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1 Introduction

Modern software systems are increasingly concurrent as the computational capacity of modern
CPUs is improved mainly by increasing the number of processor cores. Writing software that
efficiently exploits the capacity of such CPUs is hard. For this purpose new programming
paradigms have been proposed. One such paradigm, which has gained a lot of attention within
the signal processing domain is the dataflow paradigm. A dataflow program consists of a
network of actors connected via asynchronous channels that describe the flow of data between
actors. Each actor can execute concurrently when the required data is available on the incoming
channels. As the only communication between actors is performed over channels, computations
can easily be mapped to different processing units. In the general case dataflow programs have
to be scheduled dynamically at runtime when run on general purpose hardware, which can
cause significant runtime overhead. Consequently, different techniques to reduce the number of
dynamic scheduling decisions have been investigated, e.g. [3].

In this work we present an approach to specification and automatic verification of dataflow
programs based on assume-guarantee reasoning. The approach is based on annotating actors
and networks with contracts stating functional properties which the actor or network should
adhere to. The goal of the approach is to ensure functional correctness with respect to the
contracts as well as deadlock freedom for dataflow networks. The contracts can potentially
also be used to specify and prove properties which can be utilised to make scheduling decisions
at compile-time. The work presented is a generalisation of previous work on verification of
Simulink models [2], in which Simulink models are translated to synchronous data flow [5]
(SDF) networks for verification. SDF is a subset of the the dataflow programs considered here,
which can be statically scheduled.

2 Dataflow programs

We here consider dataflow programs in a language similar to the CAL actor language [4]. CAL
has gained recent attention within the signal processing domain, and a subset of the language,
named RVC-CAL, has also been standardised by ISO/IEC MPEG as part of the Reconfigurable
Video Coding standard [6].

The dataflow programs considered here consist of a set of actors communicating over order-
preserving channels of infinite size. Actors, which are allowed to have state, consist of a set of
actions. The actor executes by firing an eligible action. An action is eligible depending on the
number of tokens available on the incoming channels, the values of the tokens and the current
state of the actor. Some examples of basic actors are listed in Fig. 1a. The actor Add has
two input ports x1 and x2 and one output port y. The actor has one action, which reads one
token from each of the input ports and outputs the sum of the read tokens. The actor Delay
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actor Add() int x1, int x2 ==> int y:
action x1:[i], x2:[j] ==> y:[i+j] end

end

actor Delay(int k) int x ==> int y:
initialize ==> y:[k] end
action x:[i] ==> y:[i] end

end

actor Split() int x ==> int q, int u:
action x:[i] ==> q:[i]
guard i < 0

end
action x:[i] ==> u:[i]
guard i >= 0

end
end

actor Sum() int x ==> int y:
inv sum == (0::y)[last]

int sum := 0;

action x:[i] ==> y:[sum]
sum := sum+i;

end
end

network Sum() int x ==> int y:
entities
a = Add();
d = Delay(0);

end
structure
x1: x --> a.x1; x2: d.y --> a.x2;
y: a.y --> y; z: a.y --> d.x;

end

inv delay(x2,1)
inv x2[next] == (0::y)[last]

action x:[i] ==> y:[(0::y)[last]+i] end

chinv total(y) == read(x1)
chinv total(y) == read(x2)
chinv total(z) == read(x1)
chinv total(z) == read(x2)
chinv total(x2) == read(z)+1
chinv forall int i . 0 <= i && i < total(y)
==> y[i] == x1[i]+x2[i]

chinv forall int i . 0 <= i && i < total(z)
==> z[i] == x1[i]+x2[i]

chinv forall int i . 1 <= i && i < total(x2)
==> x2[i] == z[i-1]

end

(a) (b)

Figure 1: (a) Implementations of some basic actors. (b) A dataflow network consisting of two
basic actors of type Add and Delay.

delays the data on the input channel with one token. The actor has a special initialisation
action outputting an initial token on the output port. This action is run only once when the
actor is initialised. The actor Split is an example of a data-dependent actor, as its behaviour
depends on the value of the incoming token. It outputs negative input tokens on port q and
non-negative input tokens on port u. The actor Sum is an example of an actor with state. It
accumulates the sum of the inputs it has received. A network consisting of one Add actor and
one Delay actor is listed in Fig. 1b. It implements the same functionality as the actor Sum in
Fig. 1a. It should be noted that the syntax used for specifying the network is not standard
CAL. For instance RVC-CAL uses an XML-based format for networks. Networks in pure CAL
do not have actions, but we use them here to describe the intended behaviour of the network.
Hence a network action describes how the network should react when it receives input tokens.

3 Verification
For verification we encode the dataflow programs in the intermediate verification language
Boogie [1]. An actor is verified by checking each action against its contract. Action contracts
state preconditions and postconditions relating tokens on the input and output channels. For an
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actor with invariant I and an action with precondition P , guard conditionG and a postcondition
Q, we need to check that Q and I hold after executing the action, assuming that P , G and I
hold before executing the action.

Verification of a network means checking that the network has the behaviour described by
its network actions. To do this we need to express the relations between data on the channels
in the network. We call these relations channel invariants. In the example in Fig. 1b, channel
invariants are declared using the chinv keyword. Channel invariants are required to hold during
the execution of a network action, while network invariants, declared using the inv keyword,
are required to hold before and after a network action is executed, but not necessarily while the
action is executed. The channel invariants provided in the example in Fig. 1b express relations
both between the number of tokens on the channels and between the data on the different
channels. We for instance have the property that the total number of tokens (written as well as
read) on the channel y during execution of the action is equal to the number of read tokens on
channel x1. This type of properties are needed to ensure that the amount of tokens specified
in the network action is available on the output channels after executing the action. Channel
invariants also relate data on the different channels, for instance that the i:th token on channel
y should be equal to the sum of the i:th tokens on channels x1 and x2.

A network can be verified to be correct with respect to its contract in the following way:
Assume that we have a network with network invariant I and an action with postcondition Q.
Additionally assume that F1, . . . , Fn are the firing conditions of each action A1, . . . , An of every
actor in the network and that C1, . . . , Cm are the channel invariants of the network. Assuming
that C1, . . . , Cm hold, we check that C1, . . . , Cm hold again after executing any actor Ai for
which Fi evaluates to true. We additionally also check that the postcondition of the network
action holds when no actor can be fired: ¬F1 ∧ · · · ∧ ¬Fn ∧ C1 ∧ · · · ∧ Cm ⇒ Q ∧ I.

4 Conclusions
We have outlined an approach to contract-based specification and verification of dataflow pro-
grams. The work is still in progress. To make the approach more usable in practice it would
be important to infer as many as possible of the channel invariants for a network. We plan to
investigate automatic inference of invariants for special classes of actor networks. We also plan
to investigate the use of contracts to aid the compile-time scheduling of dataflow programs.
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