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In a perfect world, every digital integrated circuit (IC) leads a well-documented life. Alas,
documentations are lost, not written, deliberately withheld. To reconstruct the inner workings
of an IC, we modify the learning algorithms by Dana Angluin and by Ronald Rivest and
Robert Schapire so that they employ ICs as the learning environment. Known pin directions
and functions allow reducing the state space, alphabet size, and set of learners and therefore
accelerate the learning. We set up different strategies to seek out hidden state to realize an
approximative equivalence check and provide the necessary counterexamples. In summary, the
contributions are different strategies for the teacher to test for equivalence and a specialized
learner for ICs, called ALICe [3], with the possibility to incorporate prior knowledge.

Angluins L* algorithm [1] learns an automaton representation using the inputs and the
corresponding results plus the counterexamples obtained from a teacher, assuming we know a
reset. Rivest and Schapires algorithm [6] can be seen as a generalization of L* and handles
absent resets using homing sequences. Angluin has one learner whose queries are simulated
from a unique state. To execute such a query in any environment, the environment must be
reset to the unique state. In the absence of a reset, homing sequences bring the environment
into a defined state. The learner, Angluins main learning loop, becomes the basic building
block. Rivest and Schapires algorithm maintains a set of learners to accommodate the different
states a homing sequence may lead to. For each final state the homing sequence can lead to, a
learner exists that has this final state as a starting state.

ALICe uses the libalf library for the learners [2] and builds the homing algorithm around
it. The IC takes the role of the teacher in the Angluin learning. ALICe incorporates prior
knowledge about the ICs interface (see Table 1) into the model of the input alphabet and the
learning process.

Prior Knowledge Usage Effect

Pin directions Input = in + inout
Output = out + inout

Reduced number of learners/
states, reduced alphabet size

Clock pin Subtract from input alphabet, let hard-
ware handle clock behaviour

Reduced alphabet size,
reduced state space

Clear word As homing sequence One learner
Clear pin Build homing sequence,

subtract from input alphabet
One learner, reduced alphabet size

Table 1: Usage and Effects of Prior Knowledge

1 Strategies to Realize Equivalence Checks

The teacher has to provide a counterexample to an incorrect representation of an IC. An
ideal check is impossible due to the infinite amount of stimulation necessary. We therefore
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Strategy Expected Effect

0 No check, without any knowledge Fewer queries than with any strategy, missing states
with clocked ICs

0c No check, subtract clock pin Fewer queries, fewer missing states with clocked ICs
0d No check, subtract clock and clear pin Fewer queries than 0c, same state counts

I Walk to each state, check two times the input sym-
bols; base case

Rather high number of learners, states, queries

Ia Base case strategy, clear word for reset (construct
from pin, all zeros)

Only one learner (for those with a correct reset)

Ib Base case strategy, clear pin for reset, subtract it
from input alphabet

Only one learner, fewer queries due to reduced al-
phabet

Ic Base case strategy, subtract clock pin (let teacher
handle clock behaviour)

Reduced state space, fewer queries due to reduced
alphabet/state space

Id Base case strategy, clear pin for reset, subtract clear
and clock pin

Only one learner, reduced state space, fewer queries

II Walk to each state and toggle each pin Fewer queries than with I, missing states
III Walk to each state; for each input, stimulate and

toggle each pin
More queries and states than with II, performance
similar to I

IV Walk to each state, stimulate ten random inputs,
then toggle each pin

Fewer queries than with base case, more states than
with II

V Block other learners and test with random inputs Fewer queries than with base case

Table 2: Test Strategies for Evaluation

introduce different strategies, which are based on a general approximate equivalence check
path(Q)?.Ak.randh.[(a)j |(c)l], and list their expected effects (see Table 2).

The strategies I to IV use a path(Q) option to walk to the learned states and perform
additional stimulation from the fringe of the explored state space. This part of the strategies
avoids repeating questions that were already posed by the learner. In Fig. 1 these parts of the
strategies are visualised as the coloured area.

The 0 strategies do not perform an equivalence check. Strategy I appends all possible
combinations of two input alphabet elements and densely explores the area next to the learned
area (see Fig. 1a). Strategy II tries to find first counterexamples fast using a toggle check plus
path option (see Fig. 1b). A hybrid strategy (III) appends each symbol of the input alphabet
and then toggles all pins (see Fig. 1c). The last path-based strategy (IV) appends 10 random
symbols and then toggles all pins (see Fig. 1d).

A conceptually different strategy (V) does not systematically explore the state space, but
instead performs a random walk using the input symbols to find a counterexample (see Fig. 1e).
This strategy is close to the weak oracle introduced by Angluin and Rivest and Schapire.

(a) path(Q).Ak (b) path(Q).(c)l (c) path(Q).A.(c)l (d) p..(Q).randh.(a)j (e) randh

Figure 1: The Search Space Covered by Equivalence Strategies1

1 The x-axis represents the inputs as queries. The y-axis indicates the query length. The dark blue area
represent the queries that lead to new states. The light blue area constitutes the input the learner looked further.
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2 Evaluation

We evaluated the different equivalence strategies and applied levels of prior knowledge to several
groups of ICs according to the number of queries, number of learners, and various performance
parameters.

We use groups of ICs that stem from three university introductory courses to digital cir-
cuits [7, 4, 5]. The stateless groups include combinatoric logic gates like NAND with different
numbers of input pins, de/encoders, (de)multiplexers, and arithmetic entities like comparators
or full adders. The groups of ICs with state include shift registers, transceivers and buffers,
flip-flops with clear pins or inverted outputs, and counters and oscillators. The evaluation shows
that it is possible to learn the functionality of digital ICs.

Although ALICe needs no information about an IC except the number of pins as well as
the power supply and ground pin, we can accelerate learning by nearly 100% by providing
additional knowledge about pin directions and functions for selected groups.

Different equivalence checks vary considerably in their number of queries. The random-
based strategies, often found in the literature, usually trigger a reset of the IC and terminate
learning before an useful result is obtained (IV, V). On the other hand, for stateless ICs, an
equivalence check is not necessary, and a 0 strategy with minimal cost is sufficient.
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