PRIVACY IN EVOLVING SOCIAL NETWORKS

Raúl Pardo, Musard Balliu, Gerardo Schneider

twitter > - @raparuldo

NWPT 2015

DataBIN Data-driven Secure Business Intelligence

CHALMERS

UNIVERSITY OF GOTHENBURG

Imagine you only want your friends to know your location

Privacy Settings and Tools

Who can see my stuff?	Who can see your future posts?	Friends	Edit
	Review all your posts and things you're tagged in		Use Activity Log
	Limit the audience for posts you've shared with friends of friends or Public?		Limit Past Posts

• John's privacy settings

Who can see your future posts?	Friends	Edit

• Raúl's privacy settings

Who can see your future posts?	Friends and John's friends	Edit
When you're tagged in a post, who do you want to add to the audience if they aren't already in it?	Friends	Edit

SOCIAL NETWORK GRAPH

RELATIONSHIP-BASED ACCESS CONTROL

SOCIAL NETWORK MODEL

FORMAL LANGUAGES

Knowledge Based Logic - KBL

$$\varphi ::= p(\vec{t}) \mid c_m(i,j) \mid a_n(i,j) \mid \phi \land \phi \mid \neg \phi \mid \forall x.\phi$$
$$K_i \phi \mid E_G \phi \mid S_G \phi \mid D_G \phi \mid C_G \phi$$

• Privacy Policy Language - PPL

$$\delta ::= \delta \wedge \delta \mid \llbracket \varphi \Rightarrow \neg \alpha \rrbracket_i \mid \llbracket \neg \alpha \rrbracket_i$$

SATISFIABILITY - KBL

Bob knows Alice's location

 Bob knows that Alice knows Charlie's location

$$\models K_{Bob} K_{Alice} \bigotimes$$

• Alice and Bob know Bob's location

EXAMPLES - KBL

• If I know a post, I know everyone who liked it

Your colleagues pose bigger threat to your privacy than hackers The threat from hackers is not nearly as big a problem as the threat posed by your own colleagues, a privacy report has revealed. According to research conducted... FLIPBOARD

Your colleagues pose bigger threat to your privacy than hackers

nter 🔶 🥢

3 people <mark>like this</mark>.

 $\forall x. \forall u. \forall i. \forall \eta (K_x post(\eta, u) \land K_i like(i, u, \eta) \Rightarrow K_x like(i, u, \eta))$

CONFORMANCE - PPL

EXAMPLES - PPL

 Only people who liked at least one of Bob's posts can join his event

 $\forall i . \forall \eta . [\![\neg K_{Bob} like(i, Bob, \eta) \Rightarrow \neg P_i^{Bob} joinEvent]\!]_{Bob}$

INSTANTIATIONS

EVENTS & RULES - FACEBOOK

 $EVT_{Facebook} = \{post, share, like, sendFriendRequest, ...\}$

share(Bob, post(Alice,η), Au)

$$post(Alice, \eta) \in KB_{Bob} \quad (Alice, Bob) \in A_{sharePosts}$$

$$\forall j \in Au \quad KB'_{j} = KB_{j} \cup \{C_{Au} share(Bob, Alice, \eta)\}$$

$$\langle -, \{\{A_{i}\}_{i \in \Sigma}, -\}, KB, -, -\rangle \Rightarrow^{share(bob, post(Alice, \eta), Au)} \langle -, \{\{A_{i}\}_{i \in \Sigma}, -\}, KB', -, -\rangle$$

DYNAMICS - EPISTEMIC

DYNAMICS - TOPOLOGICAL

DYNAMICS - POLICY

DOES A SN PRESERVE PRIVACY?

PRIVACY IN REAL SOCIAL NETWORKS

REAL-TIME

- Time-stamp all the elements of the framework
- Specify intervals of time in privacy policies

$$\llbracket \neg K_{boss(i)} location(i) \rrbracket_{i}^{\lfloor 18:00,03:00, Daily \rfloor}$$

SUMMARY

- Formal Privacy Policy Framework (SEFM 2014)
 - Social Network Model SN
 - Knowledge Based Logic KBL
 - Privacy Policy Language PPL
 - Instantiations
- Evolution of SNs (submitted to POST 2016)
 - Formal definition
 - Privacy preservation
 - Applied to Facebook and Twitter
- Current and Future work
 - Relation to Kripke models
 - Implementation in Diaspora*
 - Adding Real-time

