
Limitations of Non-Interference

Flemming Nielson Hanne Riis Nielson Ximeng Li

DTU Compute, Technical University of Denmark, Denmark

{fnie,hrni,ximl}@dtu.dk

Submitted to NWPT 2015

Abstract

We show that non-interference falls short of providing a convincing se-
mantic characterisation of information flow policies for confidentiality and
integrity and motivate an approach based on instrumented semantics.

Introduction. We have been working with Airbus on developing security poli-
cies for dealing with the challenges of communication between security domains
subject to strict safety concerns, and in the course of this work we have uncov-
ered a limitation of non-interference in establishing convincing semantic char-
acterisations of the required security policies. In this paper we illustrate this
limitation on an utterly simple example and discuss ways of providing alternate
semantic characterisations more acceptable to our industrial partners.

An illustrative example. Let us consider a simple process D that takes
inputs a, b, and c, and produces outputs d1=a+b and d2=b*c.

1 process D

2 begin

3 input(a,b,c);

4 d1:=0; d2:=1;

5 d1:=d1+a; d2:=d2*b;

4 d1:=d1+b; d2:=d2*c;

7 output(d1,d2)

8 end

In the full development, the inputs would be received from other parallel pro-
cesses and the outputs would be delivered to other parallel processes. Here
we simply assume that the variables a, b, c belong to the processes A, B, C,
respectively, and that the variables d1 and d2 both belong to the process D.

1



Security policies. Motivated by the Decentralized Label Model [3] the secu-
rity policies of interest have two components. One component, R, tracks where
the values of variables are allowed to flow and is useful for dealing with confiden-
tiality; we shall say that it tracks the readers of variables. The other component,
I, tracks what might have have influenced the values of variables and is useful
for dealing with integrity; we shall say that it tracks the influencers (or writers)
of variables. It is natural to require that X ∈ R(x) and X ∈ I(x) whenever the
variable x belongs to the process X, and an example security policy might be
given by the following definition of R and I:

a b c d1 d2

R A,D B,D C,D D D

I A B C A,B,D B,C,D

Typing the example. To analyse the example we need to define R(x) and
I(x) for all variables in such a way that they satisfy conditions imposed by a
type system that are intended to ensure that the annotations are correct. In
our extremely simple program there are two principles for ensuring this.

One concerns assignments of the form x:=y1#y2 where # is one of the
operators + or *. For confidentiality is is natural to impose that R(x) ⊆ R(y1)∩
R(y2), or equivalently R(x) ⊆ R(y1) ∧ R(x) ⊆ R(y2), because one should not
allow any readers beyond those allowed by both y1 and y2. For integrity it is
natural to impose that I(x) ⊇ I(y1)∪I(y2), or equivalently I(x) ⊇ I(y1)∧I(x) ⊇
I(y2), because one should not forget any of the influencers of y1 and y2.

The other principle concerns assignments of the form x:=c where c is a
constant. These are always acceptable. To fit the model of the previous case
we might say that R(c) = U and I(c) = ∅ where U = {A, B, C, D} is the universe
of all processes and ∅ is the empty set.

The definition of R and I expressed in the Table above satisfies the con-
straints imposed by our example program and is in line with the Decentralized
Label Model [3].

Non-Interference. We would imagine that our parallel language is equipped
with an operational semantics. Configurations might take the form 〈S, σ〉 indi-
cating that the system S of parallel processes is currently executing from the
store σ. There would then be a transition relation 〈S, σ〉 → 〈S′, σ′〉 indicat-
ing that one step of evaluation transforms 〈S, σ〉 into 〈S′, σ′〉. We do not have
the space to present the details of this transition relation nor to discuss the
possibility of labelling it (as is often done to deal with communication).

The non-interference approach to the semantic characterisation of a security
policy then introduces the following notions to be defined below: S1 ' S2 for
when one system (S1) is similar to another (S2), σ1 ∼= σ2 for when one store
(σ1) is close to another (σ2), and a notion of when a variable is low.

Unlike the case of bisimulations, the simulation relation ' is not necessarily
reflexive, and the correctness of a type system amounts to ensuring that S ' S
whenever the system S is admitted by the type system.

2



We now provide the definitions of the three notions introduced. The system
S1 is similar to another S2, written S1 ' S2, whenever 〈S1, σ1〉 → 〈S′1, σ′1〉,
σ1 ∼= σ2, and 〈S2, σ2〉 → 〈S′2, σ′2〉 ensure that S′1 ' S′2 and σ′1

∼= σ′2, and vice
versa. This definition is recursive and needs to be interpreted co-inductively in
the usual manner of bisimulations.

The store σ1 is close to another σ2, written σ1 ∼= σ2, when they agree on all
low variables: σ1(x) = σ2(x) whenever x is low. A variable x is said to be low
if its security level L(x) (either R(x) or I(x) in our case) is dominated by some
security value ` (a subset of U in our case) according to some partial order v
(being ⊇ for R and ⊆ for I). The key property is that the set of low variables
is closed under reducing the security classification under the partial order v.

Most proofs of correctness [5] of a type system with respect to non-interference
then rely on the type system ensuring that whenever y is somehow used in defin-
ing x (either explicitly or implicitly) then L(y) v L(x). This is fully in line with
our explanation of typing the example above.

