
Towards Component-based Reuse for Event-B

Andrew Edmunds1, Marina Walden1, and Colin Snook2

1 Åbo Akademi University, Turku, Finland
aedmunds@abo.fi, mwalden@abo.fi

2 University of Southampton, UK cfs@ecs.soton.ac.uk

Abstract: An efficient re-use mechanism is a primary goal of many software development
strategies; and is also important in the safety-critical domain, where formal development is
required. Event-B can be used to develop safety-critical systems, but could be improved by
development of a component-based re-use strategy. In this paper we outline a methodology, and
the tool support required, for facilitating re-use of Event-B machines. As part of the ADVICeS
project [10] we are seeking to improve re-use of Event-B artefacts. The creation of a library of
components, and a way to assemble them, would facilitate this. We propose to extend iUML-B
class diagrams [9], and extend the composition techniques introduced in [7], to allow speci-
fication of Event-B components, interfaces, and composite components. Initial investigation
has been undertaken as part of the project ADVICeS, funded by Academy of Finland, grant
No. 266373. The approach also addresses the need, in Event-B, for bottom-up scalability.
We describe the process of creating library components, their composition, and specification of
new properties (of the composed elements). We introduce the notion of Event-B components,
component interfaces, and composite components. We describe the additional annotations, and
discuss composition invariants.

1) Preliminaries
Event-B is a language and methodology [1, 2], with tool support provided by Rodin [3]. The
system and its properties are specified using set-theory and predicate logic. It uses refine-
ment [6] to show that the properties hold as the development proceeds. Refinement is used to
add detail to the development. Event-B tools are designed to reduce the amount of interac-
tive proof required during specification, and refinement steps [4]. Proof obligations (P.O.s) in
the form of sequents, are automatically generated by the Rodin tool. The automatic prover
can discharge many of the P.O.s. The remainder can be tackled with the interactive prover.
Complex systems can be simplified using decomposition techniques [8].

The basic Event-B elements are contexts, machines and, composed-machines. Contexts
define the static parts of the system using sets, constants and axioms. Machines describe the
dynamic parts of a system using variables and events, and use invariant predicates to describe
properties that should hold. We specify an event in the following way,

e , ANY p WHERE G THEN A END

where e has parameters p; a guarding predicate G; and actions A. For the state updates
(described in the action) to take place, the guard must be true.
The Composition of Decomposed Machines: Previous work [7] describes the composition
that arises from the decomposition of a single machine. Multiple, decomposed sub-units, and
the composed-machine construct, form a refinement of the abstract machine. We use the shared-
event approach for decomposition, where the combined-events clause, of the composed-machine,
refines an abstract event e. We write ea‖eb to combine events ea and eb, where subscripts a and
b also identify the sub-units (machines). These events are said to synchronize (i.e., the events
are enabled) when the conjunction of the guards are true. The combined actions are composed
in parallel.

1

Towards Component-based Reuse for Event-B Edmunds, Walden and Snook

Cm

Machine

Library Machine Component

Composed Machine

L1

Cm

L

M

L
interface events

internal event

synch1

synch2

includes
includes

promotes

M

refines? refines?

L1M
synch1R

synch2R

L2...........

includes

synch3

Cc
Cc

Library Composed Component

Figure 1: Machines “Included” in a Composition

Figure 2: The FIFO Buffer Component

2) Composition with Components
By extending existing techniques, we aim to facilitate creation/use of a library of machines.
Figure 1 shows a composed-machine Cm that includes library machine components L1 and L2,
and machines under construction M . Combined-events are shown using a dashed line between
the machines. An interface reveals a set of events that may synchronize with some other
machines, annotated with i against the event. See Fig. 2, an extended version of an existing
iUML-B class diagram [9]. For parameter passing, the names and types of the communicating
parameters are revealed, using ? and ! for input and output resp. A composed-machine may
also be treated as a library component.

Using Component Instances: The component defined in Fig. 2 may be used to buffer data
for producer and consumer models, see Fig. 3, a new diagrammatic representation in Event-B.
Here, arrows represent associations, and dashed lines represent combined events.

