Winning Cores in Parity Games

Steen Vester

DTU Compute

October 22, 2015

S. Vester (DTU Compute)

Winning Cores in Parity Games

October 22, 2015 1 / 35

- < ∃ →

DTU

Outline

Introducing parity games

3 Contributions

- Winning cores
- An approximation algorithm
- Experimental results

∃ → (∃ →

Outline

Introducing parity game

3 Contributions

- Winning cores
- An approximation algorithm
- Experimental results

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Why is parity game solving important?

Solving parity games is **polynomial-time equivalent** to

- μ -calculus model-checking
- Solving boolean equation systems
- Emptiness of parity tree automata on infinite binary trees.

Various problems are reducible to parity games, e.g.

- Satisfiability problems
- Model-checking problems
- Synthesis problems

(though, not necessarily by polynomial-time reductions)

・ 同 ト ・ ヨ ト ・ ヨ ト

Complexity Status

It is unknown whether $\operatorname{PARITY}GAME$ is in $\operatorname{PTIME}.$ We know:

- PARITYGAME is in $NP \cap CO$ -NP implying
 - If it is NP-complete then NP = CO-NP
 - $\bullet~$ If it is not solvable in PTIME then $\mathsf{P}\neq\mathsf{NP}$
- For a fixed maximal color d, it is in PTIME

3 > < 3 >

Existing Algorithms

The best current algorithms for solving parity games are

- Zielonkas Recursive algorithm $O(n^d)$ and $O(2^n)$ [Zielonka, 1998]
- Small Progress Measures $O(d \cdot m \cdot (n/d)^{d/2})$ [Jurdzinski, 1998]
- Strategy Improvement $O(n \cdot m \cdot 2^m)$ [Vöge and Jurdzinski, 2000]
- Dominion Decomposition $O(n^{\sqrt{n}})$ [Jurdzinski et al., 2006]
- Big Step Algorithms $O(m \cdot n^{d/3})$ [Schewe, 2007]

where n is the number of states, m is the number of transitions, d is the maximal color of the game.

Note: $d \leq n$

3

< ロト < 同ト < ヨト < ヨト

Contributions

We introduce and study **winning cores** They are interesting because they provide

- In the second second
- a new direction for solving parity games
- **③** a polynomial-time **approximation algorithm** for solving parity games

E 5 4 E 5

Outline

Introducing parity games

3 Contributions

- Winning cores
- An approximation algorithm
- Experimental results

- (四) - (三) - (三)

Player 1 state

- \longrightarrow Transition
- Current state

Player 1 state

- \longrightarrow Transition
- Current state

- \longrightarrow Transition
- Current state

Player 1 state

- \longrightarrow Transition
- Current state

- \longrightarrow Transition
- Current state

通 ト イヨ ト イヨト

Player 1 state

- \longrightarrow Transition
- Current state

Player 1 state

- \longrightarrow Transition
- Current state

Player 1 state

- \longrightarrow Transition
- Current state

A Parity Game

- Player ${\bf 0}$ wants the largest color infinitely often visited is ${\bf even}$
- Player 1 wants the largest color infinitely often visited is odd

< 4 → <

Determinacy

A game is **determined** if for every state s either

- Player 0 can ensure winning from s or
- Player 1 can ensure winning from s

Theorem ([Ehrenfeucht and Mycielski, 1979])

Parity games are determined

G : A parity game $W_j(G)$: Set of winning states for player j

Determinacy Example

October 22, 2015 12 / 35

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

DTU

Determinacy Example

S. Vester (DTU Compute)

October 22, 2015 12 / 35

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

DTU

Solving parity games

PARITYGAME INPUT: A parity game \mathcal{G} OUTPUT: $W_0(\mathcal{G}), W_1(\mathcal{G})$

S. Vester (DTU Compute)

Winning Cores in Parity Games

October 22, 2015 13 / 35

Outline

Introducing parity games

Contributions

- Winning cores
- An approximation algorithm
- Experimental results

- ∢ ≣ →

Dominating sequences

A sequence $\rho = s_0 s_1 \dots$ of states is

- 0-dominating if $\max_{i>0}(c(s_i))$ is even
- 1-dominating if $\max_{i>0}(c(s_i))$ is odd

Note: Initial state does not count

$$(1) \rightarrow (4) \rightarrow (3) \rightarrow (4) \rightarrow (3) \qquad (6) \rightarrow (2) \rightarrow (3) \rightarrow (3) \rightarrow (2) \rightarrow (3) \rightarrow (3)$$

0-dominating

1-dominating

∃ → (∃ →

A 🖓 h

Consecutive *j*-dominating sequences

A sequence $\rho = s_0 s_1 \dots$ begins with k consecutive j-dominating sequences if $\exists i_0 < i_1 \dots < i_k$ such that

- *i*₀ = 0
- $\rho_{i_{\ell}} \rho_{i_{\ell}+1} ... \rho_{i_{\ell+1}}$ is *j*-dominating for all $0 \leq \ell < k$

$$(1 \rightarrow 4 \rightarrow 3 \rightarrow 4 \rightarrow 3) \qquad (6 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 3 \rightarrow \cdots$$

0-dominating 1-dominating

S. Vester (DTU Compute)

Winning Cores in Parity Games

October 22, 2015 16 / 35

< 回 > < 三 > < 三 >

Winning core

Winning core $A_j(\mathcal{G})$ for player *j* in game \mathcal{G} :

Set of **states** from which player *j* can **force** the play to begin with an **infinite number** of consecutive *j*-dominating sequences.

