
On endofunctors modelling

higher-order behaviours

Marco Peressotti

Department of Mathematics and Computer Science, University of Udine, Italy
marco.peressotti@uniud.it

It is well known that higher-order systems, i.e. systems which can pass around systems of the
same kind, like the λ-calculus [1,3], CHOCS [18], the higher-order π-calculus [14], HOcore [10],
etc., are difficult to reason about. Many bisimulations and proof methods have been proposed
also in recent works [4, 9, 11, 12, 15–17]. This effort points out that a definition of abstract
higher-order behaviour is still elusive. In this work, we show how these abstract behaviours can
be modeled as the final coalgebras of suitable higher-order behavioural functors.

Coalgebras are a well established framework for modelling and studying concurrent and
reactive systems [13]. In this approach, we first define a behavioural endofunctor B over Set
(or other suitable category), modelling the computational aspect under scrutiny; for X a set
of states, BX is the type of behaviours over A. Then, a system over A corresponds to a
B-coalgebra, i.e. a map α : X → BX associating each state with its behaviour. The crucial
step of this approach is defining the functor B, as it corresponds to specify the behaviours
that the systems are meant to exhibit. Once we have defined a behavioural functor, many
important properties and general results can be readily instantiated, such as the existence
of the final B-coalgebra (containing all abstract behaviours), the definition of the canonical
coalgebraic bisimulation (which is the abstract generalization of Milner’s strong bisimilarity) and
its coincidence with behavioural equivalence [2], the construction of canonical trace semantics [8]
and weak bisimulations [5], the notion of abstract GSOS [19], etc. We stress the fact that
behavioural functors are syntax agnostic: they define the semantic behaviours, abstracting
from any particular concrete representation of the systems.

Despite these results, a general coalgebraic treatment of higher-order systems is still missing.
In fact, defining these functors for higher-order behaviours is challenging. In order to describe
the problem, let us consider first a functor for representing the behaviour of a first-order calculus,
like CCS with value passing:

B : Set→ Set BX = Pf (L× V ×X + L×XV +X) (1)

where L is the set of labels and V is the set of values. This functor is well-defined, and it admits
a final coalgebra which we denote by νB; the carrier of this coalgebra is the set of all possible
behaviours, i.e., synchronization trees labelled with nothing, input or output actions. Now, in a
higher-order calculus like HOπ, the values that processes can communicate are processes them-
selves. Semantically, this means that a higher-order behaviour can communicate behaviours;
hence, in the definition (1) we should replace V with the carrier of νB, as follows:

Bho : Set→ Set BhoX = Pf (L× |νBho| ×X + L×X |νBho| +X) (2)

But this means that we are defining Bho using its own final coalgebra νBho, which can be
defined (if it exists) only after Bho is defined—a circularity!

We think that this circularity is the gist of higher-order behaviours: any attempt to escape
it would be restricting and distorting. One may be tempted to take as V some (syntactic)
representation of behaviours (e.g., processes), but this would fall short. First, the resulting

1

Higher-order behaviours M. Peressotti

behaviours would not be really higher-order, but rather behaviours manipulating some ad hoc
representation of behaviours. Secondly, we would need some mechanism for moving between
behaviours and their representations–which would hardly be complete. Third, the resulting
functor would not be abstract and independent from the syntax of processes, thus hindering
the possibility of reasoning about the computational aspect on its own, and comparing different
models sharing the same kind of behaviour.

Endofunctors describing behaviours with input and outputs as (1) can be seen as endofunc-
tors with mixed-variance parameters, e.g. F : Setop×Set→ [Set,Set] where F (A,B) = IdA +B.
Since we are interested in endofunctors with a final coalgebra we shall consider “schemes of
endofunctors” in some suitable subcategory E of [C,C]. Actually, parameters do not have to be
in C, for instance, the functor IdA : Top → Top can be seen as parametric in the exponentiable
space A ∈ ExpTop. In this situation, we need some coherent way back to the category of pa-
rameters i.e. a functor from E to D. An example of such situation is offered by taking E to be
the category of biconinuous endofunctors over Set, as shown in [?]: every such functor admits
a final coalgebra whose carrier set is endowed with a complete partial order naturally induced
by the final sequence. Therefore, given:

F : Dop × D→ E and N : E→ D

(the driving example being N = |ν − |) we are interested in finding B : C→ C ∈ E s.t.:

B ∼= F (NB,NB)

or, equivalently, Z ∈ C s.t.:
Z ∼= NF (Z,Z)

since B ∼= F (Z,Z) and Z ∼= NB.
A ωCat-category is a 2-category whose hom-categories have colimits for all ω-chains and

composition preserves them. A ωCat0-category is a ωCat-category whose hom-categories have
initial objects and composition preserves them. Any category enriched over Cpo, the category
of continuous maps between complete partial orders, such as Cpo itself is an ωCat-category.
Likewise, any category enriched over Cpo⊥ is an ωCat0-category.

Theorem 1. Assume D and E to be ωCat0-categories with pseudo initial objects and pseudo
colimits of ω-chains of coreflections. Assume F and N to be a pseudo ωCat-functors. There
exist G : C→ C ∈ E and Z ∈ C as above.

