
NWPT2015

Towards Component-based Reuse 
for Event-B

Andy Edmunds 

Åbo Akademi, Turku, Finland

aedmunds@abo.f



  

Event-B

● A formal methodology + language.
– Uses abstraction and non-determinism.

● Rodin is the tool. 
● The mathematical underpinning,

– is based on set theory and predicate logic.

– can provide a precise description of a system.

– uses stepwise development (refinement).

– can be partly “hidden” by graphical notations.



  3

Event-B is for?

● State-based systems modelling, 
– aimed at High Integrity Systems.

– We specify important 'invariant' properties.

– Show that state updates don't violate these 
properties.

– Show that these properties hold as 
development progresses.

– Uses proof and/or model checking.

● ADVICeS Project - More Agility for Event-B!
– Looking at the engineering process.



  4

Event-B Elements

● Contexts
– Describing static parts of the system.

– Have Sets, Constants and Axioms.

● Machines
– Describe the dynamic parts.

– Have Variables, Invariants and Events.

● Events
– Have parametrised, guarded, atomic state updates.

● Composed-machines
– for structuring and scalability. 

● Refinement
– gradual introduction of detail.



  

Event-B Artefacts

Composed Machine

MachineContext

includes

refines

sees

extends

scaling

static definitions

dynamic definitions



  6

Why Components?

● Build on Composed-machine features.
● To improve bottom-up scalability.
● To improve 'agility'

– through reuse of Event-B machines,
‒ by defining component interfaces.

‒ describing communication flow across component boundaries.
‒ adding additional proofs obligations.

‒ by adding a component instance diagram.
‒ extending iUML-B.
‒ adding new Event-B 'generators'.   

● Facilitate a searchable library (of components).



  7

Event-B – Events (ⅰ)
● Event 

– Name e; Parameters p; Guards G; Actions A

● Context
– Sets s; Constants c

● Machine
– Variables v

e ≙ ANY p WHERE G(p, s, c, v) THEN A(p, s, c, v) END



  8

Event-B – Events (ⅰⅰ)
● Parameters p

– models parameters and local variables.

●  Guards G
– blocking predicate. 

● Actions A
– deterministic assignments :=

– non-deterministic assignments 

e ≙ ANY p WHERE G(p, s, c, v) THEN A(p, s, c, v) END



  

An Event-B Machine

specify properties

atomic, guarded
state updates



  10

Annotating Event Parameters

● '?' and '!' are just in/out mode specifiers 
in the parameter declaration, 
– not part of the name.

● Input parameters  p?
● Output parameters  p!
● Local variables x

● All Parameters p = p? ⋃ p!

e  ≙ ANY p? p! x
      WHERE G(p, x, v) 
      THEN A(p, x, v) 
      END

“Ignoring Sets and Constants”



  11

Composition Semantics

VARIABLES v
a
, v

b

e
a
 || e

b
 ≙ ANY p, x

a
 , x

b

              WHEN G
a
 (p, x

a
 , v

a
 ) ∧ G

b
 (p, x

b
 , v

b
 ) 

              THEN    A
a
 (p, x

a
 , v

a
 ) || A

b
 (p, x

x
 , v

b
 )

              END

MACHINE a || b

MACHINE a MACHINE b

VARIABLES v
a

e
a
 ≙ ANY p?

a
 , p!

a
 , x

a
 

       WHEN G
a
 (p

a 
, x

a
 , v

a
 )

       THEN A
a
 (p

a 
, x

a
 , v

a
 )

       END

VARIABLES v
b

e
b
 ≙ ANY p?

b
 , p!

b
 , x

b
 

       WHEN G
b
 (p

b
 , x

b
 , v

b
 )

       THEN A
b
 (p

b
 , x

b
 , v

b
 )

       END

Composed Machine

≈

'Reduced' parameter set “Ignoring Sets and Constants”



  12

Parameter matching
In a single machine, parameter set  p = p? ⋃ p!

Parameters q are typed: q?
 

 p? ^ q!  p!∈ ∈

In a composition, parameters are typed: 
q?

a
 p?∈

a
 ^ q!

b
 p!∈

b
 ^ q?

b
 p?∈

b
 ^ q!

a
 p!∈

a
 

 

Matching input/output parameters 'reduce',
(q = q!

a
 || q?

b 
) and (q = q!

b
 || q?

a 
)

so that, in the composition, p consists of 
reduced parameters q,

q  p ∈



  13

Communicating Events
(A Concrete Example)

MACHINE a MACHINE b

VARIABLES A ∊ T
e

a
 ≙ ANY prm? 

