
Open memory transactions in Haskell

Marino Miculan, Marco Peressotti and Andrea Toneguzzo

MADS, Department of Mathematics and Computer Science, University of Udine, Italy
marino.miculan@uniud.it, marco.peressotti@uniud.it, andrea.toneguzzo@spes.uniud.it

Transactional memory (TM) has emerged as a promising mechanism to replace locks [1,3].
The basic idea is to mark blocks of code as atomic; then, execution of each block will appear
either if it was executed instantaneously, at some unique point in time, or, if aborted, as if it did
not execute at all. This is obtained by means of optimistic executions: the blocks are allowed
to run concurrently, and eventually if an interference is detected a transaction is restarted
and its effects are rolled back. Differently from lock-based concurrency control mechanisms,
transactions are composable and ensure absence of deadlocks and priority inversions, automatic
roll-back on exceptions, and increased concurrency. Moreover, each transaction can be viewed
in isolation as a single-threaded computation, significantly reducing programmer’s burden.

However, in multi-threaded programming differ-
ent transactions may need to interact and exchange
data before reaching the commit phase. In this situ-
ation, transaction isolation is a severe shortcoming.
A simple example is a synchronization (rendezvous)
between threads belonging to different transactions.
A naive attempt would be to use two semaphores

// Party1

atomically {

// code before

up(c1);

down(c2);

// code after

}

// Party2

atomically {

// code before

down(c1);

up(c2);

// code after

}
c1, c2 as shown aside. Unfortunately, this solution does not work: any admissible execution
requires an interleaved scheduling between the two transactions, thus violating isolation; hence,
the transactions deadlock as none of them can progress. It is important to notice that this
deadlock arises because synchronization occurs between threads in different transactions; in
fact, the solution above works for threads outside transactions, or within the same transaction.

In order to overcome this limitation, we propose a programming model for safe, data-driven
interactions between memory transactions. The key observation is that atomicity and isolation
should be seen as two disjoint computational aspects:

• an atomic non-isolated block of code is executed “all-or-nothing”, but its execution can
overlap that of others and uncontrolled access to shared data is allowed;

• an isolated block of code is intended to be executed “as it were the only one” (i.e., in
mutual exclusion with other threads), but no rollback on errors/exceptions is provided.

Thus, a “normal” block of code is neither atomic nor isolated; a mutex block (like Java syn-
chronized methods) is isolated but not atomic; and a usual transaction is a block which is both
atomic and isolated. Our claim is that atomic non-isolated blocks can be fruitfully used for
implementing safe composable interacting transactions, henceforth called open transactions.

In this model, a transaction is composed by several threads, called participants, which can
cooperate on shared data. A transaction commits when all its participants commit, and aborts
if any thread aborts. Threads participating to different transactions can access to shared data,
but when this happens the transactions are transparently merged into a single one. For instance,
the two transactions of the rendezvous example above would automatically merge becoming the
same transaction, hence the two threads can synchronize and proceed. Thus, this model relaxes
the isolation requirement still guaranteeing atomicity and consistency; moreover, it allows for
loosely-coupled interactions since transaction merging is driven only by run-time accesses to
shared data, without any explicit coordination among the participants beforehand.

1

http://mads.uniud.it


Open memory transactions in Haskell Miculan, Peressotti, Toneguzzo

type ITM a

type OTM a

-- t is a placeholder for ITM or OTM --

-- Sequencing, do notation ------------

(>>=) :: t a -> (a -> t b) -> t b

return :: a -> t a

-- Atomic and isolated computations ---

atomic :: OTM a -> IO a

isolated :: ITM a -> OTM a

retry :: ITM a

orElse :: ITM a -> ITM a -> ITM a

-- Exceptions -------------------------

throw :: Exception e => e -> t a

catch :: Exception e => t a ->

(e -> t a) -> t a

-- Threading --------------------------

fork :: OTM () -> OTM ThreadId

-- Transactional memory ---------------

data OTVar a

newOTVar :: a -> ITM (OTVar a)

readOTVar :: OTVar a -> ITM a

writeOTVar :: OTVar a -> a -> OTM ()

Figure 1: The base interface of OTM.

In the rest of this abstract we gradually present the primitives from the OTM library (showed
in Figure 1) by some illustrative examples. The discussion is meant to be introductory and
informal. The formal semantics has been omitted due to space constraints but it is based on
the calculus we presented in [2], with minor variations to accommodate the richer types of OTM.
This library has been implemented in Haskell using the standard STM library.