Example 2 (Higher-order deterministic processes). Let C and D be Cpo⊥ and consider the para-
metric family of endofunctors IdA + Id+ B. The components of the coproduct model inputs,
internal moves, and termination with outputs, respectively. In the higher-order version of this
behaviour inputs and outputs are behaviours of the same kind. If we set aside for a moment
syntax and binders (which can be modelled in suitable presheaf categories [6,7]), this behaviour

offers an operational semantics for the λ-calculus: intuitively, inputs are transitions t
z−→ t z

whereas internal reductions and outputs are transitions (λx.t) z −→ t[x/z].
The functor F (A,B) = IdA + Id + B is Cpo-enriched and each endofunctors in its image

has a final coalgebra in Cpo⊥. By restricting to the image of F , the assignment |ν − | defines a
Cpo-enriched functor N : E→ Cpo⊥. Thus, we have Bλ : Cpo⊥ → Cpo⊥ and Zλ ∈ Cpo⊥ s.t.:

Bλ ∼= IdZλ + Id+ Zλ and Zλ ∼= |νBλ|.

A Bλ-coalgebra (X → XZλ +X + Zλ) is a strict continuous map assigning to each state of its
carrier (a) a strict continuous function assigning a continuation to any value in input, (b) or a
new state (internal step), (c) or a value (output). Indeed values are elements of the CPO⊥ Zλ
carrying the final coalgebra of Bλ i.e. behaviours for Bλ itself.

2

Higher-order behaviours M. Peressotti

Finite-order approximations It might not be so easy to work with the solution B ∼=
F (Nop(B), N(B)) since it is defined in terms of its own final coalgebra. The reason of this is
rooted in the inherent circularity of higher-order definitions; circularity that resurfaces in the
definition of B and many related constructions such as B-bisimulations.

The steps in the computation of the fixed point B are finite-order behaviours Bn (and Zn):

Z0 = 0D Zn = N(Bn) B0 = 0E Bn+1 = F (Zn, Zn)

approximating B (for it is the (co)limit of the resulting ω-chain of coreflections in E). Therefore,
B-bisimulations may be given by induction on n deriving Bn+1-bisimulations from projections
to n-order behaviours and Bn-bisimulations. Embeddings guarantee coherence.

References

[1] S. Abramsky. The lazy lambda calculus. Research topics in functional programming, pages 65–116,
1990.

[2] P. Aczel and N. Mendler. A final coalgebra theorem. In D. H. Pitt, D. E. Rydeheard, P. Dybjer,
A. M. Pitts, and A. Poigné, editors, Proc. CTCS, volume 389 of Lecture Notes in Computer
Science, pages 357–365, 1989. Springer.

[3] H. Barendregt. The lambda calculus: its syntax and its semantics. Studies in Logic and the
Foundations of Mathematics. North-Holland, 1984.

[4] L. Birkedal, R. E. Møgelberg, J. Schwinghammer, and K. Støvring. First steps in synthetic guarded
domain theory: step-indexing in the topos of trees. Logical Methods in Computer Science, 8(4),
2012.

[5] T. Brengos, M. Miculan, and M. Peressotti. Behavioural equivalences for coalgebras with unob-
servable moves. CoRR, abs/1411.0090, 2014.

[6] M. Fiore and D. Turi. Semantics of name and value passing. In H. Mairson, editor, Proc. 16th
LICS, pages 93–104, Boston, USA, 2001. IEEE Computer Society Press.

[7] M. P. Fiore, G. D. Plotkin, and D. Turi. Abstract syntax and variable binding. In G. Longo,
editor, Proc. 14th LICS, pages 193–202, 1999. IEEE Computer Society Press.

[8] I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace semantics via coinduction. Logical Methods
in Computer Science, 3(4), 2007.

[9] V. Koutavas, P. Blain Levy, and E. Sumii. From applicative to environmental bisimulation. In
Proc. MFPS, Electronic Notes in Theoretical Computer Science, 276(0):215–235, 2011.

[10] I. Lanese, J. A. Pérez, D. Sangiorgi, and A. Schmitt. On the expressiveness and decidability of
higher-order process calculi. In Proc. LICS, pages 145–155. IEEE Computer Society, 2008.

[11] S. Lenglet, A. Schmitt, and J. B. Stefani. Characterizing contextual equivalence in calculi with
passivation. Information and Computation, 209(11):1390–1433, 2011.

[12] A. Piérard and E. Sumii. A higher-order distributed calculus with name creation. In Proc. LICS,
pages 531–540. IEEE Computer Society, 2012.

[13] J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science,
249(1):3–80, 2000.

[14] D. Sangiorgi. Bisimulation for higher-order process calculi. Information and Computation,
131(2):141–178, 1996.

[15] D. Sangiorgi, N. Kobayashi, and E. Sumii. Environmental bisimulations for higher-order languages.
In Proc. LICS, pages 293–302. IEEE Computer Society, 2007.

[16] K. Støvring and S. B. Lassen. A complete, co-inductive syntactic theory of sequential control and
state. In Semantics and algebraic specification, pages 329–375. Springer, 2009.

3

Higher-order behaviours M. Peressotti

[17] E. Sumii and B. C. Pierce. A bisimulation for type abstraction and recursion. Journal of the ACM
(JACM), 54(5):26, 2007.

[18] B. Thomsen. Plain CHOCS: a second generation calculus for higher order processes. Acta infor-
matica, 30(1):1–59, 1993.

[19] D. Turi and G. Plotkin. Towards a mathematical operational semantics. In Proc. LICS, pages
280–291. IEEE Computer Society Press, 1997.

4

