Business Process Conformance Checking
Based on Event Structures

Luciano Garcia-Bafiuelos!, Nick R.T.P. van Beest?3, Marlon Dumas! and Marcello
La Rosa32

! University of Tartu, Estonia
{luciano.garcia, marlon.dumas}@ut.ee
2 NICTA, Australia
nick.vanbeest@nicta.com.au
3 Queensland University of Technology, Australia
m.larosa@qut.edu.au

1 Introduction

This paper addresses the problem of business process conformance checking defined as follows: Given
an event log recording the actual execution of a business process, and given a process model capturing
its expected or normative execution, describe the differences between the behavior captured in the event
log and that captured in the process model. In this setting, a log consists of a set of traces, where each
trace is a sequence of events. An event refers to the execution of an activity in the process.

This problem has been approached using replay [4] and trace alignment [1]. Replay takes as input
one trace at a time and determines the maximal prefix of the trace (if any) that can be parsed by the
model. When it is found that a prefix can no longer be parsed by the model, error-recovery techniques
are used to correct the parsing error and continue parsing as much as possible the remaining input
trace. Trace alignment identifies, for each trace in the log, the closest corresponding trace(s) produced
by the model and then highlights the points where the trace and the model diverge. However, trace
alignment cannot characterize the exact differences observed in a given state of the process in a concise
and understandable way, particularly for processes with a large number of possible traces.

In this abstract, we outline a method that, given a process model and an event log, returns a set of
statements in natural language describing all the behavior observed in the log but not allowed by the
process model (and vice versa). The method relies on a well-known model of concurrency, namely
prime event structures. We show that the stated problem of conformance checking can be approached
by folding the input event log into an event structure, unfolding the process model into another event
structure, and comparing the two event structures via an error-correcting synchronized product.

2 Approach

The overall approach is depicted in Figure[I] In this section we describe each of the steps in turn.

PES1
A" UnFoLb [/] (Prefix unf.)
Tnput Par:tially ,
Model COMPARE synehronized I yeppaLIZE
product

Input MERGE PES2
Eventlog _

Figure 1: Overall approach

From a log to a prime event structure

In previous work [5]], we presented a method to generate a prime event structure (PES) from an event
log. The method consists of two steps. First the event log, seen as a set of traces, is transformed into a
set of runs by invoking a concurrency oracle. In essence, each trace is turned into a run by relaxing the
total order induced by the trace into a partial order such that two events are not causally related if the
concurrency oracle has determined that they occur concurrently. Existing concurrency oracles such as
those proposed in the o process mining algorithm [8]] or in [[1] can be used for this purpose.

2 2 APPROACH

Second, the runs are merged into an event structure in a lossless manner, which means that the set of
maximal configurations of the event structure is equal to the set of runs. For example, consider the log
in Figure[2(a)] consisting of 16 traces: 3 instances ¢; (cf. column “N”), 3 instances of ¢2, so on. Using
the concurrency oracle of the o algorithm, we conclude that event classes B and C are concurrent, so
that the set of runs in Figure 2(b)[can be constructed. The notation e:A indicates that event e represents
an occurrence of event class A in the original log. By merging events with the same label and the same
history (i.e. same prefix), we obtain the PES in Figure In this figure, the notation {e1, ez ...¢e;}:A
indicates that events {e1, e ... e; } represent occurrences of event class A in different runs.

A bo:A 20:A doiA eo = {ao, bo, co,do }:A
Trace Ref | N Ka 0 N v © y Cﬂ, 1 LD/{ e i})
ABCDEH t1 3 aiB as:C byB ba:C c1B diB e1 ={a1,bi,c1,d1}B ez ={az,b2}:C
ABCDFH | t» | 3 « v « v v v o T e .
ACBDEH t3 2 asD b3:D c2:D d2:D es={ea s} eq ={as, b3} D
ACBDFH ta 2 v - - > 23 22, d2 } 24 13, b3 }:
ABDEH ts | 3 aiE baiE s dsE “ o ¥ oooN
ABDFH te 3 - i' v i es = {c3}:E - eg ={ds}F er={as}:E = es = {ba}F
as:H bsH cqH dgH + + + +
eo={ca}H e10={da}H e ={as}H e1z={bs}H
(a) Event log (b) Runs (c) Induced PES

Figure 2: Example of construction of a PES from a set of traces

From a model to a prime event structure

forA

The proposed method takes process models as input, he o
which are captured as Workflow nets (WF-nets) [6], &uend | SFROEl] ;‘f ,3:7“

i.e. Petri nets with a single start and a single end place v

such that every node is on a path from the start to the Je

end. Mappings from common process modeling no- Jor o JeE
tations (e.g. BPMN) to WF-nets have been defined in e s J foH
the literature [2]. Event structures can be losslessly de- froT - far

rived from workflow nets via unfoldings of Petri nets
using well-known unfolding techniques. In the case of
acyclic nets, a full unfolding can be computed and a PES can be trivially derived. In the case of bounded
Petri nets with cycles, it is possible to calculate a finite prefix unfolding that captures all the behavior
in the original net. A PES (prefix) can then be derived from such prefix unfolding. Several prefix
unfoldings have been defined in the literature, e.g. the complete prefix unfolding [3].

