeated in postconditions
(like in Separation Logic)

New keyword – \samePerm

.



..
hh.se

.

Removing Explicit Frames

assignable & accessible clauses are redundant

Whatever the method reads or writes requires a permission in the precondition

These permissions determine both frames and they are verified

[Can also be easily over-approximated!]

But, this works well for the regular heap, permission heap is usually untouched

In particular, a write frame indicates that a location is possibly modified

Imposing the permission-based frame on the permission heap means that
corresponding permissions might be modified, in particular lost

Not a problem with a dedicated explicit frame
assignable<permissions> \strictly_nothing;

Untouched permissions have to be repeated in postconditions
(like in Separation Logic)

New keyword – \samePerm

.



..
hh.se

.

Removing Explicit Frames

assignable & accessible clauses are redundant

Whatever the method reads or writes requires a permission in the precondition

These permissions determine both frames and they are verified

[Can also be easily over-approximated!]

But, this works well for the regular heap, permission heap is usually untouched

In particular, a write frame indicates that a location is possibly modified

Imposing the permission-based frame on the permission heap means that
corresponding permissions might be modified, in particular lost

Not a problem with a dedicated explicit frame
assignable<permissions> \strictly_nothing;

Untouched permissions have to be repeated in postconditions
(like in Separation Logic)

New keyword – \samePerm

.



..
hh.se

.

Removing Explicit Frames

assignable & accessible clauses are redundant

Whatever the method reads or writes requires a permission in the precondition

These permissions determine both frames and they are verified

[Can also be easily over-approximated!]

But, this works well for the regular heap, permission heap is usually untouched

In particular, a write frame indicates that a location is possibly modified

Imposing the permission-based frame on the permission heap means that
corresponding permissions might be modified, in particular lost

Not a problem with a dedicated explicit frame
assignable<permissions> \strictly_nothing;

Untouched permissions have to be repeated in postconditions
(like in Separation Logic)

New keyword – \samePerm

.



..
hh.se

.

Repeating Permissions

Example

public class ArrayList {
Object[] cnt; int s;

//@ requires \readPerm(\perm(s));
//@ ensures \result == s;
//@ ensures \samePerm(\perm(s));
/*@ pure @*/ int size() { return s; }

//@ requires \readPerm(\perm(cnt));
//@ requires \writePerm(\perm(s)) && \writePerm(\perm(cnt[s]));
//@ ensures size() == \old(size()) + 1;
//@ ensures \samePerm(\perm(cnt));
//@ ensures \samePerm(\perm(s)) && \samePerm(\perm(cnt[s]));
void add(Object o) { cnt[s++] = o; }

}

.



..
hh.se

.

Repeating Permissions

Example

public class ArrayList {
Object[] cnt; int s;

//@ requires \readPerm(\perm(s));
//@ ensures \result == s;
//@ ensures \samePerm(\perm(s));
/*@ pure @*/ int size() { return s; }

//@ requires \readPerm(\perm(cnt));
//@ requires \writePerm(\perm(s)) && \writePerm(\perm(cnt[s]));
//@ ensures size() == \old(size()) + 1;
//@ ensures \samePerm(\perm(cnt));
//@ ensures \samePerm(\perm(s)) && \samePerm(\perm(cnt[s]));
void add(Object o) { cnt[s++] = o; }

}

.



..
hh.se

.

Dynamic Frame Construction

Anonymisation (havocing) function to prove the accessible frame:

get() = {heap := anon(heap,allLocs \ fp,anonHeap)}get()

To prove self-framing – collect the frame from the specification:

pre ∧ ∀o:Object,f:Field readPerm(o.f@permissions)→ (o, f) ∈ readLocs
→ pre= {heap := anon(heap,allLocs\readLocs,anonHeap)}pre

Read frame is constructed on-the-fly!

A write frame is dynamically constructed with:

pre ∧ ∀o:Object,f:Field writePerm(o.f@permissions)→ (o, f) ∈ writeLocs

.



..
hh.se

.

