
Binary session types for psi-calculi

Hans Hüttel

Department of Computer Science, Aalborg University, Denmark

1 Introduction

Binary session types arose in the work of Honda in the setting of the π-calculus; a binary
session type describes the protocol followed by the two ends of a communication channel and
a well-typed process will not exhibit communication errors, since the two ends of a channel
must always adhere to the dual parts of their protocol. Binary session types have been used
for describing a variety of program properties, including liveness properties. In the setting of
sessions, an important property is that of progress , namely that a session will never be stuck
waiting for a message that does not arrive.

This paper provides a common generalization of existing binary session type systems using
psi-calculi . These have been proposed as a common framework for understanding the plethora
of π-like process calculi; like π-like calculi psi-calculi have the notion of mobile names with scope
but also allow channels to be not just names but arbitrary terms from a so-called nominal data
type.

Type systems for psi-calculi already exist. In particular, there is a type system generalizing
a collection of simple type systems and another system for resource-aware properties . We now
extend this approach to a generic type system for binary session types. We only assume that
session types have certain labelled transitions; this is in the tradition of behavioural contracts
that provides a behavioural type discipline in which types have transitions.

A main result is the definition of a binary session type system for psi-calculi and a fidelity
result that generalizes results from existing session type systems. Since channels can be arbitrary
terms, a major challenge is to deal with this. Whenever a session is created, private session
channels are introduced by means of scoped endpoint constructors that can be applied to
ordinary terms in order to create a session channel. The type system keeps track of how the
behaviour of a session channel evolves by keeping track of the modified behaviour of these
endpoint constructors.

The safety result for our binary session type discipline is that of fidelity, namely that the
usage of a well-typed channel evolves according to its session type.

Existing binary session type systems arise as instances of our general type system. These
include a system for ensuring progress due to Vieira and Vasconcelos, a type system for corre-
spondence assertions due to Vasconcelos et al. and the system with subtyping due to Gay and
Hole .

2 Psi-calculi

Psi-calculus processes can contain terms M,N, . . .; these must form a nominal datatype T . If
Σ is a signature, a nominal data type is then a Σ-algebra, whose carrier set is a nominal set. In
the nominal data types of ψ-calculi we use simultaneous term substitution X[z̃ := Ỹ] which is

to be read as stating that the terms in Ỹ replace the names in z̃ in X. We assume a notion of
channel equivalence; Ψ |= M ↔̇ N denotes that terms M and N represent the same channel.

1

Binary session types for psi-calculi Hans Hüttel

Processes can also contain assertions Ψ and conditions ϕ, that must also form nominal
datatypes.

Unlike in the π-calculus channels can be arbitrary terms in a psi-calculus, as arbitrary terms
are allowed in the subject position of a prefix.

We extend psi-calculus with the selection and branching primitives of Honda et al. , as these
are standard in session calculi. In a selector was always a name; here we allow arbitrary terms
M as selectors. Branching thus becomes M . {l1 : P1, . . . , l:Pk} and selection is written as
M / l.P1, where l ranges over a set of label names.

We introduce session channels by means of dual endpoints as in Giunti and Vasconcelos .
The construct (νc)P can be used to set up a new session channel with endpoint constructor c
that can be used to build session channels.

All in all, this gives us the formation rules

P ::=M(λx̃)X.P |MN.P | P1 | P2 | (νc)P | !P | (|Ψ|) | case ϕ1 : P1, . . . , ϕk : Pk

|M / l.P1 |M . {l1 : P1, . . . , lk : Pk}

3 A generic type system

We T range over the set of types and distinguish between base types B, session types S and
endpoint types TE . An endpoint type TE describes the behaviour at one end of a channel.
A session type S describes the behaviour at both ends of a channel and is an unordered pair
(T1, T2) of endpoint types, i.e. so (T1, T2) and (T2, T1) denote the same type.

In psi-calculi channels can be arbitrary terms; in our setting we use session constructors
to indicate that a term is to be used as a session channel. A term whose principal session
constructor is c will have a type of the form T@c.

We assume a deterministic labelled transition relation defined on the set of endpoint types.

