
Tool Support for Component-Based Semantics

L. Thomas van Binsbergen1, Peter D. Mosses2, and Neil Sculthorpe2

1 Department of Computer Science, Royal Holloway University of London, UK
ltvanbinsbergen@acm.org

2 Department of Computer Science, Swansea University, UK
p.d.mosses@swansea.ac.uk, n.a.sculthorpe@swansea.ac.uk

Abstract

The PLanCompS project has developed a component-based approach to formal semantics. Here,

we present the tools we have implemented to support component-based language definitions, including

semantics-based program execution. The talk includes a demonstration of the use of the tools.

1 Introduction and Background

The benefits of formal semantics are well known at NWPT. However, it requires a lot of work
to produce a complete and accurate formal semantics for a major language; and when the
language evolves, large-scale revision of the semantics may be needed to reflect the changes.
The investment of effort needed to produce an initial definition, and subsequently to revise it,
can discourage language developers from using formal semantics [3].

To improve the practicality of formal semantic definitions of larger languages, the PLan-
CompS project [9] proposes to base them on a collection of reusable components, and to imple-
ment tool support for their development and testing. Analogous practices are widely adopted
in software engineering: developers rely on reusable components in the form of packages, and
on IDEs when coding and testing.

Component-based semantics. In the PLanCompS approach, a reusable component of lan-
guage definitions corresponds to a fundamental programming construct: a so-called ‘funcon’,
which has a fixed operational interpretation. The formal semantics of each funcon is defined
independently, using a modular variant of SOS [6, 7]. The collection of funcons is open-ended;
crucially, adding new funcons never requires changes to the definition or use of previous funcons.

A component-based semantics of a programming language is defined by translating its con-
structs to funcons. The expectation is that many funcons can be widely reused in the definitions
of different languages. An initial case study [1] gave a semantics for Caml Light [5] based on a
preliminary collection of funcons; after completing a further case study (C]), the funcons used
in the two language definitions are to be finalised and made freely available in a digital library.

Contributions. We introduce a unified meta-notation called CBS for defining abstract syntax
of programming languages, translations from language constructs to funcons, and the semantics
of the funcons themselves. To accompany CBS, we provide a complete tool chain for execut-
ing translation functions and running the resulting funcon terms. A further contribution is
illustrating the usefulness of Spoofax [4] for generating IDEs to support semantic frameworks.

Related work. Other tools supporting development of semantic definitions and/or semantics-
based program execution include the ASM tools, Ott, PLTRedex, the K tools, Maude, Melange,
and DynSem. Some of the semantic frameworks supported by these tools have a high degree
of modularity, but we are not aware of any that provide a collection of reusable components,
apart from an exploratory definition of a modest collection of funcons in K [8].

1

Tool Support for CBS Van Binsbergen, Mosses and Sculthorpe

2 Developing and Executing Language Definitions

We have implemented an IDE in Eclipse to support development and testing of component-
based semantics. We have used Spoofax [4] to generate a CBS editor with many useful features,
including syntax highlighting, syntax error recovery, hyperlinks from uses of symbols to their
definitions, and flagging of undefined symbols.

The screenshot shows several files open during the development of the component-based
semantics of Caml Light (CL). The top left pane is browsing the CL abstract syntax in the
CBS definition of CL patterns. In the lower part of the bottom left pane, a CBS rule defining
the translation of CL multiple matchings to funcons is being edited; the red mark in the margin
flags an undeclared symbol. The colours and fonts distinguish the names of syntax nonterminals
(green), funcons (red), semantic functions (blue italic), and variables (black italic).

Clicking on a name in a CBS editor shows its definition in a separate pane. The top right
pane shows the definition of the operational semantics of the funcon for scoping declarations.
The two panes on the lower right show a small CL test program and part of its translation to
funcons. When the focus is on a CBS file specifying the semantics of CL, there is a button
to (re)generate an executable translator from CL to funcons. While editing a CL program,
the same button translates it to a funcon term (which can then be executed, see Sect. 3). On
rebuilding the project, any open files with the results of translating test programs to funcons
are updated accordingly. Entire test suites can be translated from a shell command line.

The implementation of the CBS editor in Spoofax involved writing an SDF3 grammar for
the CBS language, some small files specifying the various editor services (highlighting, name
resolution, menus, folding), and Stratego code to generate SDF3 grammars and Stratego rules
from the ASTs of CBS specifications. Each semantic equation in CBS generates a corresponding
Stratego rule, e.g.:

CL-07-Expressions.cbs

 expr-comma-sequence[[E]] = expr[[E]]
Rule
 expr-comma-sequence[[E1 ',' E2 ...]]
 = expr[[E1]], expr-comma-sequence[[E2 ...]]

