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Abstract

Exceptions in low-level architectures are implemented as synchronous interrupts: upon the execution

of a faulty instruction the processor jumps to a piece of code that handles the event. Previous work has

shown that assembly programs can be written, verified and run using higher-order separation logic [2].

However, execution of faulty instructions is then under specified by either being undefined or terminating

with an error. In this work, we initiate the study of synchronous interrupts and prove an example of

memory allocator, thus showing that it is possible to write positive specifications of programs that fault.

All of our results are mechanised in the interactive proof assistant Coq.

1 Introduction

Assembly code is difficult to prove correct. Standard Hoare-logics make implicit assumptions
about the control flow of programs and assume that the code c in a triple {P}c{Q} has one
entry point and one exit point, even though it may internally contain loops and method calls. In
assembly programs we cannot make this assumption as the control flows of these languages are
inherently unstructured. Control flow is altered primarily by two mechanisms – jump commands
and interrupts. Jump commands allow developers to execute code stored nearly anywhere in
memory; their use is an active choice, much like writing a loop or calling a method. Interrupts,
on the other hand, occur either when something has gone catastrophically wrong (such as
dividing by zero or reading from un-mapped memory) or when an action from the environment
requires processing (such as the user pressing a key, a change to the file system is made, or the
processor clock ticks). While some of the aspects of interrupts might resemble that of function
calls, there are substantial differences: synchronous interrupts are not called explicitly but are
dependent on a certain events that can occur at run-time, secondly, there cannot be infinitely
many calls as after three interruptions the machine reboots. These interrupts are typically
referred to as synchronous. Another denotation for synchronous interrupts is exceptions, due to
their similarity with the exceptions encountered in languages like Java or ML, and we will use
the terms interchangeably.

In this paper we extend Kennedy et al.’s semantics for the x86 machine [3] and Jensen et
al.’s [2] program logic by adding support for synchronous interrupts. As a case study, we use it
to verify a small memory allocator that uses exceptions.

The source code to our mechanisation can be found at http://www.itu.dk/people/mpav/
downloads/exp-tgc05.zip. The increment to the previous development amounts to 1084 lines
of code. The code is compiled with coqc version 8.4pl3 with OCaml 4.00.1.

2 Memory allocation using exceptions
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alloc(info) , mov ESI, info;
mov EDI, [ESI];
mov [EDI], 0;
add EDI, 4;
mov [ESI], EDI.

Figure 1: Allocator code snippet

We use the standard AT&T syntax for assem-
bly notation. For this example, ’mov r, v’
stores the value v in the register r, ’[r]’ deref-
erences a pointer stored in r and ’add r, v’
adds the value v to the value stored in the
register r.

Jensen et al. [2] implemented and verified
a simple bound-and-check memory allocator.
We verify an alternative version, whose be-
haviour and code is depicted in Figure 1. In
our allocator there are no checks for overflow
or memory bounds, instead, we mark the end
of the available memory with an unmapped lo-
cation. The code takes an argument info that
is a single pointer to the start of memory and
begins by moving the starting address of the
information block to the ESI register and then
by moving its value to the EDI register. After
this preamble, EDI will eventually point at the
beginning of the available memory. Now we
write the value 0 in the memory pointed by EDI. By writing a value to the byte of memory we
wish to allocate we will trigger an exception if that memory is unmapped, i.e. when the end of
the memory available to the allocator has been reached. It is then up to the interrupt handler
to catch the exception, but by jumping to the fail address it will mimic the behaviour of the
handler in previous work [2]. If the memory is mapped, the control flow will go through and
add four bytes to the EDI register to keep track advance the pointer to the free memory. At this
point we update the information block by storing the value of the EDI register into the value
pointed by ESI.

3 Allocator with exceptions specification

In order to give the specification of the piece of code in Figure 1 we use Jensen’s step-indexed
variant of separation logic, but here we prefer to keep the presentation as simple as possible,
thus using standard separation logic connectives as ? for the usual separating conjunction in
separation logic, 7_ for a points-to predicate for the registers and 7→ as a points-to predicate
for the memory. Moreover, we use the question mark r? for registers and memory addresses as
syntactic sugar for ∃, v.r 7_v and similarly for 7→. Here, we borrow the continuation passing style
specification from previous work [2], thus, a specification has the following continuation-passing
style form:

` (safe⊗Q =⇒ safe⊗ P )� i..j 7→ c (1)

which states that a program c stored in the memory from the address i and the address j is safe
to run from P provided that there is a continuation that runs safely from Q.

The specification for the example in Figure 1 follows the same pattern, but, since the program
can succeed or fault we need two continuations, one stating what happens upon success and one
stating what happens upon failure, a pre-condition and a invariant (omitted for space reasons)
specifying that there exists a storage which ends are bounded by an unmapped memory region
and that there exists and IDT containing the pointers to the handlers.



We define the specification allocSpec as the pre and post-conditions of the code in Figure 1
stating that, when the code is pointed by the range of addresses i to j, is safe to execute from a
state

P , EIP 7_ i ? INTL 7_ 0 ? EDI? ? ESP 7_ sp ? (sp−4..sp) 7→ spval (2)

where EIP points to the beginning of the code, INTL is the register keeping track of the level
of interruptions, EDI is a temporary register and ESP is the stack pointer, provided that the
program is safe in case an exception occurs, i.e. that there exist an handler which is going to
take on the computation from the address fail with the INTL set to 1 and the stack pointer
containing the return address to the original code

Q1 , EIP 7_ fail ? INTL 7_ 1 ? EDI? ? ESP 7_ (sp−4) ? (sp−4..sp)? (3)

and that there is a program which is safe run from the address j with the EDI register
pointing to the end of the allocated memory and with the interrupt level set at zero in case the
allocator succeeds

Q2 ,EIP 7_ j ? INTL 7_ 0 ? ESP 7_ sp ? (sp−4)..sp 7→ spval?

∃p,EDI 7_ (p+4) ? (p..(p + 4))? (4)

By wrapping up the tree formulas all together we obtain the allocSpec specification:

allocSpec , ` ((safe⊗Q1 ∧ safe⊗Q2) =⇒ safe⊗ P )� i..j 7→ c⊗ Inv

Finally, we prove that implementation of the allocator respects the specification:

Theorem 1. The specification allocSpec for the piece of code in Figure 1 is sound. [Coq proof]

4 Conclusions and Future Work

We have extended an existing mechanisation of x86-assembly created by Jensen et al. to support
synchronous interrupts. Jensen’s model is expressive enough to reason about mutable code and
we stay true to this design philosophy by storing the IDT and all handlers in memory, allowing
them to be dynamically updated by the processor. Our extensions to the program logic are also
very conservative. By allowing the memory points-to predicate to state that certain memory is
unmapped (and not only what it contains), we obtain a logic that is expressive enough to verify
programs that use synchronous interrupts. We believe that this is a testiment not only to the
validity of our design decisions, but also of the quality of the original mechanisation.
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