NWPT2015

ADVICeS

Towards Component-based Reuse

for Event-B

Andy Edmunds
Åbo Akademi, Turku, Finland
aedmunds@abo.fi

Event-B

- A formal methodology + language.
- Uses abstraction and non-determinism.
- Rodin is the tool.
- The mathematical underpinning,
- is based on set theory and predicate logic.
- can provide a precise description of a system.
- uses stepwise development (refinement).
- can be partly "hidden" by graphical notations.

Event-B is for?

- State-based systems modelling,
- aimed at High Integrity Systems.
- We specify important 'invariant' properties.
- Show that state updates don't violate these properties.
- Show that these properties hold as development progresses.
- Uses proof and/or model checking.
- ADVICeS Project - More Agility for Event-B!
- Looking at the engineering process.

Event-B Elements

- Contexts
- Describing static parts of the system.
- Have Sets, Constants and Axioms.
- Machines
- Describe the dynamic parts.
- Have Variables, Invariants and Events.
- Events
- Have parametrised, guarded, atomic state updates.
- Composed-machines
- for structuring and scalability.
- Refinement
- gradual introduction of detail.

Event-B Artefacts

dynamic definitions

Why Components?

- Build on Composed-machine features.
- To improve bottom-up scalability.
- To improve 'agility'
- through reuse of Event-B machines,
- by defining component interfaces.
- describing communication flow across component boundaries.
- adding additional proofs obligations.
- by adding a component instance diagram.
- extending iUML-B.
- adding new Event-B 'generators'.
- Facilitate a searchable library (of components).

Event-B - Events (i)

$$
\mathrm{e} \xlongequal[=]{\wedge} \text { ANY } \mathrm{p} \text { WHERE } \mathrm{G}(\mathrm{p}, \mathrm{~s}, \mathrm{c}, \mathrm{v}) \text { THEN A(p, } \mathrm{s}, \mathrm{c}, \mathrm{v}) \text { END }
$$

- Event
- Name e; Parameters p; Guards G; Actions A
- Context
- Sets s; Constants c
- Machine
- Variables v

Event-B - Events (ii)

$\mathrm{e} \hat{=}$ ANY p WHERE $\mathrm{G}(\mathrm{p}, \mathrm{s}, \mathrm{c}, \mathrm{v})$ THEN $\mathrm{A}(\mathrm{p}, \mathrm{s}, \mathrm{c}, \mathrm{v})$ END

- Parameters p
- models parameters and local variables.
- Guards G
- blocking predicate.
- Actions A
- deterministic assignments :=
- non-deterministic assignments

An Event-B Machine

```
machine M0
sees
    C0
variables
pointPos
specify properties
invariants
@inv1 "pointPos E pointState"
events
    event INITIALISATION ordinary
    then @actl "pointPos :€ pointState"
    end
    event movePoint
    when @grd0 1 "pointPos = lastKnown"
    then @act0 1 "pointPos := updated"
    end
    event reset ordinary
        when @grd0_1 "pointPos = updated"
        then @act0_1 "pointPos := lastKnown"
    end
end
```


Annotating Event Parameters

$$
\begin{aligned}
\mathrm{e}= & \text { ANY p? p! x } \\
& \text { WHERE } \mathrm{G}(\mathrm{p}, \mathrm{x}, \mathrm{v}) \\
& \text { THEN A } \mathrm{p}, \mathrm{x}, \mathrm{v}) \\
& \text { END }
\end{aligned}
$$

- '?' and '!' are just in/out mode specifiers in the parameter declaration,
- not part of the name.
- Input parameters p ?
- Output parameters p !
- Local variables x
- All Parameters $p=p$? $\cup p$!

