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Many reversible functional programming languages (such as Theseus [8] and the combinator
calculi Π and Π0 [3]) as well as categorical models thereof (such as †-traced symmetric monoidal
categories [3]) come equipped with a tacit assumption of totality, a property that is neither
required [2] nor necessarily desirable as far as guaranteeing reversibility is concerned. Shedding
ourselves of this assumption, however, requires us to handle partiality explicitly as additional
categorical structure.

One approach which does precisely that is Cockett & Lack’s notion of inverse categories [4],
a specialization of restriction categories, which have recently been suggested and developed
by Giles [5] as models of reversible (functional) programming. In this paper, we will argue
that assuming ever slightly more structure on these inverse categories, namely the presence of
countable joins of parallel morphisms, gives rise to a number of additional properties useful for
modelling reversible functional programming, notably reversible (tail) recursion and recursive
data types (via ω-algebraic compactness with respect to structure-preserving functors), which
are not otherwise present in general. This is done by adopting two different, but complementary,
views on inverse categories with countable joins as enriched categories – as CPO-categories, and
as (specifically ΣMon-enriched) unique decomposition categories.

Background In the framework of restriction categories, partiality is handled by equipping
each morphism f : A→ B with a partial identity morphism f : A→ A (the restriction idempo-
tent of f , intuitively the identity defined precisely where f is defined) subject to a few axioms,
notably that f is the right-identity of f under composition. This definition provides a partial
ordering on Hom sets by defining f ≤ g for parallel morphisms f and g iff g ◦ f = f .

Joins on morphisms (see, e.g., Guo [6]) are then defined to be joins with respect to this partial
order (subject to a few axioms), with the caveat that parallel morphisms f and g can only be
joined if they are join compatible, which they are iff g ◦f = f ◦g (intuitively, if they agree on all
points in their domain where they are both defined). This definition is then straightforwardly
extended to sets (in this particular case, countable ones) of parallel morphisms by saying that
a set S ⊆ Hom(A,B) is join compatible if all morphisms of S are pairwise join compatible. A
restriction category is thus said to have (countable) joins if all (countable) join compatible sets
have a join, and the category has a restriction zero object, that is, a zero object in the usual
sense which additionally satisfies that the zero map 0A,A : A → A is a restriction idempotent
(i.e., that 0A,A = 0A,A) for all objects A (the zero map 0A,B is the unit for joins in Hom(A,B)).

Perhaps more immediately important to our applications, restriction categories allow for a
definition of a partial isomorphism as a morphisms f : A → B for which there exists a partial
inverse f∗ : B → A such that f∗ ◦ f = f and f ◦ f∗ = f∗. An inverse category is then defined
to be a restriction category in which all morphisms are partial isomorphisms; as such, inverse
categories are “groupoids with partiality,” and can be canonically equipped with the structure
of a †-category by letting the †-functor map each morphism to its partial inverse. Keeping with
this canonical structure, we will use f† for the partial inverse of f from here on out. Inverse
categories can be equipped with joins in the same way as general restriction categories can
(with slightly more work, see Guo [6]).
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CPO-enrichment Since inverse categories come equipped with partially ordered Hom sets,
demonstrating CPO-enrichment reduces to producing suprema of ω-chains and showing that
composition is continuous and strict. Let C be an inverse category with countable joins. For
an ω-chain {fi}i∈ω of some Hom C(A,B), we define its supremum by1

sup {fi}i∈ω =
∨
i∈ω

fi .

That this join exists follows from the fact that f ≤ g implies that f and g are join compatible.
That composition is continuous follows directly by this definition since

g ◦
∨
f∈F

f =
∨
f∈F

(g ◦ f) and

 ∨
f∈F

f

 ◦ h =
∨
f∈F

(f ◦ h)

are axioms of joins [6]; similarly, strictness of composition follows by the universal mapping
property for the zero object, noting that the zero map 0A,B is least in the partial order on
Hom C(A,B) for all objects A,B.

From this follows the existence of fixed points for all continuous morphism schemes for recur-
sion, i.e., monotone and continuous functions of the form f : Hom C(A,B)→ Hom C(A,B) by
Kleene’s fixed point theorem, and can thus be used to model recursion. A further pleasant prop-
erty is locally continuity of the canonical †-functor on C, i.e., the map invA,B : Hom C(A,B)→
Hom C(B,A) given by invA,B(f) = f† is monotone and continuous for all objects A,B.