       WHEN  prm ∊ T
       THEN   A := prm
       END

VARIABLES B ∊ T
e

b
 ≙ ANY prm! 

        WHEN prm = B ^ prm ∊ T
        THEN    SKIP
        END

Composed Machine

VARIABLES A ∊ T, B ∊ T
e

a
 || e

b
 ≙ ANY prm 

              WHEN prm = B ^ prm ∊ T
              THEN    A := prm
              END

MACHINE a || b

≈
Combined event

So,
A := B



  14

Interface Description (iUML-B)

● Adapted iUML-B Class Diagram
– Identifies a component.

– Identifies interface events.

– (Identifies parameter direction).

● FIFO buffer example ...



  15

Component Instance Diagram



  16

Machine Invariants

● Invariants – state the required system properties.
● Invariant I of machine a ranges over a machine's 

sets, constants and variables,

● But it cannot refer to those of another machine.
● A Composition Invariant is required.

Ia(sa , ca , va)



  17

Composition Invariants

● The Composition Invariant CI,
– is part of the composed-machine.
– specifies properties between internal elements of 

included machines.
– ranges over all variables v in a composition.
– ranges over all included sets and constants, s and c.

● The Composed-Machine Invariant CMI, 
– is formed from the composed-machine CM's 

composition invariant CI, 
– … and invariants MI

0
..MI

m
 of machines M

0
..M

m
.

CMI(CM, M
0
 .. M

m
 ) = CI(s, c, v) ∧ MI

0
 (s

0
 , c

0 
, v

0
 ) ∧ .. ∧ MI

m
 (s

m
 , c

m
 , v

m
 )



  18

Combined Event Guard

● We need to add guards to the Combined Event 'Clause'
– to satisfy the Composition Invariant.

– remember, combined events reside in the composed 
machine.

– The resulting combined event follows,

e
a
 || e

b
  ≙

ANY  p, x
a
 , x

b
 

WHERE  G
CI

(v) ∧ G
a
(p, x

a
 , v

a
 ) ∧ G

b
(p, x

b
 , v

b
 )

THEN  A
a
(p, x

a
 , v

a
 ) || A

b
(p, x

b
 , v

b
 ) 

END

“Ignoring Sets and Constants”



  19

The New Proof Obligation

INVe
j 
|| e

k
 : CI(v) ∧ I

j
(v

j
) ∧ I

k
(v

k
)∧ G

j
(p

j 
, v

j
) ∧ G

k
(p

k 
, v

k
) ∧ G

CI
(v)∧ A

j
(p

j 
, v

j 
, v'

j
) ∧ A

k
(p

k 
, v

k 
, v'

k
)⊢

i
j
(v'

j
) ∧ i

k
(v'

k
) ∧ CI(v')

● We want to show that the invariant still holds for e
j 
|| e

k



  20

Feasibility of I/O (ⅰ)
● The parameter pair's input/output ranges must be 

compatible, w.r.t
– type

– range

● Given an event e and input parameter q?, the function 
typeOfIn returns the type T of q?

● So for a concrete event evt, with prm? and prm ∈ ℕtypeOfIn(e , q?) = T

typeOfIn(evt, prm?) = ℕ 



  21

Feasibility of I/O (ⅰi)
● The typeOfOut function is similar.
● We have a new Feasibility Proof Obligation, 

‒ we call it FIS
preStyle

FIS
preStyle

 (e
j
(p?

j
 , p!

j
 ), e

k
(p?

k
 , p!

k
 ))

=
∀q!, q?·(q!  p! ∈ ∧ q?  p?) ∈
  ⇒ (typeOfOut(e

j
 , q!)  typeOfIn(e⊆

k
 , q?)

Where parameters q are matched by name.



  22

Closing Remarks

● Future Work:
‒ Interface event “calls” (in Tech. Report).
‒ Tool Support.
‒ Library, linked data, search and retrieve.

● Acknowledgements:

‒ Marina Waldén - Åbo Akademi University, Turku, Finland.

‒ Colin Snook - University of Southampton, UK.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