Composition Semantics

\approx
MACHINE $a|\mid b$
VARIABLES $\mathrm{v}_{\mathrm{a}}, \mathrm{v}_{\mathrm{b}}$
$\mathrm{e}_{\mathrm{a}} \| \mathrm{e}_{\mathrm{b}} \xlongequal{\wedge}$ ANY $\mathrm{p}, \mathrm{x}_{\mathrm{a}}, \mathrm{x}_{\mathrm{b}}$
WHEN $\mathrm{G}_{\mathrm{a}}\left(\mathrm{p}, \mathrm{x}_{\mathrm{a}}, \mathrm{v}_{\mathrm{a}}\right) \wedge \mathrm{G}_{\mathrm{b}}\left(\mathrm{p}, \mathrm{x}_{\mathrm{b}}, \mathrm{v}_{\mathrm{b}}\right)$
THEN $A_{a}\left(p, x_{a}, v_{a}\right) \| A_{b}\left(p, x_{x}, v_{b}\right)$
END

Parameter matching

In a single machine, parameter set $p=p$? $\cup p$!
Parameters q are typed: q ? $\in \mathrm{p}$? ${ }^{\wedge} \mathrm{q}!\in \mathrm{p}$!
In a composition, parameters are typed:

$$
\mathrm{q} ?_{\mathrm{a}} \in \mathrm{p} ?_{\mathrm{a}} \wedge \mathrm{q}!_{\mathrm{b}} \in \mathrm{p}!_{\mathrm{b}}{ }^{\wedge} \mathrm{q} ?_{\mathrm{b}} \in \mathrm{p} ?_{\mathrm{b}} \wedge \mathrm{q}!_{\mathrm{a}} \in \mathrm{p}!_{\mathrm{a}}
$$

Matching input/output parameters 'reduce',

$$
\left(q=q!_{a} \| q ?_{b}\right) \text { and }\left(q=q!_{b} \| q ?_{a}\right)
$$

so that, in the composition, p consists of reduced parameters q,

$$
\mathrm{q} \in \mathrm{p}
$$

Communicating Events (A Concrete Example)

Combined event

MACHINE $\mathrm{a} \\| \mathrm{b}$	
VARIABLES $\mathbf{A} \in T, \mathbf{B} \in T$	
$\mathrm{e}_{\mathrm{a}} \\| \mathrm{e}_{\mathrm{b}} \hat{=}$ ANY prm	
WHEN prm $=\mathrm{B}^{\wedge}$ prm $\in T$	So,
THEN $\mathrm{A}:=\operatorname{prm}$	A $:=\mathrm{B}$
END	

Interface Description (iUML-B)

- Adapted iUML-B Class Diagram
- Identifies a component.
- Identifies interface events.
- (Identifies parameter direction).
- FIFO buffer example ...

Component Instance Diagram

Combined Events:

a) <Machine>.<Event> ||<Machine>.<Event>
b) <Machine>.<Event>

Machine Invariants

- Invariants - state the required system properties.
- Invariant I of machine a ranges over a machine's sets, constants and variables,

$$
I_{a}\left(S_{a}, c_{a}, v_{a}\right)
$$

- But it cannot refer to those of another machine.
- A Composition Invariant is required.

Composition Invariants

- The Composition Invariant CI,
- is part of the composed-machine.
- specifies properties between internal elements of included machines.
- ranges over all variables v in a composition.
- ranges over all included sets and constants, s and c .
- The Composed-Machine Invariant CMI,
- is formed from the composed-machine CM's composition invariant CI,
- ... and invariants $\mathrm{MI}_{0} . . \mathrm{MI}_{\mathrm{m}}$ of machines $\mathrm{M}_{0} . . \mathrm{M}_{\mathrm{m}}$.
$\operatorname{CMI}\left(C M, M_{0} . . M_{m}\right)=C I(s, c, v) \wedge \operatorname{MI}_{0}\left(s_{0}, c_{0}, v_{0}\right) \wedge . . \wedge \operatorname{MI}_{\mathrm{m}}\left(\mathrm{s}_{\mathrm{m}}, \mathrm{c}_{\mathrm{m}}, \mathrm{v}_{\mathrm{m}}\right)$