Combining the two, we can show that each continuous morphism scheme for recursion f
has a fixed-point adjoint f‡ such that (fix f)† = fix f‡; intuitively, that the partial inverse of a
recursive function can be constructed recursively in a canonical way. This is done by defining

f‡ = invA,B ◦ f ◦ invB,A

which is continuous since it is a continuous composition of continuous functions; fix f‡ =
(fix f)† can then be shown using local continuity of the †-functor, and by noting that fn‡ =
invA,B ◦ fn ◦ invB,A. This gives us reversible recursion in the style of rfun [9]: a recursive
function is inverted by replacing recursive calls with calls to the inverse function, and then in-
verting the remainder of the function. Further, by considering more general morphism schemes,
we can get a procedure for representing parameterized functions in the style of Theseus [8].

Another consequence is the fact that every inverse category with countable joins can be
embedded (fully faithfully and in a join and restriction preserving manner) into an inverse cat-
egory that is ω-algebraically compact with respect to the class of join and restriction preserving
functors. The proof of this theorem is somewhat involved: it relies on a coincidence between
restriction monics in inverse categories (split monics that split a restriction idempotent) and
embeddings in CPO-categories (morphisms f : A → B with projections f∗ : B → A such that
f∗ ◦ f = 1A and f ◦ f∗ ≤ 1B); on Guo’s characterization of join restriction categories as partial
map categories with certain stable colimits [6]; and on Adámek’s fixed point theorem [1].

ΣMon-enrichment and unique decomposition Another way to approach inverse cate-
gories with countable joins is as Σ-monoid enriched categories in the sense of Haghverdi [7].
Briefly, a Σ-monoid consists of a set S equipped with a partial sum function Σ defined on

1This is a slight abuse of notation since joins in restriction categories are unordered, i.e., defined on sets
rather than families. The join

∨
i∈ω fi should thus be taken to mean

∨
f∈F f where F = {fi | i ∈ ω}.
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countable families of S (say that such a family if summable if its sum exists), subject to the
axioms of partition-associativity (a family is summable iff any partitioning of it is piecewise
summable, and the sum of the pieces coincide with the sum of the family) and unary sum (the
sum of a singleton family is equal to its element). It is straightforwardly the countable joins in
inverse categories satisfies these axioms, with summability coinciding with join compatibility.

If we, in addition, suppose that our inverse category C with countable joins is equipped with
a disjoint sum tensor in the sense of Giles [5] (a symmetric monoidal restriction functor · ⊕ ·
with the restriction zero as unit, and equipped with jointly epic injections q1 : A→ A⊕B and
q2 : B → A⊕B and jointly monic coinjections q†1 : A⊕B → A and q†2 : A⊕B → B), we get
straightforwardly that C is a unique decomposition category (a symmetric monoidal category
with quasi-injections ιj : Xj → ⊕IXi and quasi-projections ρj : ⊕IXi → Xj for all j ∈ I where
I a finite index set, subject to a two axioms [7]). Using join compatibility of disjoint morphisms,
it follows by Haghverdi [7] that C is traced, and that the trace can be constructed by

TrUA,B(f) = f11 +
∑
n∈N

f21 ◦ fn22 ◦ f12 = f11 ∨
∨
n∈N

f21 ◦ fn22 ◦ f12

for all f : A⊕ U → B ⊕ U , where fij = ρj ◦ f ◦ ιi = q†j ◦ f ◦ qi. In this special case, however,

this is not just a trace, but a †-trace (i.e., it satisfies TrUB,A(f†) = TrUA,B(f)†): this can be seen

by realizing that (fij)
† = f†ji, and by using (

∨
f∈F f)† =

∨
f∈F f

† which follows directly from
local continuity of the †-functor in the CPO-view. This is significant given that †-traces are
used to model reversible tail recursion.

Conclusion The existence of countable joins in inverse categories provides us with a model
of partial reversible functional programming with recursive types and general recursion in the
style of rfun. Further assuming the existence of a disjoint sum tensor allows us to extend the
standard model of †-traced symmetric monoidal categories to one with a notion of partiality.
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