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Motivation

Why is parity game solving important?

Solving parity games is polynomial-time equivalent to

µ-calculus model-checking

Solving boolean equation systems

Emptiness of parity tree automata on infinite binary trees.

Various problems are reducible to parity games, e.g.

Satisfiability problems

Model-checking problems

Synthesis problems

(though, not necessarily by polynomial-time reductions)
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Motivation

Complexity Status

It is unknown whether ParityGame is in PTime.
We know:

Paritygame is in NP ∩ co-NP implying

If it is NP-complete then NP = co-NP
If it is not solvable in PTime then P 6= NP

For a fixed maximal color d , it is in PTime
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Motivation

Existing Algorithms

The best current algorithms for solving parity games are

Zielonkas Recursive algorithm O(nd) and O(2n) [Zielonka, 1998]

Small Progress Measures O(d ·m · (n/d)d/2) [Jurdzinski, 1998]

Strategy Improvement O(n ·m · 2m) [Vöge and Jurdzinski, 2000]

Dominion Decomposition O(n
√
n) [Jurdzinski et al., 2006]

Big Step Algorithms O(m · nd/3) [Schewe, 2007]

where n is the number of states, m is the number of transitions, d is the
maximal color of the game.
Note: d ≤ n
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Motivation

Contributions

We introduce and study winning cores
They are interesting because they provide

1 knowledge about parity games

2 a new direction for solving parity games

3 a polynomial-time approximation algorithm for solving parity games
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Introducing parity games

A game graph

Player 0 state

Player 1 state

Transition

• Current state

•
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Introducing parity games

A Parity Game

Player 0 state

Player 1 state

Transition

• Current state

0, ..., d Colors

4 1 2

0 3

1 2

Player 0 wants the largest color infinitely often visited is even

Player 1 wants the largest color infinitely often visited is odd
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Introducing parity games

Determinacy

A game is determined if for every state s either

Player 0 can ensure winning from s or

Player 1 can ensure winning from s

Theorem ([Ehrenfeucht and Mycielski, 1979])

Parity games are determined

G : A parity game
Wj(G) : Set of winning states for player j
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Introducing parity games

Determinacy Example

4 1 2

0 3

1 2

W0(G)

W1(G)
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Introducing parity games

Solving parity games

ParityGame
Input: A parity game G
Output: W0(G),W1(G)
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Contributions Winning cores

Dominating sequences

A sequence ρ = s0s1... of states is

0-dominating if maxi>0(c(si )) is even

1-dominating if maxi>0(c(si )) is odd

Note: Initial state does not count

1 4 3 4 3 6 2 3 2 3 2 3 ...

0-dominating 1-dominating
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Contributions Winning cores

Consecutive j-dominating sequences

A sequence ρ = s0s1... begins with k consecutive j-dominating sequences
if ∃i0 < i1... < ik such that

i0 = 0

ρi`ρi`+1...ρi`+1
is j-dominating for all 0 ≤ ` < k

1 4 3 4 3 6 2 3 2 3 2 3 ...

0-dominating

1-dominating
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Contributions Winning cores

Winning core

Winning core Aj(G) for player j in game G:

Set of states from which player j can force the play to begin with an
infinite number of consecutive j-dominating sequences.
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Contributions Winning cores

Winning core example

4 1 2

0 3

1 2

W0(G)

W1(G)

A1(G)
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Contributions Winning cores

Properties of winning cores

Theorem

Aj(G) ⊆Wj(G)

Aj(G) = ∅ ⇔Wj(G) = ∅

W0(G)

W1(G)

A0(G)

A1(G)

G

Figure : The sequence A0,A1, ... converging to the winning core A for player 0
illustrated to the left. On the right is the attractor A′ = Attr0(G,A) and the
winning sets in the game G′ = G � (S \ A′).
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Contributions Winning cores

Winning cores and dominions

A j-dominion D is a set of states so player j can make sure that both

1 the play stays in D and

2 that player j wins the play

Interestingly, the winning core Aj(G) is not necessarily a j-dominion.
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Contributions Winning cores

Complexity of computing winning cores

Theorem

There is a polynomial-time reduction from ParityGame to computing
winning cores and vice versa

Corollary

Computing winning cores is in NP ∩ co-NP

Computing winning cores is in P if and only if ParityGame is in P
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Contributions Winning cores

Computing winning regions using winning cores

ParityGameSolver(G):
A←WinningCore(G, 0)
B ←WinningCore(G, 1)
if A = ∅ and B = ∅ then

return (∅, ∅)
end if
A′ = Attr0(G,A)
B ′ = Attr1(G,B)
(W0,W1)← ParityGameSolver(G \ (A′ ∪ B ′))
return (A′ ∪W0,B

′ ∪W1)

Note: If WinningCore(G, j) returns a subset of Aj(G) then
ParityGameSolver(G) returns subsets of the winning regions
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Contributions An approximation algorithm

An underapproximation algorithm

WinningCoreApp(G, j):
A← S
A′ ← ∅
while A 6= A′ do

A′ ← A
A← {s | Player j can ensure a j-dominating sequence ending in A′}

end while
return A

Note: Returns subset of Aj(G)
Combined with previous slide, gives underapproximations of winning
regions in time O(d · n2 · (n + m)) and O(n + m + d) space.
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Contributions An approximation algorithm

Quality of approximation algorithm

No guarantees on the quality of underapproximations :(
But:

1 It is easy to check whether entire winning region is returned

2 Preliminary experimental results on

Random games
Difficult benchmark games
A few verification cases

are promising both w.r.t.

(Quality) All benchmark games and verification cases solved
completely. High ratio of random games solved
(Running time) It outperforms existing algorithms in most cases
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Contributions Experimental results

Experiments - overview

Algorithm implemented in PgSolver framework in OCaml

PgSolver has implementations of state-of-the-art algorithms for
comparison

Performed on an Intel(R) Core(TM) i7-4610M Processor (2.90 GHz)
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Contributions Experimental results

Experimental results - random games

Ratio (in %) of games where the algorithm did not return the entire
winning region

d = 4 d = d
√

ne d = n

n\b 2 5 10 2 5 10 2 5 10

100 0.11 0.20 0.00 0.80 0.04 0.00 1.37 0.05 0.00
1000 0.01 0.00 0.00 2.79 0.00 0.00 4.66 0.00 0.00

n is the number of states, d is the number of colors and b is the
out-degree.
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Contributions Experimental results

Experimental results - hard games
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Contributions Experimental results

Experimental results - hard games
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Contributions Experimental results

Experimental results - verification case studies
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Contributions Experimental results

Experimental results - verification case studies
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Summary

Summary

We have

Introduced winning cores

Shown interesting properties

Provided an approximation algorithm for parity games

Shown promising initial experimental results

Open questions

For which games does the approximation algorithm give correct
results?

Do winning cores have further interesting properties?

Are there fast deterministic algorithms for computing winning cores?

Can winning cores be computed in polynomial time?
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