Semantics
 expr-semic-sequence[[_:(expr (';' expr)*)]] : (=> values)+
Rule
 expr-semic-sequence[[E]] = expr[[E]]
Rule
 expr-semic-sequence[[E1 ';' E2 ...]]
 = expr[[E1]], expr-semic-sequence[[E2 ...]]

Semantics
 expr-map-sequence[[_:(label '=' expr (';' label '=' expr)*)]]
 : => maps(ids,values)+
Rule
 expr-map-sequence[[L '=' E]] = { label-id[[L]] |-> expr[[E]] }
Rule
 expr-map-sequence[[L1 '=' E1 ';' L2 '=' E2 ...]]
 = {label-id[[L1]] |-> expr[[E1]]}, expr-map-sequence[[L2 '=' E2 ...]]

Subsection Matching

Semantics
 matcher[[_:simple-matching]] : (values=>values)+

Rule
 matcher[[P '->' E]] =
 case(patt[[P]], expr[[E]])

Rule
 matcher[[P1 '->' E1 '|' SM]] = matcher[[P1 '->' E1]], matcher[[SM]]

Semantics
 multiple-matcher[[_:multiple-matching]] : ((values+)=>values)+
Rule
 multiple-matcher[[P ... '->' E]]
 = case((patt-sequence[[P ...]]), expr[[E]])
Rule
 multiple-matcher[[P1 ... '->' E1 '|' MM]]
 = multiple-matcher[[P1 ... '->' E1]], multiple-matcher[[MM]]

Semantics
 multiple-matching-length[[_:multiple-matching]] : naturals
Rule
 multiple-matching-length[[P ... '->' E]]
 = patt-sequence-length[[P ...]]
Rule
 multiple-matching-length[[P ... '->' E '|' MM]]
 = patt-sequence-length[[P ...]]

Subsection Value definitions

Syntax
 VD : value-definition ::= 'let' ('rec')? let-binding ('and' let-binding)*

Semantics
 decl[[_:value-definition]] : => environments
Rule
 decl[['let' LB ...]] = decl[[LB ...]]
Rule
 decl[['let rec' LB ...]]
 = recursive(set(bound-ids-sequence[[LB ...]]), decl[[LB ...]])

Page 4

generates

CL-07-Expressions.str

 |[expr[: while(E1)do(E2)done :]]| ->
 |[while(expr[: (E1) :], effect(expr[: (E2) :]))]|
to-funcons:
 |[expr[: for(LI)=(E1)to(E2)do(E3)done :]]| ->
 |[effect(list-map(case(pattern-bind(id[: (LI) :]), expr[: (E3) :]), integer-list(expr[: (E1) :],
expr[: (E2) :])))]|
to-funcons:
 |[expr[: for(LI)=(E1)downto(E2)do(E3)done :]]| ->
 |[effect(list-map(case(pattern-bind(id[: (LI) :]), expr[: (E3) :]), list-reverse(integer-list(expr[:
(E2) :], expr[: (E1) :]))))]|
to-funcons:
 |[expr[: (E1);(E2) :]]| ->
 |[sequential(effect(expr[: (E1) :]), expr[: (E2) :])]|
to-funcons:
 |[expr[: match(E)with(SM) :]]| ->
 |[give(expr[: (E) :], else(matcher[: (SM) :], throw(match-failure)))]|
to-funcons:
 |[expr[: fun(MM) :]]| ->
 |[curry-n(multiple-matching-length[: (MM) :], lambda(else(multiple-matcher[: (MM) :], throw(match-
failure))))]|
to-funcons:
 |[expr[: function(SM) :]]| ->
 |[lambda(else(matcher[: (SM) :], throw(match-failure)))]|
to-funcons:
 |[expr[: try(E)with(SM) :]]| ->
 |[handle-thrown(expr[: (E) :], else(matcher[: (SM) :]))]|
to-funcons:
 |[expr[: (VD)in(E) :]]| ->
 |[scope(decl[: (VD) :], expr[: (E) :])]|

// Expression sequences and maps

to-funcons:
 |[expr-comma-sequence[: (E) :]]| ->
 |[expr[: (E) :]]|
to-funcons:
 |[expr-comma-sequence[: (E1),(E2)... :]]| ->
 |[expr[: (E1) :], expr-comma-sequence[: (E2)... :]]|
to-funcons:
 |[expr-semic-sequence[: (E) :]]| ->
 |[expr[: (E) :]]|
to-funcons:
 |[expr-semic-sequence[: (E1);(E2)... :]]| ->
 |[expr[: (E1) :], expr-semic-sequence[: (E2)... :]]|
to-funcons:
 |[expr-map-sequence[: (L)=(E) :]]| ->
 |[{ label-id[: (L) :] |-> expr[: (E) :] }]|
to-funcons:
 |[expr-map-sequence[: (L1)=(E1);(L2)=(E2)... :]]| ->
 |[{ label-id[: (L1) :] |-> expr[: (E1) :] }, expr-map-sequence[: (L2)=(E2)... :]]|

