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The definition of workflows is a complex task, comprising aspects such as time constraints,
failure detection and recovery. Executable modelling is a promising concept for the simpli-
fication of workflow modelling, verification and execution. Hence, the verification of execut-
able models, especially using runtime verification and monitoring, is required. We present a
metamodelling approach to the combined modelling of workflows and the temporal properties
used to define requirements and constraints on them. Here, a model at a certain level describes
a modelling language which can be used to specify models in the level below. First, we give an
overview of a generic workflow modelling framework for executable models. Then, we highlight
the design and implementation of the property specification language. Both the workflows and
their temporal properties are specified as graph-based structures. For the temporal properties,
we draw on the well-known Linear Time Logic (LTL), which has already been used success-
fully in checking whether an (execution) path satisfies a given property [3]. A key point of the
proposed language is its direct applicability on the running instances of the workflows, instead
of the execution logs as it is usually done. Because of this, the atomic propositions of our
language are graphs which are matched against the actual running instances while monitoring,
and hence translating match/no match to true/false respectively. In our approach we exploit
facilities from deep metamodelling [4] to establish links between the running instances of the
workflows and the atomics propositions, using the typing relationship. Deep metamodelling en-
ables us to define types for other levels in the hierarchy than the one directly below. In addition,
we will borrow the concept of linguistic extension and double typing of model elements [4].

Model execution and verification

This work is framed in a bigger proposal for the creation of a metamodelling framework which
allows for the definition of executable modelling languages. To achieve this goal, we have out-
lined a deep metamodelling hierarchy where the two topmost levels are fixed (see Fig. 1).
In them, the common elements for any executable language are defined. With these two
levels as a starting point, the user can define her own modelling language using as many
levels as required. The bottommost level will contain the running instances that the exe-
cution runtime can interpret and modify in every time step through model transformations.
Note that the modelling levels M2 through M4 are displayed only to be used as examples
and are inspired by the workflow modelling language defined in [6, 5], while M0 and M1 are
fixed. The syntax of the language defined at level M2 is out of the scope of this paper; the
interested reader may consult the references above. It is worth pointing out, however, the
meaning of the dashed arrows: they represent the typing relationship, which indicates the
type of the element according to the metamodel in the level above. Formally, this relation-
ship is defined as a graph homomorphism from lower level models to upper level models.
We can also indicate this relation with the colon notation “:”, e.g. Task:Executable. Note
that in Fig. 1 we have used the concrete syntax for the models M2 through M4, meaning
that, e.g. a Flow instance, which should be a node, is actually represented as an arrow.
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Figure 1: Global modelling hierarchy

The same applies to the [and] and [xor] constraints
in M3. For the sake of clarity, not all the typ-
ing relationships are displayed. Next, we fo-
cus on the property definition language which is
defined as a linguistic extension (i.e. a paral-
lel metamodel) on the left-hand side. This tech-
nique consists of a separate model aside the ver-
tical hierarchy, whose elements can be instanti-
ated at any level of the hierarchy. In our work,
this technique allows to apply such properties in
any level using double typing. Further explana-
tions of this can be found in the next section.

As a consequence of the choice of models for
the representation of both the workflows and the
temporal properties, we propose two disjoint sets
of model transformations. The first one defines
the semantics for the evolution of the running
workflow instances in every time step (see [5, 2]).
The second one defines the expansion of the tem-
poral properties in the same stepwise manner,
and determines how the properties are checked
against the running workflow instances. This
second set of model transformations is briefly introduced at the end of the next section. We dis-
cuss the design space of this construction and show its applicability to runtime verification and
monitoring, where the properties are checked against the running system, as opposed to model
checking, where the whole state space of the model is explored. In the case of the violation of
a temporal property some actions could be taken, e.g. generating a warning.

Property Specification Language

The language, as inspired by LTL, contains the the main temporal operators: F (eventually),
G (always), U (Until), R (release) and X (next). It also contains the well-known boolean
operators ¬, ∧, ∨ and ⇒ and the terminal symbols > and ⊥.

In order to create a consistent syntax for the language, all these operators inherit from one
of the abstract classes UnaryOperator, BinaryOperator or AtomicProposition (see Fig. 1). All these,
in turn, inherit from Formula, and can contain instances of Formula elements at the same time.
This allows, in a grammar-like style, for the nesting of operators with the correct cardinality.
Hence, a Property contains a single operator, which then contains the remaining operators in a
tree structure; i.e. the models represent abstract syntax trees.

The two remaining elements in the language are Model and Element. In these elements lies
the expressive power of our language: any element in any model in any level can be typed by
Element (hence the redundancy) in addition to a type in their corresponding metamodel. One
of the examples of this double typing shown in Fig. 1 is Start crane operation, which is both typed
by Task and Element. This allows us to specify properties on any modelling level, or even across
modelling levels, i.e. the same property can use Model instances which contain Element instances
at different levels of the hierarchy. We call these cross-level properties.

In the sample hierarchy (levels M2-M4) in Fig. 1, properties specified using elements from M3

as well as properties connecting elements from M3 and M4 can be understood as requirements
specifications. In general, this consideration can be applied to the second-to-last level, where
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the workflow itself is designed, right above the running instance. To illustrate our proposal, we
show a possible temporal property liveness for the preceding workflow (Fig. 1). Note that this
property is deliberately convoluted for the sake of exemplification.

Figure 2: Liveness property

Fig. 2 shows the model version of the liveness property which
reads as follows in natural language: “For every X:Task, if we
find a :X with the state enable, we should eventually find a :X
with the state run and eventually after that a :X with the state
finish”. The main highlights are (1) the expressiveness of the
language, which allows for the definition of a strict requirement
which includes the sequence of states that the element must go
through; and more importantly, (2) the inclusion of a variable
element, X:Task, of the level above the running instances, M3.

Finally, the semantics of the language is specified using model transformation rules. These
rules check in a stepwise manner the specified properties against the running instance of the
workflow. In order to do that, we use LTL expansion rules [ref], e.g. G(f) = f ∧X(G(f)), for
any formula f . This expansion is necessary to decompose the rules and extract atomic properties
that can be checked in the current point in time in the workflow execution. Checking an atomic
proposition in a workflow instance means finding a graph homomorphism (i.e. a match) from
the underlying graph of the proposition to the underlying graph of the workflow instance, and
hence translating match/no match to true/false respectively. We have already implemented a
prototype with this semantics using EMF [1] and ATL [1].

Conclusions and future work

We have presented a modelling language for the specification of temporal properties. While
the idea of applying LTL monitoring to workflows is not new, cf. [8], our focus here is on the
integration into a generic modelling framework for the specification and execution of workflows.
We have also showed its two main characteristics: (1) the focus on the specification of temporal
properties that have to be checked by means of runtime verification, instead of model checking;
and (2) the flexibility it offers for the specification of cross-level properties. In this context, we
plan to address in the immediate future what we call multi-instance properties, i.e. the ones
that are checked against more than one workflow instance running in parallel. For this, it is
required to extend the language with a means of quantification over instances [7].
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