Dynamic Frame Construction

Anonymisation (havocing) function to prove the accessible frame:

get() = {heap := anon(heap,allLocs \ fp,anonHeap)}get()

To prove self-framing – collect the frame from the specification:

pre ∧ ∀o:Object,f:Field readPerm(o.f@permissions)→ (o, f) ∈ readLocs
→ pre= {heap := anon(heap,allLocs\readLocs,anonHeap)}pre

Read frame is constructed on-the-fly!

A write frame is dynamically constructed with:

pre ∧ ∀o:Object,f:Field writePerm(o.f@permissions)→ (o, f) ∈ writeLocs

.



..
hh.se

.

Dynamic Frame Construction

Anonymisation (havocing) function to prove the accessible frame:

get() = {heap := anon(heap,allLocs \ fp,anonHeap)}get()

To prove self-framing – collect the frame from the specification:

pre ∧ ∀o:Object,f:Field readPerm(o.f@permissions)→ (o, f) ∈ readLocs
→ pre= {heap := anon(heap,allLocs\readLocs,anonHeap)}pre

Read frame is constructed on-the-fly!

A write frame is dynamically constructed with:

pre ∧ ∀o:Object,f:Field writePerm(o.f@permissions)→ (o, f) ∈ writeLocs

.



..
hh.se

.

Dynamic Frame Construction

Anonymisation (havocing) function to prove the accessible frame:

get() = {heap := anon(heap,allLocs \ fp,anonHeap)}get()

To prove self-framing – collect the frame from the specification:

pre ∧ ∀o:Object,f:Field readPerm(o.f@permissions)→ (o, f) ∈ readLocs
→ pre= {heap := anon(heap,allLocs\readLocs,anonHeap)}pre

Read frame is constructed on-the-fly!

A write frame is dynamically constructed with:

pre ∧ ∀o:Object,f:Field writePerm(o.f@permissions)→ (o, f) ∈ writeLocs

.



..
hh.se

.

To Separation Logic

Very fine grained separation of heaps – single locations

In practice needed only for whole footprints of expressions
e.g. state of obj1 does not interfere with state of obj2

KeY and Java Dynamic Logic have facilities for that

But treatment of magic wand operator –* unclear (yet)

.



..
hh.se

.

To Separation Logic

Very fine grained separation of heaps – single locations

In practice needed only for whole footprints of expressions
e.g. state of obj1 does not interfere with state of obj2

KeY and Java Dynamic Logic have facilities for that

But treatment of magic wand operator –* unclear (yet)

.



..
hh.se

.

To Separation Logic

Very fine grained separation of heaps – single locations

In practice needed only for whole footprints of expressions
e.g. state of obj1 does not interfere with state of obj2

KeY and Java Dynamic Logic have facilities for that

But treatment of magic wand operator –* unclear (yet)

.



..
hh.se

.

To Separation Logic

Very fine grained separation of heaps – single locations

In practice needed only for whole footprints of expressions
e.g. state of obj1 does not interfere with state of obj2

KeY and Java Dynamic Logic have facilities for that

But treatment of magic wand operator –* unclear (yet)

.



..
hh.se

.

Conclusions

Work in progress (even the explicit solution not yet fully implemented)

Not discussed – modular specifications for API-based synchronisation
Scales up from the explicit frames solution

KeY implementation very flexible, but going fully implicit is a big step
Need to keep the implementation modular in this respect

Unknown interactions with other KeY developments,
e.g. information flow calculus & extension

Not working yet, but can show explicit frames version working

.



..
hh.se

.

Conclusions

Work in progress (even the explicit solution not yet fully implemented)

Not discussed – modular specifications for API-based synchronisation
Scales up from the explicit frames solution

KeY implementation very flexible, but going fully implicit is a big step
Need to keep the implementation modular in this respect

Unknown interactions with other KeY developments,
e.g. information flow calculus & extension

Not working yet, but can show explicit frames version working

.



..
hh.se

.

The End

Thank You!

.


	Context
	Permission-based verification
	Permissions with explicit framing
	From self framing to implicit frames
	Translation of Separation Logic
	Wrap-up