Transitions are of the form TE
λ−→ T ′ where

λ ::= !T1 | ?T1 | �l | �l

If a channel has endpoint type TE , which has the transition TE
?T1−−→ T ′

E , then following an input
of a term of type T1, the channel will now have endpoint type T ′

E . For a given type language,
we must give transition rules that describe how these transitions arise.

We assume a duality condition for labels in labelled type transitions; we define !T1 = ?T2
and �l = �l and vice versa, and we require that λ = λ. A session type is balanced if the types
of its endpoint are dual to each other.

Definition 1. A session type S is balanced if S = (TE , TE) for some TE .

A type environment Γ is a finite function from names to types, often written as x̃ : T̃ . A
type environment Γ is balanced if for every x ∈ dom(Γ) we have that whenever Γ(x) = S, then
S is balanced.

Type judgements The type judgements in our type system are of the form Γ,Ψ ` J where
J is built using the formation rules

J ::=M : T | X : T̃ → U | Ψ | ϕ | P

2

Binary session types for psi-calculi Hans Hüttel

For terms, the type judgment Γ,Ψ ` M : T@c says that the term M has type T using
session constructor c. The rules defining these judgements depend on the instance of the type
system but we require that the session constructor must have an endpoint type for the resulting
channel to be typable. Rules for assertions and conditions are also specific to the instance
considered.

The type rules for processes contain judgment of the form Γ,Ψ ` P where Ψ is an assertion.
Table 1 contains the most interesting type rules for processes.

Note that for patterns, judgments are of the form Γ,Ψ ` X : T̃ → U . The intended
interpretation is that pattern X has type T̃ → U if the pattern variables are bound to terms
of types T̃ whenever the pattern matches a term of type U .

An important rule is that for parallel composition, since type addition enables us to split a
session type into two endpoint types; this follows Giunti and Vasconcelos .

Whenever a prefix is typed, the type of the subject must be updated when typing the
continuation. As subjects in the psi-calculus setting can be arbitrary terms, we update the
type of the channel constructor used to construct the channel.

(Output)

Γ1,Ψ1 `min M : T1@c T1
!,T2−−→ T3

Γ2,Ψ2 `min N : T2 Γ3 + c : T3,Ψ3 ` P
Γ1 + Γ2 + Γ3,Ψ1 � Ψ2 � Ψ3 `MN.P

(Input)

Γ1,Ψ1 `min M : T1@c T1
?,T2−−−→ T3(x̃)

Γ2,Ψ2 `min X : Ũ → T2 Γ3 + x̃ : Ũ + c : T3[x̃],Ψ3 ` P
Γ1 + Γ2 + Γ3,Ψ1 � Ψ2 � Ψ3 `M(λx̃)X.P

x̃] dom(Γ1 + Γ2 + Γ3)

x̃] Ψ1 � Ψ2 � Ψ3

(Case)
Γ,Ψ ` ϕi Γ,Ψ ` Pi 1 ≤ i ≤ k
Γ,Ψ ` case ϕ1 : P1, . . . , ϕk : Pk

(Session)
Γ + x : T,Ψ ` P
Γ,Ψ ` (νx : T)P

x] Γ,Ψ

(Select) Γ1,Ψ1 `min M : T@c Γ2 + c : Ti,Ψ2 ` P T
�,li−−→ Ti

Γ1 + Γ2,Ψ1 � Ψ2 `M � li.P

(Branch)

Γ1,Ψ1 `min M : T@c

T
�,li−−→ Ti and Γ2 + c : Ti,Ψ2i ` Pi for 1 ≤ i ≤ k

Γ1 + Γ2,Ψ1 �
⊗k

i=1 Ψ2i `M � {l1 : P1, . . . , lk : Pk}

Table 1: Selected type rules

Theorem 1. Suppose we have Ψ0 I P
α−→ P ′, where α is a τ -action and that Γ,Ψ `bal P and

Ψ ≤ Ψ0. Then for some Ψ′ ≤ Ψ and Γ′ ≤ Γ we have Γ′ `min α : (T@c, U).

Theorem 2 (Fidelity). Suppose we have Ψ0 I P
α−→ P ′, where α is a τ -action and that Γ,Ψ ` P

with Γ and ΓP balanced and Ψ ≤ Ψ0. Then for some Ψ′ ≤ Ψ we have Γ ↑ α,Ψ′ `bal P ′.

3

	Introduction
	Psi-calculi
	A generic type system