Suppose we want to delegate some long task to another thread and then collect the result
once it is ready. An intuitive way to achieve this is by means of futures, i.e. “proxy results”
that will be produced by the worker threads.

A future can be implemented it OTM as a transactional variable OTVar holding a value of
type Maybe a i.e. a type that is “not-ready-yet” (Nothing) or actually holds something of type
a (e.g. “Just 42”):

type Future a = OTVar (Maybe a)

To access the promised value a call to getFuture f should block if the value is not ready yet.
In OTM (and also STM) blocking a thread translates into “this thread has been scheduled too
early” and the scheduler is informed of this fact by
means of the primitive retry. Therefore we can
implement getFuture as aside. Note that there is
no point in blindly restarting the transaction until

getFuture::Future a -> ITM a

getFuture f = case (readOTVar f) of

Nothing -> retry

Just val -> return val
at least one of the transactional variables has been modified. Instead an implementation will use
the information contained in the transaction log (which is needed by the optimistic execution
strategy) to watch for f to change. The above snippet is executed in isolation to guarantee
consistency between reading and testing the case (actually, it is also an implementation in STM).

Transaction openness comes into play when a worker is spawn. STM does not allow for thread
creation, thus forcing us to implement spawn in IO. This is indeed possible, but forking and
creating the future cannot be guaranteed to be atomic, let alone the creation of several work-
ers. For instance, being able to create workers and futures inside an open transaction allows us
to propagate exceptions and abort to all workers. Therefore we can implement spawn as follows:

spawn :: OTM a -> OTM (Future a)

spawn work = do

future <- newTVar Nothing

fork (worker future)

return future

worker :: Future a -> OTM ()

worker v = do

res <- work

writeOTVar (Just v) $! res

Because of its type, spawning multiple computations inside the same transaction is as simple

2



Open memory transactions in Haskell Miculan, Peressotti, Toneguzzo

as function composition:
spawnMany:: [OTM a] -> OTM [Future a]

spawnMany = mapM spawn

getAllFutures:: [Future a] -> ITM [a]

getAllFutures = mapM getFuture
While programming with OTM we should prefer the strictest kind of transactions otherwise we
will loose some information because of a less precise type. For instance, consider the following
alternative implementations of getAllFutures:

get’ = isolated . (mapM getFuture) get’’ = mapM (isolated getFuture)

Although both have type [Future a] -> OTM [a], the first is executed in isolation (like
getFutures) whereas the second allows workers to proceeds during the traversal of the list.
Same type, different degree of concurrency.

Transactions can be composed as alternatives thanks to the primitive orElse which firstly
attempts to execute its first argument as a sub-transaction and its second whenever the first
one retries. The following function collects the value that is made available first:

getAnyFuture (f:fs) = (getFuture f) ‘orElse‘ (getAnyFuture fs)

Example: Petri nets Petri nets might be easily implemented in OTM: places are transac-
tional variables holding a number of tokens (OTvar Peano). Tokens can be added and removed
with the latter operation being blocking.

data Place = OTVar Peano

take :: Place -> ITM ()

take var = do

t <- redOTVar var

case t of

Zero -> retry

Succ v -> writeOTVar var v

newPlace :: Peano -> ITM Place

newPlace = newOTVar

put :: Place -> ITM ()

put var = do

v <- readOTVar var

writeOTVar var (Succ v)

Transitions are IO threads that repeatedly consume tokens from their input places and produce
tokens to their output places, atomically:

transition :: [Place] -> [Place] -> IO ThreadId

transition ins outs = forkIO (forever fire)

where

fire :: IO ()

fire = atomic $ do

(isolated take) ‘all‘ ins

(isolated put) ‘all‘ outs

all :: (a -> OTM b) -> [a] -> OTM ()

all f = mapM_ f

Although each transition fires sequentially, the firing of different transitions happens in a true
concurrent way since transactions are open and isolation is limited to each take/put operation.

References

[1] M. Herlihy and J. Moss. Transactional memory: Architectural support for lock-free data structures.
In Proc. ISCA, pages 289–300. ACM, 1993.

[2] M. Miculan, M. Peressotti, and A. Toneguzzo. Open transactions on shared memory. In Proc.
COORDINATION, pages 213–229, 2015.

[3] N. Shavit, D. Touitou. Software transactional memory. Distributed Computing, 10(2):99–116, 1997.

3


