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In Model-driven engineering (MDE), structural models (also called static models in [6])
represent software at the early phases of software development. They identify the artifacts
and their relationships in the problem domain. These models can be specified as graph-based
structures and constraints in different formalisms, e.g., UML class diagram [8] and the Object
Constraint Language (OCL) invariants [7]; in the structures, nodes represent the artifacts while
edges represent the relationships; the constraints express requirements of the problem domain.
An instance of a structural model is a graph which is well-typed by the underlying graph of the
model, and, in addition, satisfies all the constraints of the model.

Usually, structural models are specified by a modelling language within a modelling tool;
this may cause errors. Thus, these models should be verified to ensure correctness. In addition,
in MDE, models are gradually refined in subsequent phases which then finally result in soft-
ware. Therefore, the verification of models can avoid propagating of errors into the software.
Moreover, it is obvious that finding design mistakes as early as in the modelling phase helps to
build better software at a lower cost.

Different properties of structural models are studied in MDE [3]. For instance, consistency
requests that a model has at least one instance; lack of redundant constraints requests that,
given a model, there exists no constraint C1 that can be derived from another constraint C2, i.e.,
there exists at least one instance of the model which satisfies C1 but not C2. These properties
can be categorised into validity, i.e., whether all the instances of a model satisfy a property,
and satisfiability, i.e., whether there exists an instance which satisfies a property.

Several approaches have been presented to verify such properties on structural models [6].
Generally, they translate a structural model and a property into a specification in some for-
malism, e.g., Relational Logic [2, 4], etc. Then the specification is analysed by theorem provers
or constraint solvers to answer whether the model satisfies the property. But these approaches
are not integrated into the modelling tools; to use these approaches, the model designers have
to switch from the modelling tool to a verification tool and need background in the verification
methods. Moreover, most approaches present instances when the properties are satisfied, but
give no feedback when the properties are violated. This is not convenient for model designing.

Figure 1: Workflow for analysing structural models using Alloy

In this work, we present a bounded verification approach of structural models using Alloy [1]
and integrate it into a modelling tool DPF Model Editor [10]. The procedure of the approach is
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illustrated in Fig. 1. It translates a structural model specified in Diagram Predicate Framework
(DPF) [9] and a property into an Alloy specification. Then, the specification is examined by the
Alloy Analyzer to check if the model satisfies the property or not. If the property is satisfied
(violated), an instance (counterexample) of the model is generated. Otherwise, it means that
there are some problems with the model. Then, the problematic part of the model will be
highlighted and displayed in the DPF Model Editor to assist the model designer to identify the
problem. For example, a civil status model which modifies the traditional civil status model
in [5] originally specified in UML and OCL is present in Figure 2. It is inconsistent and the
constraints which contradict each other are highlighted and presented in Figure 3. Thus, the
model designer can verify the model under design and receive user-friendly feedback which he
can understand, without knowing the underlying verification technique1.

Figure 2: Civil Status Model in DPF Figure 3: Hightlight the problem

The approach is bounded; the approach finds instances or counterexamples which satisfies
or violated properties within a bounded search space. The space is determined by a scope; i.e.,
a user-defined number which restricts the number of instances of each model element. However,
there is no systematic way to decide which scope is needed, and, although different scopes could
be sufficient for different model elements, the same size is usually used for all model elements.
In addition, this approach has scalability problems since the search space grows exponentially
along with the scope. It means that the verification of large models with a large search space
may take long time or become intractable.
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Figure 4: The scope graph for the civil status model

To solve these issues, we propose two contributions. The first one is to initialise a systematic
way to decide the search space based on constraints (properties) definitions; here we focus on
constraints which can be expressed in FOL. Given such constraints, we assume that there exists
a scope graph such that, for each instance (counterexample) of the model, there exists smaller
or equal instances (counterexamples) that are contained by the scope graph. However, since
FOL is undecidable, such a scope graph do not exist for arbitrary constraints. In this work,
we construct an approximation of the scope graph based on the syntax of the constraints. The

1This part which verifies structural models and presents the result of verification user-friendly, along with
the splitting technique which is present in the sequel, is submitted to and accepted by Modevva2015.
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approximation of the scope graph can be used to derive a scope to verify a structural model. For
example, the approximation of the scope graph for the civil status model is shown in Figure 4.
It contains 3 Person, 4 husband, 4 wife, 3 pGender, 3 pCiviStat, 2 Gender, 2 CivilStatus. This can be used
as the scope for the consistence check of the model.

Person Person
[1..1]

[surj] pGender
// Gender

M1 CivilStatus M2
[1..1]

[surj] pCivstat
//

wife

[irr]

//

husband

[irr]

//[xor]

[inv]

[enum{married,single,divorced,widowed}]

[enum{male,female}]

Figure 5: Submodels

The second contribution is a splitting technique for verification. A model can be split into
submodels based on the factors of the constraints, i.e., the model elements which are affected
by the constraints. We will look for submodels which are left-total, i.e. submodels of which
the instances can be extended to instances of the model. We outline an approach to find these
left-total submodels based on forbidden patterns of the constraints. That is, these submodels
do not contain any match of patterns which violate (or are forbidden by) any constraints of
the model. Then the validation of a model can be reduced to the validation of its left-total
submodels. The civil status model can be split into two submodels which are shown in Figure 5.
The submodel M1 is left-total and the consistence check of the model can be reduced to the
consistence check of M1 rather than the whole model. An experimental result shows that it
alleviates the scalability problem.
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