(人間) トイヨト イヨト

Winning core example

October 22, 2015 18 / 35

3

▲圖▶ ▲ 国▶ ▲ 国▶

DTU

Properties of winning cores

Theorem

• $A_j(\mathcal{G}) \subseteq W_j(\mathcal{G})$

•
$$A_j(\mathcal{G}) = \emptyset \Leftrightarrow W_j(\mathcal{G}) = \emptyset$$

S. Vester (DTU Compute)

Winning cores and dominions

A *j*-dominion D is a set of states so player j can make sure that both

- 2 that player j wins the play

Interestingly, the winning core $A_j(\mathcal{G})$ is not necessarily a *j*-dominion.

- E

Complexity of computing winning cores

Theorem

There is a **polynomial-time reduction** from **PARITYGAME** to computing winning cores and vice versa

Corollary

- Computing winning cores is in $NP \cap CO-NP$
- Computing winning cores is in P if and only if PARITYGAME is in P

October 22, 2015

Computing winning regions using winning cores

ParityGameSolver(\mathcal{G}): $A \leftarrow WINNINGCORE(\mathcal{G}, 0)$ $B \leftarrow WINNINGCORE(\mathcal{G}, 1)$ if $A = \emptyset$ and $B = \emptyset$ then return (\emptyset, \emptyset) end if $A' = Attr_0(\mathcal{G}, A)$ $B' = Attr_1(\mathcal{G}, B)$ $(W_0, W_1) \leftarrow PARITYGAMESOLVER(\mathcal{G} \setminus (A' \cup B'))$ return $(A' \cup W_0, B' \cup W_1)$

Note: If WINNINGCORE(\mathcal{G} , j) returns a subset of $A_j(\mathcal{G})$ then PARITYGAMESOLVER(\mathcal{G}) returns subsets of the winning regions

- 4 同 6 4 日 6 4 日 6

An underapproximation algorithm

```
 \begin{array}{l} \textbf{WinningCoreApp}(\mathcal{G}, j): \\ A \leftarrow S \\ A' \leftarrow \emptyset \\ \textbf{while} \quad A \neq A' \quad \textbf{do} \\ A' \leftarrow A \\ A \leftarrow \{s \mid \text{Player } j \text{ can ensure a } j \text{-dominating sequence ending in } A'\} \\ \textbf{end while} \\ \textbf{return } A \end{array}
```

Note: Returns subset of $A_j(\mathcal{G})$ Combined with previous slide, gives **underapproximations** of **winning regions** in time $O(d \cdot n^2 \cdot (n+m))$ and O(n+m+d) space.

23 / 35

< 回 > < 三 > < 三 >

Quality of approximation algorithm

No guarantees on the quality of underapproximations :(**But:**

- **1** It is **easy to check** whether entire winning region is returned
- Preliminary experimental results on
 - Random games
 - Difficult benchmark games
 - A few verification cases
 - are promising both w.r.t.
 - (Quality) All benchmark games and verification cases solved completely. High ratio of random games solved
 - (Running time) It outperforms existing algorithms in most cases

24 / 35

< 回 > < 三 > < 三 >

Experiments - overview

- \bullet Algorithm implemented in $\operatorname{PgSolVeR}$ framework in OCaml
- PGSOLVER has implementations of state-of-the-art algorithms for comparison
- Performed on an Intel(R) Core(TM) i7-4610M Processor (2.90 GHz)

E N 4 E N

Experimental results - random games

Ratio (in %) of games where the algorithm did not return the entire winning region

	<i>d</i> = 4			$d = \lceil \sqrt{n} \rceil$			d = n		
n b	2	5	10	2	5	10	2	5	10
100	0.11	0.20	0.00	0.80	0.04	0.00	1.37	0.05	0.00
1000	0.01	0.00	0.00	2.79	0.00	0.00	4.66	0.00	0.00

n is the number of states, d is the number of colors and b is the out-degree.

(日) (同) (三) (三)

Experimental results - hard games

n

October 22, 2015

10000

27 / 35

Experimental results - hard games

Experimental results - hard games

October 22, 2015 29 / 35

Experimental results - verification case studies

Experimental results - verification case studies

Experimental results - verification case studies

Outline

Introducing parity games

3 Contributions

- Winning cores
- An approximation algorithm
- Experimental results

- 4 週 1 - 4 三 1 - 4 三 1

DTU

Summary

We have

- Introduced winning cores
- Shown interesting properties
- Provided an approximation algorithm for parity games
- Shown promising initial experimental results

Open questions

- For which games does the approximation algorithm give correct results?
- Do winning cores have further interesting properties?
- Are there fast deterministic algorithms for computing winning cores?
- Can winning cores be computed in polynomial time?

Bibliography

- Ehrenfeucht, A. and Mycielski, J. (1979).
 Positional strategies for mean payoff games.
 International Journal of Game Theory, 8(2):109–113.
- Jurdzinski, M. (1998).

Deciding the winner in parity games is in UP cap co-up. *Inf. Process. Lett.*, 68(3):119–124.

 Jurdzinski, M., Paterson, M., and Zwick, U. (2006).
 A deterministic subexponential algorithm for solving parity games.
 In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006, pages 117–123.

