Improving Partial Order Reductions in Multithreaded
Programs with Local First Search

Herndn Ponce de Ledn!, Cristian Rosa?, and Keijo Heljanko!

! Helsinki Institute for Information Technology HIIT and Department of Computer Science, School
of Science, Aalto University, Finland
{hernan.poncedeleon,keijo.heljanko}@aalto.fi

2 CIFASIS, Rosario, Argentina

rosa@cifasis-conicet.gov.ar

Exploring the state space of a multithreaded program in an efficient manner is a fundamen-
tal problem in software verification. Concurrent transitions interleave in many ways quickly
generating many equivalent but unequal states leading to the well known state space exposition
problem. Two prominent approaches to deal with this problem are partial order reduction
techniques (PORs) and unfoldings methods.

PORs techniques [Il B, 4, [10] establish an equivalence relation between executions of the
programs and explore a subset of all possible interleavings preserving at least one representative
per equivalence class. At every state, they execute a subset of active or enabled transitions;
those transitions can be computed statically [4] or dynamically [3]. Recently, an improvement
to these methods have been proposed leading to an optimal PORs in the sense that exactly
one execution is explored for each Mazurkiewicz trace [I] . All these approaches represent the
possible executions of the program as a computation tree and prune some of its branching (once
an equivalent branch has already been visited).

Unfoldings techniques [Bl [6] models executions with partial orders together with a conflict
relation to distinguish between different executions of the system. Both PORs and unfoldings
techniques have shortcomings, but surprisingly, promising solutions for a given technique can
be found in the opposite approach. For example PORs inexpensively add events to the cur-
rent execution while computing possible extensions is the most demanding part of unfoldings
techniques; on the other hand, explorations of repeated states and pruning of non-terminating
executions is elegantly achieved in unfoldings with cut-off events.

The advantages of both approaches have been exploited together for the first time in [9]
where they propose a technique that matches the test suite size of [I] but it explores an event
structure rather than a computation tree. The former has a richer structure provided by a
tree-like structure of partial orders. The use of partial order avoids the explicit enumeration
of the order between concurrent or independent transitions of the program. The use of event
structures suggests that improvements can be done to generate further reductions if we just
intend to preserve local reachability [5].

Formally, an event structure is a tuple formed by a set of events E, a partially ordered
relation < called causality (representing dependencies) and a symmetric and antireflective rela-
tion # called conflict which is inherited w.r.t causality, i.e. e; < eo and ey #e3 implies es#es.
Events not related by < or # are called concurrent. The executions of an event structure are
captured by its configurations, a causally-closed and conflict-free subset of events.
shows the Hasse diagram of an event structure with nine events (transitive causalities or inher-
ited conflict are removed for clarity); every event depends on 1, e.g. L <1 and 1 <4 (since <
is transitive); events 1 and 3 cannot belong to a same configuration since they are in conflict,



Nordic Workshop on Programming Theory H.Ponce de Leén, C. Rosa, K. Heljanko

i.e 1#3; events 1 and 5 are concurrent. This event structure has four maximal configurations
{1,1,2,5,6},{1,1,2,7,8},{1,3,4,5,6} and {1,3,4,7,8}.

The unfoldings semantics of a program can be expressed as an event structure [9]; while inde-
pendentﬂ transitions give rise to concurrent events, dependent ones generate causally dependent
or conflicting events depending if they belong or not to the same execution. shows a
program with 4 threads accessing two global variables x and y; each pair of threads access a
single variable by reading or writing it. Clearly the access to different variables is independent,
thus x=50Cy=12=5c=y,b=xy=1and b=2a O c=1y; access to the same variable are
dependent, i.e. £ =5® b=x and y =1 ® ¢ =y. The unfolding semantics of this program is
given by the event structure of Each of the four maximal configuration corresponds to
a deadlocking execution of the program. For example the configuration {1,2,5,6} corresponds
to the execution where variable z is written and then read followed by variable y being written
and read.

Global variables:
int x,y = 0;

Thread 1: Thread 2: Thread 3: Thread 4:
local b = x; x = b; local ¢ = y; y =1;

Figure 1: A multithreaded program and its unfolding semantics.

