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Abstract

The notion of Data Dependency Algebra (DDA) is an algebraic formalism that turns data depen-
dencies into first class citizens in the program code through a dedicated Application Programming
Interface (API). This forms the basis of a platform independent parallel programming model [BH09].
In this paper, we further expand the theory of DDAs by proposing algebraic combinators operating
on top of DDAs as a means to declare compound DDAs of custom complexity. The purpose is to
allow the programmer to combine existing DDA implementations via high-level language constructs
using simple declarations. The implementation of the compound DDA is generated at compile-time
yet through the API its components are readily available for the programmer after declaration. We
instantiate these ideas through the case-study of a DDA-based polynomial multiplication.

Introduction
Dependence analysis is a complex process through which a compiler collects relevant information about
the execution-order of program statements [Ban96]. The aim is to identify situations when statements
can be reordered for optimisation purposes without changing the semantics of the program. This
may lead to improved instruction scheduling with decreased number of stalls, better exploitation of
instruction-level parallelism when the hardware supports it, or improved memory locality, etc. With the
appearance of early parallel computing systems, compilers also met the challenge of how to generate
parallel executable on demand. This formed the basis of the concept known as automatic parallelization.
While most modern compilers have successfully adopted optimisation techniques based on dependence
analysis, its applicability for automatic parallelization has remained limited. Dependence analysis is
NP-complete in the presence of recursion, indirect addressing, pointers, or when the behaviour of the
program is dynamically determined, for instance, loops with non-fixed iteration spaces, or algorithms
with input-dependent dynamic dependencies. In addition, a major problem with automatic paralleliza-
tion is that sequential and parallel versions of an algorithm are fundamentally different. They are based
on solution paradigms that do not necessarily relate to each other. Compiler transformations, on the
other hand, generally preserve the solution paradigm. Hence, dependence analysis of sequential code
cannot supply sufficient knowledge to aid the complex task of parallelization: parallel task decomposi-
tion, load balancing, data distribution, synchronisation, etc.

Over the last decades, research in parallel programming models and compilers has shown that a
different coding technique is required when the aim is to execute certain parts of a computation in
parallel. Be that through the means of language constructs with a dedicated parallel (or concurrent)
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execution model, using for instance threads, parallel loops, data-parallel constructs, skeletons, message
passing, or based on directives which instruct the compiler that annotated parts of the code can be
executed in parallel, or based on other abstractions that help the compiler in the parallelization process.

With all that, parallel programming has proved to be very difficult and error-prone. Portability
across multiple platforms and flexibility is also a major issue. Today, this is even more accentuated by
the fact that applications need to be parallelized to adapt to the rapidly growing and versatile realm of
parallel hardware systems. This applies to all range of computing systems, from commodity computers
via embedded systems up to supercomputers. Multi-cores, many-cores, and accelerators like Graphics
Processing Units (GPUs) and Field Programmable Gate Arrays (FPGAs) are becoming standard yet the
search for parallel programming models that meet the requirements of portability, flexibility, efficiency,
scalability and programming productivity across these platforms is still ongoing.

Parallel Programming with Data Dependencies

We pointed out that automatic dependence analysis cannot provide fine-grained details about the data
dependencies occurring in a computation. Nonetheless, it is the flow of data and the presence or lack of
dependencies between computational steps which determine any parallel execution. Therefore, we set
our focus on fine-grained data dependencies.

The notion of Data Dependency Algebra (DDA), introduced in [Hav00], is an algebraic formalism
that allows the programmer to present the data dependency graph of a computation as program code to
a compiler. The abstraction is powerful enough to serve as the basis of a platform independent parallel
programming model ensuring flexibility, productivity and portability across the platforms [BH09]. The
approach also provides a high and easy to manipulate level for the programmer to deal with data distri-
bution and placement [BH12]. In general, DDA-based parallel code generation is doable for any parallel
systems with a well defined space-time communication structure. This has been shown for shared- and
distributed-memory model computers, GPUs and FPGAs [Sør98, BH09, Bur14].

Central to this approach is the ability to extract manually the data dependency graph of an algorithm
and code the computation in terms of the DDA API. This approach primarily suits computations with
static and scalable data dependencies where the patterns are regular. Some data dependencies are more
complex and probably less regular than for instance the butterfly pattern of the Fast Fourier Transform,
sorting networks, or stencil computations of PDE solvers. Coding complex dependencies may easily
become cumbersome.

In this presentation, we propose algebraic combinators operating on top of DDAs as a means to
declare compound DDAs of custom complexity. The purpose is to allow the programmer to combine
existing, easy to code DDA implementations via high-level language constructs. The implementation
of the compound DDA is generated at compile-time yet through the API its components are readily
available for the programmer after declaration. The following combinators are presented:

1. The parallel DDA combinator allows DDAs to be placed next to each other resulting in a larger
DDA, to be referenced as a standalone DDA, without defining any additional connection between them.

2. On the contrary, the serial DDA combinator creates a larger DDA by connecting two DDAs in
a “sequential” fashion. New branches are added in the compound DDA that will connect a designated
set of points from the first DDA to a designated set of points of the second DDA determined by a given
transfer function.

3. The sub-DDA combinator is a unary operator resulting in a smaller DDA “forgetting” parts of the
original DDA as specified in the construct. It resembles the sub-graph relation from graph-theory.

4. The nesting DDA combinator requires a global DDA, a collection of local DDAs, one for each
global DDA point, and a family of transfer functions, see Fig. 1. Each point of the global DDA is
replaced by its associated local DDA, and new dependency branches are added along the global depen-
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Figure 1: Detail of a nested DDA (black coloured), obtained using 4 points of a global DDA (grey coloured in the
background), and the associated local DDAs.

dencies between the local DDAs as specified by the transfer functions.
Combinators can be applied in arbitrary order when declaring compound DDAs. Implementing the

combinators in the compiler according to the proposed formalisms ensures that the compound DDA
is in effect a DDA, i.e., its components satisfy the axiomatic requirements of the DDA API which is
quintessential in the framework.

We discuss the benefits of the combinators in the programing model context and instantiate their use
by presenting a compound DDA-based polynomial multiplication.
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