Figure 3: From a workflow net to a PES prefix

lmatch B

Comparing prime event structures i i Thide ¢:C
. . O ={eo,en}, O = {fo, 1} Thide 3D
The comparison of event structures is performed by €= {(eo, fo)a, (e1. f1)s} -
. . rmde j2
means of an error-correcting synchronized product that [match o

L= {eg,e1,e0}, C" = i, fe
we call a partially synchronized product (PSP). A PSP ? :’{({e(ﬂ 'f;)k_z(}cffl)B{‘{?;_f};ﬁ

is built starting from empty configurations. At each
step, a pair of events from each PES is matched if and Figure 4: Fragment of PSP of £ and £
only if their labels and causal order are consistent. Every unmatched event is “hidden” to let the simula-
tion proceed. By using a heuristic search, we construct a PSP that contains the set of optimal matchings
for every runs in the event log PES. Fig.] presents an excerpt of the PSP of the events structures from
Fig. [2l and 3| The box on top corresponds to the state where configurations C! = {ep,e1} (log PES)
and C" = { fo, f1} (model PES) have been processed, resulting in the matching {(eo, fo)a, (€1, f1)8}-
Given the above state, the events {e5:C, e3:D} from log PES would be enabled, and so is f2:C from the
other PES. Thus, four possible moves are possible in the PSP: (i) the matching of events e5 and f5, both
carrying the label C, (ii) the (left) hiding of f5:C, and (iii) the (right) hiding of e5:C and eg:D. Interest-
ingly, the fragment above alone captures the fact that “In the event log, task C can be skipped, while in
the model it cannot”. Although not illustrated, the PSP supports special-purpose moves to operate with
PES prefixes.

| CT={eo,e1}.C" = {fo. 1. fo}
&= {(eo, fo)a, (e1. f1)8}

REFERENCES 3

Verbalizing differences

We identify three categories of differences. The first type of difference is the one in which the labels
of events confined in the mismatch context can be paired. The mismatch stems from differences in
the underlying behavior relations, e.g. parallel vs. sequential relations. The second type concerns
composite mismatches, in which the information of two branches in the PSP needs to be combined in
order to diagnose the difference. For example, a “task skipping” is detected when an event is hidden in
one branch of the PSP and there exists a sibling node where the same event is matched, and both nodes
share the same parent node. The third type concerns differences comprising non-observed behavior. For
instance, the model describes a cycle consisting of a set of events that cannot be found in the log, or vice
versa.

Using the PSP, each change from a particular category can be verbalized to describe the exact dif-
ference between the observed log and the model. The different operations in the PSP uniquely describe
the differences between the model and the log. Table [I] provides an example of the verbalization of
differences with the model in Fig.|3|for each change category.

Difference [Log compared to Fig.[3] Verbalization
Type 1 @[APOTEO 5] . In the model, B and C are in parallel, while in the log, B precedes C.
Type 2 o . In the log, G is substituted by I.

|
(oo

. .|
ol 3O

Table 1: Desired verbalization of differences for each change category.

Type 3 In the model, the interval [D, F, G] is repeated multiple times, while in the log it is not.

For Type 1, the PSP describes a series of mismatches concerning the same event for both PESs.
When considering the context in the PESs, it becomes evident from the ordering relations that in one
PES B is in parallel with C, while in the other PES B and C are causal. In the Type 2 example, on one side
G is hidden, while on the other side | is hidden. From this, it can be concluded that G has been replaced
with I. Finally, Type 3 concerns behavior specified in the model that is not observed in the event log.
A mismatch in this category can be identified by identifying sets of events that are not present in the
PSP. Of particular interest are cutoff events because they provide hints about the nature of the missing
behavior. For the example shown in Table |1} the cutoff event f19:7 would not be part of the PSP, the
absence of which would reveal the fact that cycle [D, F, G] is never observed in the event log.

The examples of Table |l|show that we can characterize behavior in the log that is not in the model
and vice versa in a way that is understandable to users. Using this method, the conformance of an event
log to a model can be assessed more compactly and precisely than existing techniques.

References

[1] Jonathan E. Cook and Alexander L. Wolf. Event-based detection of concurrency. In FSE. ACM, 1998.

[2] Remco M. Dijkman, Marlon Dumas, and Chun Ouyang. Semantics and analysis of business process models in
BPMN. Information & Software Technology, 50(12), 2008.

[3] Javier Esparza, Stefan Romer, and Walter Vogler. An improvement of mcmillan’s unfolding algorithm. Formal
Methods in System Design, 20(3), 2002.

[4] Anne Rozinat and Wil M.P. van der Aalst. Conformance checking of processes based on monitoring real
behavior. Information Systems, 33(1), 2008.

[5] Nick R.T.P. van Beest, Marlon Dumas, Luciano Garcia-Baifiuelos, and Marcello La Rosa. Log delta analysis:
Interpretable differencing of business process event logs. In BPM 2015. Springer, 2015.

[6] Wil M.P. van der Aalst. Verification of workflow nets. In Appl. and Theory of Petri Nets 1997. Springer, 1997.

[71 Wil M.P. van der Aalst, Arya Adriansyah, and Boudewijn van Dongen. Replaying history on process models
for conformance checking and performance analysis. WIREs Data Min. Knowl. Discov., 2(2), 2012.

[8] Wil M.P. van der Aalst, Ton Weijters, and Laura Maruster. Workflow mining: discovering process models from
event logs. IEEE TKDE, 16(9), 2004.

	Introduction
	Approach