The optimality of [T}, [9] states that no algorithm can explore less executions while preserving
all Mazurkiewicz or deadlocking traces. If one instead targets at covering all local states of
threads (which is sufficient to test for example local properties), it is not necessary any more
to execute all Mazurkiewicz traces, but to cover every event of the event structure [5]. While
computing the minimal set of executions to cover every local state is a very hard problem [g],
we are interested at techniques that generate further reductions than those of [I, [@]. For the
program generating the event structure of both optimal PORs explore four executions
corresponding to the four maximal configurations. However if we are interested just in covering
all the possible values local variables b and ¢ might have, it is sufficient to explore only two
executions, for example, all read transitions first in one execution and all write transitions first
in another one. The first execution covers events 3,4,7,8 while the second one covers 1,2,5,6.
To achieve this kind of reduction, we propose to use local first search [2, [7] on top of the
unfolding-based PORs.

Local first search (LF'S) was designed to optimize the search for local properties in transitions
systems. The technique characterizes a restricted subset of traces that need to be explored to
check local properties. For an event structure this means that only maximal events and their
causal predecessors (those are called local or prime configurations) need to be explored. Since

1The independence relation arising from the program is denoted by <>; while its complement (the dependence
relation) is denoted by ®.



Nordic Workshop on Programming Theory H.Ponce de Leén, C. Rosa, K. Heljanko

the POR algorithms does not have complete information about the whole event structure (the
event structure is constructed while the program is “being unfolded”), LF'S performs an analysis
to detect non prime configurations as soon as possible to avoid their exploration. This is based
on a combinatorial aspect of the independence alphabet of the program. While the unfolding-
based POR algorithm could explore the execution 1-5-2-6, we can detect (adding LFS) that
the sub-configuration {1,5} does not lead to a prime configuration and stop the exploration.
Unfolding-based POR with LFS only explores the executions 1-2,3-4,5-6 and 7-8. This approach
explores shorter or smaller configuration, but still four executions are needed. However, it can
be observed that those four configuration can be merged into, for example, 1-2-5-6 and 3-4-7-8,
but doing this during the exploration needs further algorithmics. This is similar to the problem
of obtaining the minimal test suite to test a multithreaded program [8].

While [5] generates further reductions in the number of executions than the PORs tech-
niques, it still relies on the construction of a Petri net unfolding and as such it suffers the
computational cost of computing possible extensions. Since LFS can be used on top of the
POR technique from [9], we believe this approach generates a good trade-off between the re-
duction in the size of the obtained test suite and the computational cost of the exploration.

References

[1] P. A. Abdulla, S. Aronis, B. Jonsson, and K. F. Sagonas. Optimal dynamic partial order reduc-
tion. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’1/, San Diego, CA, USA, January 20-21, 2014, pages 373-384, 2014.

[2] S. Bornot, R. Morin, P. Niebert, and S. Zennou. Black box unfolding with local first search. In
Tools and Algorithms for the Construction and Analysis of Systems, 8th International Confer-
ence, TACAS’02, Proceedings, volume 2280 of Lecture Notes in Computer Science, pages 386—400.
Springer, 2002.

[3] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking software.
In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2005, Long Beach, California, USA, January 12-14, 2005, pages 110-121, 2005.

[4] P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems - An Approach to
the State-Ezxplosion Problem, volume 1032 of Lecture Notes in Computer Science. Springer, 1996.

[5] K. Kdhkonen. Automated Systematic Testing Methods for Multithreaded Programs. Doctoral
dissertation, School of Science, Aalto University, 2015.

[6] K. L. McMillan. A technique of state space search based on unfolding. Formal Methods in System
Design, 6(1):45-65, 1995.

[7] P. Niebert, M. Huhn, S. Zennou, and D. Lugiez. Local first search - A new paradigm for par-
tial order reductions. In 12th International Conference on Concurrency Theory, CONCUR’01,
Proceedings, volume 2154 of Lecture Notes in Computer Science, pages 396—410. Springer, 2001.

[8] H. Ponce de Ledn, O. Saarikivi, K. Kahkonen, K. Heljanko, and J. Esparza. Unfolding based
minimal test suites for testing multithreaded programs. In 15th International Conference on
Application of Concurrency to System Design, ACSD 2015, Brussels, Belgium, June 21-26, 2015,
To appear.

[9] C. Rodriguez, M. Sousa, S. Sharma, and D. Kroening. Unfolding-based partial order reduction. In
26th International Conference on Concurrency Theory, CONCUR’15, Proceedings, LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. To appear.

[10] A. Valmari. The state explosion problem. In Lectures on Petri Nets I: Basic Models, Advances
in Petri Nets, the volumes are based on the Advanced Course on Petri Nets, held in Dagstuhl,
September 1996, pages 429-528, 1996.



