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Motivations Concurrent and distributed systems are the pillars of modern IT infrastruc-
tures. It is of great importance that such systems work properly. However, quality assurance
of such systems is non-trivial since they depend on unpredictable factors, such as different pro-
cessing speeds of independent components. Besides, it is non-trivial to ensure communication
(composed by interactions) safety: as developers implement applications locally, the sending
application’s expected sequence of interactions may not fit the receiving application’s. Thus
interactions between endpoints could become inconsistent and unexpected messages may dam-
age endpoint applications such that extra cost is caused to the overall system. These challenges
motivate compositional frameworks combining precise modeling and analysis with suitable tool
support for such kind of systems. In particular, it is crucial to provide a verification framework
which is able to analyze the overall interactions and structurally verify endpoint applications
in an intuitive way with respect to endpoint behavior.

Object orientation is the leading framework for concurrent and distributed systems. Con-
current objects combine object-orientation with the actor model [7]. Actors communicate with
one another by asynchronous message passing, which allows the caller to continue with its
own activity without blocking while waiting for the reply. Moreover, the notion of futures [6]
improves this paradigm by providing a decoupling of the process invoking a method and the
process reading the returned value. By sharing future identities, the caller enables other objects
to wait for the same method results.

The Proposed Framework In this work, we take ABS [5] as a modeling language for
concurrent and distributed systems. ABS is based on Creol [10]. It is imperative, object-
oriented, executable and it supports concurrent objects and shared futures.

The observable behavior of a system can be described by communication histories over
observable events [8]. Due to asynchronous message passing in ABS , [3, 4] propose a disjoint
event semantics, in which events are separated for method invocation, reacting upon a method
call, resolving a future, and for fetching the value from a future. Each event is observable to
only one object, which is the one that generates the event.

The theorem prover KeY-ABS [2] based on KeY [1] is developed for verifying history-based
class invariants for ABS models. The class invariants can (1) relate the internal object states
with the interactions between the current object and the surrounding environment, or (2)
express the structure of histories local to the current object. The proof rule for compositional
reasoning about ABS programs is given and proved sound in [4], by which system invariants
can be obtained from the class invariants proved by KeY-ABS through history composition.
This bottom-up verification approach by KeY-ABS is based on relay-guarantee mechanism for
each class in the model. In this work, we propose a top-down verification approach to verify
the overall behavior between concurrent and distributed endpoints.
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Figure 1: Session-Based Compositional Verification Framework

Session types [9] establish a means of typing concurrent and asynchronous interactions
among distributed components. In this work, we propose a session-based verification framework
for concurrent and distributed ABS models. We type applications’ behaviors, which include
the usage of future, with respect to sessions where the applications are participating in, and
partition those behaviors based on sessions. We call the extended session types as protocol
types, which not only enjoy all features defined in session types, but also specify the timing for
invoking feature. Let p, q, .. range over endpoint process identifiers, let l be labels for options
in a branching, and let f be future identities. The syntax of protocol types is defined below:

(Sorts) S ::= T | 〈G〉
(Data types) T ::= unit | bool | int | string | Fut〈T 〉

(Protocol Types) G ::= p
fj−→ q : {lj(Tj).Gj}j∈J | Rel(f ) | G ‖ G | t | µt.G | end

(Protocol Local Types) L ::= q!fj{lj(Tj).Lj}j∈J | p?fj{lj(Tj).Lj}j∈J | Rel(f ) | t | µt.L | end

Sorts, denoted by S , range over data types, and 〈G〉, a closed protocol type (i.e. having
no type variable) of a content. This implies that we can deliver a behavior (typed by G)
from one endpoint to another. Data types, T , include standard value types and future types,
Fut〈T 〉, for the types of method parameters and method return results. A protocol type

p
fj−→ q : {lj(T ).Gj}j∈J globally describes an interaction behavior in which an endpoint process

p sends a content of type Tk to another endpoint process q, where fj is a future identity and
label lk ∈ {lj}j∈J , k ∈ J = {1..n}. Then the global behavior continues with Gk. If J = ∅, then

conventially we write p
fj−→ q : (T ).G to represent a simple sending and receiving interaction.

In the protocol local types, q!fj{lj(Tj).Lj}j∈J and p?fj{lj(Tj).Lj}j∈J are corresponding to the

interacting endpoints’ behaviors defined in p
fj−→ q : {lj(Tj).Gj}j∈J . The former types the

sender’s behavior to send a message to q, while the later types the receiver’s behavior to receive
a message from p. The new type Rel(f ) captures the process release point upon waiting for the
future f to be resolved, i.e. containing method results.

For example, we can write

p1
f1−→ q1 : {BigD(string).Rel(f1).p2

f2−→ q1 : (unit).end, SmallD(bool).q1
f1−→ p1 : (int).end}

to globally describe the following interactional features between p1, q1, and p2: there are two

branches for the first interaction p1
f1−→ q1. Branch BigD leads to compute a very big data at q1



(requested by p1), while branch SmallD is for computing a small data. q1
f1−→ p1 : (int) implies

that p1 will need to wait for the response from q1 before proceeding to the next action end (i.e.
terminate). Since it is just a small data, p1 should not wait for a long time. However, for a
very big data, p1 may waste lots of time for the response. Thus type Rel(f1) is used in branch
BigD to specify that p1 encounters a process release point and can proceed other actions while
waiting for f1 to be resolved. It further specifies that, only when future f1 has been resolved,

the whole global behavior can go to the next interaction p2
f2−→ q1 : (unit). We use G ‖ G for

parallel composition, and t for type variable, and µt.G for a recursive type, where every t in the
recursion body G is guarded by prefixes (i.e. contractive). Other terms for local types can be
similarly explained.

Concluding Remarks and Future Works The main contributions in this work include (1)
protocol types are extended by adding terms suitable for capturing the notion of futures, (2) the
communication between different ABS endpoints, grouped by sessions, can be captured in pro-
tocol types and verified by the corresponding session-based composition verification framework,
and (3) the local protocol types, projected from protocol types, of each endpoints can be trans-
lated and reformulated into history-based class invariants for KeY-ABS, see Figure 1. Based
on this achievement, we also expect to extend the verification framework for ABS exception
handling [11].
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