The Composition Invariant: Each individual machine has its own set of invariants, and the
composed-machine has composition invariants which specify properties about the composition.
These properties cannot be specified in the individual machines. The composed machine needs
visibility of all of the variables contained within the composition, and their included sets and
constants. To ensure the composition invariant is satisfiable, we should add a guard GCI to
the composed event, but currently there is no feature in the tool to do this. The guards that
preserve the new composition invariant can be added to the composed-machine’s combined
event clause, subject to a tool enhancement. The guard will be added as follows,

ea ‖ eb , ANY pa, pb WHERE GCI(v) ∧ Ga ∧ Gb THEN Aa ‖Ab END

In the example we may want the fifo buffer f1 to hold odd numbers, and f2 to hold even
numbers. This is a property of the composition, and should be specified in the composition
invariant clause. To specify this, we add an invariant, stating that all of the values in the
producer’s f1 buffers must have mod 2 of 1, and the values of the f2 buffers must be mod 2 of
0; as in the following,

∀p·p ∈ dom(f1) =⇒ (∀v ·v ∈ ran(buffer(f1(p))) =⇒ v mod 2 = 1)

2

Towards Component-based Reuse for Event-B Edmunds, Walden and Snook

FIFO Combined Events:
a) Producer.inToBuffOK1 || FIFO.inToBuffOK
b) Producer.inToBuffOK2 || FIFO.inToBuffOK
c) Producer.inToBuffFail1 || FIFO.inToBuffFail
d) Producer.inToBuffFail2 || FIFO.inToBuffFail
e) Consumer.retrvFromBuffOK || FIFO.retrvFromBuffOK
f) Producer.generateProducer

a c

Consumer

FIFO

b d

f

Consumer

e

e

f1 f2

fifo

fifo

Figure 3: Component Instance Diagram

Proof Obligations We propose to take a Design-By-Contract (DBC) [5] view for input and
output parameters. In our work the input and output parameters, and their type and direction
information, form part of the interface specification. Using this, we can ensure that matching
parameter’s output values fall within the range of the allowable inputs, by generating proof
obligations.

3) Conclusions
In order to make the Even-B approach more flexible, we propose an extension to the existing
composition approach, to introduce Event-B components. We add input, and output speci-
fiers, “?” and “!” to event parameters, and extend iUML-B to describe components, and their
interfaces. We add annotations, to identify externally visible events, while the remainder are
hidden. We ensure communication is feasible, by generating additional precondition-style proof
obligations; and provide a mechanism to add additional guards, to discharge the composition
invariant proof obligations. We plan to investigate the use of components w.r.t. team-working.
The parallel development of components, and artefacts within components, is key to making
Event-B more agile.

References

[1] The Rodin User’s Handbook. Available at http:// handbook.event-b.org/.

[2] J.R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University Press,
2010.

[3] J.R. Abrial, M. Butler, S. Hallerstede, T.S. Hoang, F. Mehta, and L. Voisin. Rodin: An
Open Toolset for Modelling and Reasoning in Event-B. Software Tools for Technology Trans-
fer, 12(6):447–466, November 2010.

[4] S. Hallerstede. Justifications for the Event-B Modelling Notation. In J. Julliand and
O. Kouchnarenko, editors, B, volume 4355 of Lecture Notes in Computer Science, pages 49–63.
Springer, 2007.

[5] B. Meyer. Design by Contract: The Eiffel Method. In TOOLS (26), page 446. IEEE Computer
Society, 1998.

[6] J. Wright R. Back. Refinement Calculus: a systematic introduction. Springer Science & Business
Media, 2012.

[7] R. Silva. Supporting Development of Event-B Models. PhD thesis, University of Southampton,
May 2012.

[8] R. Silva and M. Butler. Shared Event Composition/Decomposition in Event-B. In FMCO Formal
Methods for Components and Objects, November 2010. Event Dates: 29 November - 1 December
2010.

[9] C. Snook and M. Butler. UML-B and Event-B: An Integration of Languages and Tools. In The
IASTED International Conference on Software Engineering - SE2008, February 2008.

[10] The ADVICeS Team. The ADVICeS Project. available at https://research.it.abo.fi/ADVICeS/.

3

http://handbook.event-b.org/
https://research.it.abo.fi/ADVICeS/

