
Formal Verification using Parity Games

Mathias Nygaard Justesen

Technical University of Denmark, Kongens Lyngby, Denmark
s123152@student.dtu.dk

While many problems can be reduced to solving parity games, see [FL10] for example, veri-
fication frameworks using parity game solvers as a backend technology seem quite unexplored.
In this abstract we report an initial attempt at building an infrastructure for a verification
framework, which so far captures model checking for the modal µ-calculus.

At least two toolsets, mCRL2 and LTSmin, reduce the model-checking problem to parity
game solving, but they both do so by encoding the problem as a parameterized boolean equa-
tion system (PBES) [CGK+13, KvdP14]. We take a more direct, game-based approach, first
proposed by Colin Stirling [Sti96, BS06], where the problem is not encoded as a PBES, but
instead the system is modelled as a labelled transition system and the properties are specified
as a formula in the modal µ-calculus. This is an interesting logic, because it subsumes other
widely used modal logics, such as LTL and CTL [Koz83].

1 Basic Notions

Parity games. A parity game is played by two players, called Player 0 and Player 1, on a
directed graph in which all nodes are labelled with priorities. Formally, a parity game is a tuple
G = (V, V0, V1, E,Ω), where (V,E) forms a directed, total graph. Player 0 controls the nodes in
V0, and Player 1 controls the nodes in V1, such that V = V0 ∪ V1 and V0 ∩ V1 = ∅. The priority
function Ω : V → N assigns a natural number to each node, called the priority of the node.

The game starts in a node v0 ∈ V and an infinite sequence of nodes is constructed as follows.
If the play so far has yielded a finite sequence of nodes v0v1 . . . vi and vi is in Vj , then Player j
selects a node w, such that (v, w) ∈ E, and the play continues with the sequence v0v1 . . . viw.
The winner of the play v0v1v2 . . . is Player 0, if the highest priority that occurs infinitely often
is even, otherwise Player 1 wins.

A strategy for Player j is a function σ : V ∗Vj → V that maps every initial play v0v1 . . . vi
ending a node vi ∈ Vj to a successor node vi+1, such that (vi, vi+1) ∈ E.

An important property of parity games is that they exhibit positional determinacy [Kü02],
i.e., the set V of nodes in an arbitrary game G can be divided into two winning regions, W0

and W1, such that Player j can win every game that starts in a node v ∈ Wj by following a
winning strategy. Moreover, a winning strategy is also positional, i.e., there exists a function
σ′ : Vj → V such that σ(v0 . . . vi) = σ′(vi) for vi ∈ Vj . Thus, an algorithm for solving parity
games should compute the winning regions and the positional winning strategies.

Labelled transition systems. A (P,A)-labelled transition system (LTS) is a tuple S =
(S, V,R), such that S is the set of states; V : P → P(S) is a valuation, i.e., V (p) is the set of
states where p is true; and R = {Ra ⊆ S × S | a ∈ A} contains the action-labelled relations of
the system.

Modal µ-calculus. Given a set of proposition letters P and a set of actions A, the collection
of formulas ϕ in modal µ-calculus are defined by the following grammar

ϕ ::= > | ⊥ | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈a〉ϕ | [a]ϕ | µx.ϕ | νx.ϕ
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where p, x ∈ P and a ∈ A. Informally, > and ⊥ are true and false, respectively; ¬, ∧, and
∨ are the usual Boolean operators; 〈a〉 and [a] are modal operators; and µ and ν are fixpoint
operators.

The semantics of the modal µ-calculus can be defined game-theoretically in terms of a
so-called evaluation game [Ven08]. It is helpful to think of the game in terms of proving or
disproving a formula ϕ. Player 0 is trying to prove ϕ, and Player 1 is trying to disprove it.
The problem of determinining the winner of an evaluation game can be reduced to finding the
winning regions of a parity game. Furthermore, the model checker can construct examples and
counter-examples from the winning strategies.

2 The Framework

The overall goal is to investigate the use of parity games for formal verification. Thus, an
efficient solver is a critical part of a verification framework. Therefore, in the first version
we use PGSolver [FL14] as the backend solver, because it allows for experimentation with
different algorithms. Furthermore, a model checker for modal µ-calculus is implemented. This
implementation is based on an on-the-fly generation of a parity game on the basis of a labelled
transition system and a formula in modal µ-calculus.

Parity games of a few million nodes with average degree d = 3 can be solved in less than a
minute1, so speed is not an immediate concern. However, memory is quickly exhausted as the
LTS or the formula becomes complicated, since the game graph consists of O(|S| · |Sfor(ϕ)|)
nodes.2 One approach to overcome this problem is solving parity games symbolically, which
leads to a more compact representation [BEKR09, KvdP14]. For a simple one-node LTS with
three actions, the current implementation can check formulas with eleven alternating fixpoints
in a few seconds, by generating and solving a parity game of 1.2 million nodes. For such formulas
the state space grows exponentially with the depth of the formula, so a formula with twelve
alternating fixpoints results in a parity game of 3.7 million nodes, which exhausts the memory
of the parity game solver.

We have also considered a new type of algorithm due to Steen Vester, in which parity games
are considered in a certain normal form, where the game is strictly turn-based, and where
Player 0 only controls nodes of even parity and Player 1 only controls nodes of odd parity. The
algorithms in consideration exploit these restrictions in order to simplify the solving process.
Considering parity games in this normal form is viable, because it is possible to transform any
parity game to one in normal form in linear time, such that no player has any additional strategic
advantages and the winning regions are preserved. In practice, the normal-form algorithms
perform worse than the state-of-the-art algorithm due to Zielonka [Zie98, FL09], but they
perform well on games that they are theoretically well suited for, i.e., dense game graphs that
are already in normal form (need no transformation). This is promising for the development
of other specialized algorithms. These may not perform better in general, but in special cases
of interest, e.g., an algorithm that exploits the tree-like structure of parity games constructed
from evaluation games.

Overall, this is promising for using parity games for other verification techniques, e.g.,
controller synthesis, which amounts to finding the winning strategies in a parity game [RW89].

1Benchmarks carried out on a machine with four 3.5 GHz Intel Core i5 processors and 8 GB RAM space. The
implementation does not support prallel computations, hence, the benchmarks was only run on one processor.

2Sfor(ϕ) denotes the subformulas of ϕ.
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