Limitations of Non-Interference. The above explanation uses lattice du-
ality in sometimes choosing v to be ⊆ and sometimes ⊇. Let us rephrase the
confidentiality component so that we can always use ⊆ for v.

This amounts to replacing R(x) with its complement R(x) = U \R(x). The
conditions imposed by typing are then changed to R(c) = ∅ whenever c is a
constant and to demanding R(x) ⊇ R(y1)∪R(y2) for an assignment x:=y1#y2.
Intuitively, R(x) lists those processes not allowed to read x. Our typing becomes:

a b c d e

R B,C A,C A,B A,B,C A,B,C

I A B C A,B,D B,C,D

In other words we have explicitly replaced the lattice for R with a dual lattice
for R which is unsurprising from a lattice theoretical point of view and quite
in line with the usual statements of information flow that integrity is the dual
of confidentiality (and used to motivate that technical developments often only
focus on confidentiality).

So what is the point?
The point is that with this change the formal definition of non-interference is

the same, symbol for symbol, for integrity as for confidentiality, and that there
is not even the need to perform dual choices of the partial order.

What does this mean?
It means that while the non-interference result produces some validation of

the type system against errors, it has no way of expressing whether or not I(x)
denotes the set of influencers of x, or rather the set of processes not allowed to
read x; similarly for R(x). In other words:

Non-interference is unable to express the correctness of the intuitive
explanations of what the security policies for influencers and readers are
supposed to capture.

3



Instrumented Semantics. In our work with Airbus we are using ideas from
program analysis in order to overcome the limitations of non-interference. In
particular the use of an instrumented operational semantics where each tran-
sition is labelled with the flow taking place. In the case of an assignment
statement performed by process Z we would have the following transition:

〈x:=y1#y2;S, σ〉 →(y1,x),(y2,x),(y1,Z),(y2,Z),(Z,x) 〈S, σ[x 7→ σ(y1)#σ(y2)]〉

Here the subscript on the arrow indicates that both y1 and y2 are involved in
producing x. Additionally we record that the process Z is reading y1 and y2
and is influencing (writing) the variable x. The full semantics would extend
this to the other constructs in our parallel programming language and deal with
both explicit (as illustrated) and implicit flow (not illustrated here).

In the full development we will allow policies to be influenced by the values
of variables, so as to model content-dependent security policies. Much as in a
Hoare logic [1] there would then be a policy (I,R) pertaining to the program
point before the action and a possibly different policy (I ′, R′) pertaining to the
program point after the action.

The semantic correctness of the security policies with respect to a system S
is then expressed by requiring that whenever

〈S, σ〉 →∗··· 〈S′, σ′〉 →F 〈S′′, σ′′〉

then we insist for the security policy (R, I) before the action and the security
policy (R′, I ′) after the action, that the following property

(R, I) . F / (R′, I ′)

holds. It is defined as follows:

• whenever (Z, x) ∈ F we have Z ∈ I ′(x),

• whenever (y, Z) ∈ F we have Z ∈ R(y), and

• whenever (y, x) ∈ F we have I(y) ⊆ I ′(x) and R′(x) ⊆ R(y).

This formulation makes it clear that constraints regarding influencers flow in
the forward direction whereas constraints regarding readers flow in the backward
direction. In this way we would be thinking of integrity as a forward analysis
problem (like reaching definitions [4]) and confidentiality as a backward analysis
problem (like live variables). This formulation clearly indicates the different
directions of flow needed for formalizing integrity and confidentiality.

Conclusion. We have shown that non-interference falls short of providing
convincing semantic explanations of the correctness of security policies for con-
fidentiality and integrity as found in information flow frameworks like the De-
centralized Label Model [3].

4



This contradicts conventional wisdom in the area of security policies for
information flow. To quote an anonymous reviewer on a paper lacking a non-
interference result: “My main complaint is the independence of the annotations
from the actual semantics of the program and the non-interference properties it
may have.”

This may be contrasted with the approach of static analysis where hardly
any non-interference results are proved. To quote an international reviewer on
a project attempting to establish such results: “Non-interference is a rather
restrictive property so I am not totally convinced that one should start with it
as a requirement.”

Our proposal therefore is to provide convincing semantic explanations of the
correctness of security policies for confidentiality and integrity using suitably
instrumented versions of an operational semantics.

Acknowledgement. We are supported by IDEA4CPS [2] and benefitted from
discussions with Michael Paulitsch and Kevin Müller from Airbus.

References

[1] Krzysztof R. Apt. Ten years of Hoare’s logic: A survey - part 1. ACM
Transactions on Programming Languages and Systems, 3(4):431–483, 1981.

[2] IDEA4CPS: Foundations for Cyber-Physical Systems. Danish Re-
search Foundations for Basic Research (Project DNRF86-10). Webpage:
http://idea4cps.dk.

[3] Andrew C. Myers and Barbara Liskov. A decentralized model for information
flow control. In 16th ACM Symposium on Operating Systems Principles,
pages 129–142, 1997.

[4] F. Nielson, H. Riis Nielson, and C. L. Hankin. Principles of Program Anal-
ysis. Springer, 1999. Second printing, 2005.

[5] Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. A sound type
system for secure flow analysis. Journal of Computer Security, 4(2/3):167–
188, 1996.

5


