A formal model for direct-style asynchronous observables

Philipp Haller! and Heather Miller?

! KTH Royal Institute of Technology, Sweden
phaller@kth.se
2 EPFL, Switzerland
heather.miller@epfl.ch

1 Introduction

Asynchronous programming has been a challenge for a long time. A multitude of programming
models have been proposed that aim to simplify the task. Interestingly, there are elements of
a convergence arising, at least with respect to the basic building blocks: futures and promises
have begun to play an increasingly important role in a number of languages like Java, C++,
ECMAScript, and Scala. The Async extensions of F# [9], C# [I], and Scala [4] provide language
support for programming with futures in direct style, by avoiding an inversion of control that
is inherent in designs based on callbacks.

In this paper we present an integration of the Async model with a richer underlying ab-
straction, the asynchronous observables of the Reactive Extensions model [§]. An asynchronous
observable is a stream of observable events which an arbitrary number of observers can sub-
scribe to. The set of possible event patterns of asynchronous observables is strictly greater
than those of futures. An observable (or stream) can (a) produce zero or more regular events,
(b) complete normally, or (c) complete with an error (it is even possible for a stream to never
complete.) Given the richer substrate of observables, the Async model has to be generalized in
several dimensions.

We call our model RAY, inspired by its main constructs, reactive async, await, and yield.
This paper makes the following contributions:

e The design of a new programming model, RAY, which integrates the Async model and
the Reactive Extensions model;

e Structural operational semantics of the proposed programming model. Our operational
semantics generalizes the formal model presented in [I] for C#’s async/await to asyn-
chronous observables.

2 Background

Scala Async. Scala Async provides constructs that aim to facilitate programming with asyn-
chronous events in Scala. The introduced constructs are inspired by extensions that have been
introduced in C# version 5 [5]. The goal is to enable expressing asynchronous code in direct
style, i.e., in a familiar blocking style where suspending operations look as if they were blocking
while at the same time using efficient non-blocking APIs under the hood. Example:

val respFut = async {

val dayOfYear = await(futureDOY).body

val daysLeft = await(futureDaysLeft).body

Ok("" + dayOfYear + ": " + daysLeft + " days left!")
}
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The await on line 2 causes the execution of the async block to suspend until futureDQY
is completed (with a successful result or with an exception). When the future is completed
successfully, its result is bound to the dayOfYear local variable, and the execution of the async
block is resumed. When the future is completed with an exception (e.g., because of a timeout),
the invocation of await re-throws the exception that the future was completed with. In turn,
this completes future respFut with the same exception. Likewise, the await on line 3 suspends
the execution of the async block until futureDaysLeft is completed.
The principle methods, async and await, have the following type signatures:

def async[T] (body: => T): Futurel[T]
def await[T] (future: Future[T]): T

Notably, async and await “cancel each other out:” await(async { <expr> }) = <expr>

Reactive Extensions. The Rx programming model is based on two interface traits:
Observable and Observer. Observable represents observable streams, i.e., streams that pro-
duce a sequence of events. These events can be observed by registering an Observer with
the Observable. The Observer provides methods which are invoked for each kind of event
produced by the Observable. In Scala, the two traits can be defined as follows:

trait Observable[T] { def subscribe(obs: Observer[T]): Closable }
trait Observer[T] {

def onNext(v: T): Unit

def onFailure(t: Throwable): Unit

def onDone(): Unit
}

The idea of the Observer is that it can respond to three different kinds of events, (1) the next
regular event (onNext), (2) a failure (onFailure), and (3) the end of the observable stream
(onDone). Thus, the two traits constitute a variation of the classic subject/observer pattern [2].
Note that Observable’s subscribe method returns a Closable; Closable has only a single
close method which removes the subscription from the observable.

3 Direct-style asynchronous observables

The following example demonstrates our programming model:

val filter = async*[Int] {
var next: Option[Int] = await(input)
while (next.nonEmpty) {
val evt = next.get
if (p(evt)) yield(evt)
next = await(input)
}
}

Here, we create a simple filter observable which publishes an Int event for each event observed
on the input observable that satisfies predicate p.

We provide a complete formalization in the context of an object-based core language remi-
niscent of Creol [7] and ABS [6]. Figure [l|shows a subset of expressions of the core language.
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to= terms
[ ... (omitted)
| yield(x) yield event
e = expressions
(omitted)
| async*[o](7) {e} observable creation (reactive async)
| await(x) await event
| ¢ term

Figure 1: RAY expressions and terms.

Operational semantics. The core concepts of our operational semantics are heaps, frames,
and frame stacks (threads). Frames have the form (L, e)! where L maps local variables to their
values, e is an expression, and [ is a label. A label is either s denoting a regular, synchronous
frame, or a(o,p) denoting an asynchronous frame; in this case, o is the heap address of a
corresponding observable object, and p is a sequence of object identifiers of observables that
observable o has itself subscribed to.

Correctness properties. We show that well-typed programs satisfy desirable properties:

1. Observable protocol. For example, a terminated observable never publishes events again;
this protocol property is captured by a heap evolution invariant which generalizes an
invariant given in [IJ.

2. Subject reduction. Reduction of well-typed programs preserves types.

The proofs of these properties are based on a typing relation, as well as invariants preserved by
reduction. A forthcoming technical report [3] provides details of the formal model and proofs.
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