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Abstract

Concurrency is today an essential component of computer systems. One approach to program-
ming concurrent object oriented systems is the use of active objects and asynchronous method calls,
based on the actor model. This model is attractive by offering efficient programming and a simple,
compositional semantics. The model facilitates independent units with a high degree of concurrency,
but may also lead to deadlock. In this paper we show that systems developed using active objects and
asynchronous method calls can result in system failure due to over-eager concurrency, which we call
flooding. If an concurrent unit is flooded it is not able to respond properly. We present an algorithm
to statically detect flooding, and we prove the soundness of the algorithm.
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1 Introduction

Concurrency is today a key aspect of the computer systems forming our infra-structure. This aspect
is essential in distributed systems and net-based service systems such as cloud computing, as well as
multi-core computers. Since it is easier to reduce parallelism than to increase the amount of parallelism,
it is a non-trivial challenge to design systems that allow the desired amount of concurrency – and in a
correct manner. In practice many systems rely on centralized control or synchronization of blocks of
code to make programs dealing with shared data work correctly, including thread-based object-oriented
concurrency, which is the most common paradigm used to program distributed systems today. However,
synchronization restricts parallelism and slows down overall performance. While synchronization prim-
itives for notification/signaling may improve efficiency, they are difficult to use correctly because they
break modular reasoning and understanding.

The Actor model has been acknowledged as a natural way of programming concurrent systems, and
is based on a simple semantics allowing modular reasoning [7, 2, 1]. It has been extended to the object-
oriented setting in the form of active concurrent objects, interacting by means of remote method calls.
Asynchronous methods increase efficiency by allowing non-blocking calls [9, 8]; and shared futures
enable even more efficient interaction, allowing objects to share computation results without waiting for
the results [13, 6, 10, 12, 4]. For instance a caller who does not need the result of the called method may
pass the future identity of the result to other objects without (itself) waiting for the result to appear.

We consider a high-level core language based on this concurrency model. The language includes
a mechanism for asynchronous call, suspension of the active process, and blocking and non-blocking
primitives for obtaining future values, similar to [5]. Inter-object concurrency comes for free in the sense
that each object can run concurrently with other objects. Intra-object synchronization is handled in a
modular manner without the use of external notification. The concurrency model allows unrestricted
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concurrency with a compositional semantics. Thus it enables efficient programming, class-wise under-
standing, verification, and testing. However, this unrestricted concurrency model does not come without
a price. This programming style may give rise to deadlocks, and it is easy to create programs that are
class-wise semantically correct but that fail due to over-eager creation of method calls. A system may
feed an object with more calls than it is able to handle, regardless of its processing speed. We refer to
this situation as flooding of the object.

In this paper we define and exemplify the concept of flooding, distinguishing between strong and
weak flooding. Weak flooding is less serious than strong flooding and can be managed with the use of
fair scheduling of the processes within an object. Strong flooding may eventually overwhelm a system,
even in the presence of fair scheduling. The scientific contribution of the paper is to propose a static
analysis method to detect possible flooding situations, and prove its soundness (no false negatives). Since
static analysis of flooding cannot be both sound and complete, detection of flooding may not imply a real
flooding situation. However, when no flooding is detected, this implies that there is no real flooding
situation (soundness).

While analysis of deadlock situations for this concurrency model has been investigated in several
ways, we are not aware of analysis of object flooding for this concurrency model. Arvind and Nikhil
[3] recognized a problem of “excessive parallelism” in the context of the functional dataflow language
Id and tagged-token dataflow. More recently, there have been efforts to address scheduling and fairness
issues with active objects, but none of that work discusses the issue of system failure due to flooding.
Instead, scheduling has been proposed to improve performance, and in some cases as an essential part of
the correctness of the algorithm [11].
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