Combined Event Guard

- We need to add guards to the Combined Event 'Clause'
- to satisfy the Composition Invariant.
- remember, combined events reside in the composed machine.
- The resulting combined event follows,
$\mathrm{e}_{\mathrm{a}} \| \mathrm{e}_{\mathrm{b}} \hat{=}$
ANY $\mathrm{p}, \mathrm{x}_{\mathrm{a}}, \mathrm{x}_{\mathrm{b}}$
WHERE $\mathrm{G}_{\mathrm{CI}}(\mathrm{v}) \wedge \mathrm{G}_{\mathrm{a}}\left(\mathrm{p}, \mathrm{x}_{\mathrm{a}}, \mathrm{v}_{\mathrm{a}}\right) \wedge \mathrm{G}_{\mathrm{b}}\left(\mathrm{p}, \mathrm{x}_{\mathrm{b}}, \mathrm{v}_{\mathrm{b}}\right)$
THEN $A_{a}\left(p, x_{a}, v_{a}\right) \| A_{b}\left(p, x_{b}, v_{b}\right)$
END

The New Proof Obligation

- We want to show that the invariant still holds for $e_{j} \| e_{k}$
$\operatorname{INVe} e_{j} \| e_{k}: C I(v) \wedge I_{j}\left(v_{j}\right) \wedge I_{k}\left(v_{k}\right)$

$$
\begin{aligned}
& \wedge G_{j}\left(p_{j}, v_{j}\right) \wedge G_{k}\left(p_{k}, v_{k}\right) \wedge G_{C I}(v) \\
& \wedge A_{j}\left(p_{j}, v_{j}, v_{j}^{\prime}\right) \wedge A_{k}\left(p_{k}, v_{k}, v_{k}^{\prime}\right)
\end{aligned}
$$

\vdash

$$
\mathrm{i}_{\mathrm{j}}\left(\mathrm{v}_{\mathrm{j}}^{\prime}\right) \wedge \mathrm{i}_{\mathrm{k}}\left(\mathrm{v}_{\mathrm{k}}^{\prime}\right) \wedge \mathrm{CI}\left(\mathrm{v}^{\prime}\right)
$$

Feasibility of I/O (i)

- The parameter pair's input/output ranges must be compatible, w.r.t
- type
- range
- Given an event e and input parameter q?, the function typeOfln returns the type T of q?
typeOfIn(e , q?) = T
. So for a concrete event evt, with prm? and prm $\in \mathbb{N}$ typeOfln(evt, prm?) $=\mathbb{N}$

Feasibility of I/O (ii)

- The typeOfOut function is similar.
- We have a new Feasibility Proof Obligation, - we call it FIS ${ }_{\text {prestyle }}$

$$
\begin{aligned}
& \operatorname{FIS}_{\text {prestyle }}\left(\mathrm{e}_{\mathrm{j}}\left(\mathrm{p} ?_{\mathrm{j}}, \mathrm{p}!_{\mathrm{j}}\right), \mathrm{e}_{\mathrm{k}}\left(\mathrm{p} ?_{\mathrm{k}}, \mathrm{p}!_{\mathrm{k}}\right)\right) \\
& = \\
& \forall \mathrm{q}!, \mathrm{q} ? \cdot(\mathrm{q}!\in \mathrm{p}!\wedge \mathrm{q} ? \in \mathrm{p} ?) \\
& \quad \Rightarrow\left(\operatorname{typeOfOut}\left(\mathrm{e}_{\mathrm{j}}, \mathrm{q}!\right) \subseteq \operatorname{typeOfIn}\left(\mathrm{e}_{\mathrm{k}}, \mathrm{q} ?\right)\right.
\end{aligned}
$$

Where parameters q are matched by name.

Closing Remarks

- Future Work:
- Interface event "calls" (in Tech. Report).
- Tool Support.
- Library, linked data, search and retrieve.
- Acknowledgements:
- Marina Waldén - Åbo Akademi University, Turku, Finland.
- Colin Snook - University of Southampton, UK.