// Matching

to-funcons:
 |[matcher[: (P)->(E) :]]| ->
 |[case(patt[: (P) :], expr[: (E) :])]|
to-funcons:
 |[matcher[: (P1)->(E1)|(SM) :]]| ->
 |[matcher[: (P1)->(E1) :], matcher[: (SM) :]]|
to-funcons:
 |[multiple-matcher[: (P)...->(E) :]]| ->
 |[case((patt-sequence[: (P)... :]), expr[: (E) :])]|
to-funcons:
 |[multiple-matcher[: (P1)...->(E1)|(MM) :]]| ->
 |[multiple-matcher[: (P1)...->(E1) :], multiple-matcher[: (MM) :]]|

Page 3

.

The generated SDF3 grammars provide the syntax for the semantic functions and metavariables
that occur in the generated Stratego rules.

2

Tool Support for CBS Van Binsbergen, Mosses and Sculthorpe

3 Executing Funcon Terms

We execute funcon terms using an interpreter written in Haskell. The interpreter provides an
implementation of I-MSOS [7] specifications, the modular variant of SOS that CBS uses to
specify funcons and semantic entities. The interpreter can be invoked from within Eclipse with
its output printed to Eclipse’s console .

The defining feature of I-MSOS is the implicit propagation of entities, and this is achieved
in Haskell by using a monad in the implementation of the small-step evaluation function. The
Haskell code corresponding to the CBS specifications of the individual funcons and semantic
entities is systematically derived from the CBS rules. The use of a monad allows the resulting
code to be as modular as I-MSOS rules: adding a new funcon or semantic entity requires no
modification to the code for the existing funcons or semantic entities. Deriving the Haskell code
is currently performed manually, although our aim is automate this process.

The CBS language includes a fixed universe of value types, and a set of operations on those
types; these are provided by binding them to Haskell’s data types and library functions. For
nearly all cases, direct counterparts of the CBS value types and operations are available in the
Haskell standard library.

Dynamic errors are handled gracefully by the interpreter, which reports the immediate cause
of the error along with the current contents of the semantics entities and funcon term remaining
to be executed. The interpreter also includes a parser and pretty printer for funcon terms, and
an optional refocusing-based optimisation [2] that provides a more efficient evaluation strategy.

4 Conclusion

In a full version of this paper, we will explain how the CBS meta-notation supports modular
specifications of funcons and semantic entities, and how these specifications can be translated
to modular Haskell code. We will also explain how by categorising our semantic entities, we
allow for the modular addition of new entities without concern for the order in which those
entities are added, in contrast to a conventional approach using monad transformers.

References

[1] M. Churchill, P. D. Mosses, N. Sculthorpe, and P. Torrini. Reusable components of semantic
specifications. In Trans. AOSD XII, volume 8989 of LNCS, pages 132–179. Springer, 2015.

[2] O. Danvy and L. R. Nielsen. Refocusing in reduction semantics. BRICS Research Series RS-04-26,
Department of Computer Science, Aarhus University, 2004. http://www.brics.dk/RS/04/26/.

[3] P. Hudak, J. Hughes, S. P. Jones, and P. Wadler. A history of Haskell: Being lazy with class. In
HOPL-III, pages 12:1–12:55. ACM, 2007.

[4] L. C. L. Kats and E. Visser. The Spoofax language workbench: Rules for declarative specification
of languages and IDEs. In OOPSLA ’10, pages 444–463. ACM, 2010.

[5] X. Leroy. Caml Light manual, 1997. http://caml.inria.fr/pub/docs/manual-caml-light.

[6] P. D. Mosses. Modular structural operational semantics. J. LAP, 60-61:195–228, 2004.

[7] P. D. Mosses and M. J. New. Implicit propagation in structural operational semantics. In SOS ’08,
volume 229(4) of ENTCS, pages 49–66. Elsevier, 2009.

[8] P. D. Mosses and F. Vesely. FunKons: Component-based semantics in K. In WRLA ’14, volume
8663 of LNCS, pages 213–229. Springer, 2014.

[9] PLanCompS: Programming language components and specifications. http://www.plancomps.org.

3

http://www.brics.dk/RS/04/26/
http://caml.inria.fr/pub/docs/manual-caml-light
http://www.plancomps.org

	Introduction and Background
	Developing and Executing Language Definitions
	Executing Funcon Terms
	Conclusion

