Towards Small-step Compilation Schemas for SOS

Ferdinand Vesely

Department of Computer Science, Swansea University, Swansea SA2 8PP, UK
csfvesely@swansea.ac.uk

Abstract

We present work in progress on a method of compiling programs based on SOS specifications. The
idea is to compile programs using SOS rules by translation into labelled blocks with explicit exit points,
which implement a valid computation in the LTS of the program. Under this approach, a correct
compiler can be constructed in a systematic way, based on an SOS specification.

1 Introduction and Background

Small-step SOS is a popular framework for specifying semantics of programming and specification
languages. A collection of SOS rules together define the transitions of a labelled transition
system (LTS). For programming languages, the states of an LTS usually contain a program
term along with auxiliary entities (stores, environments) and labels may contain emitted signals
or output streams. contains a small example specification. Under such a specification,
each program is represented by a concrete LTS. We present a compilation method which can be
understood as the translation of the LTS to a corresponding control-flow graph (CFG). The
nodes of the CFG are sequences of instructions with behaviour that should be equivalent to the
states in the LTS.

Atomic Blocks Our method produces a collection of labelled atomic blocks (AB) containing
instructions for a virtual machine. Each AB corresponds to a state in the LTS of the program,
and is essentially a basic block: a sequence of instructions with one entry (at the beginning) and
one exit point (at the end) [I]. However, we relax the second condition and allow multiple exit
points at the end of the block, while requiring that an AB executes atomically as a single unit.

Target Machine Language We are targeting a simple register machine, with an unlimited
supply of temporaries (registers). In this regard it is similar to LLVM [3], which we intend to
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Table 1: Example language specification. ‘Value s’ asserts that ‘(p, s) is a value (terminal) state

for any p. As usual, p+ s Ly ¢ is a shorthand for (p, s) N (p,s").
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use as the ultimate target. There is no program counter, instead the program is stored as a
set of labelled code blocks 8. Each block is (just) a sequence of instructions ‘¢1 - to - ...". The
basic control-flow instructions are halt for stopping the machine immediately, and jump for
unconditionally jumping to a labelled AB.

<l7t2> EB
B F halt -t — halt BF jump 1-t; —to

Further instructions will be mentioned in our translation example in the next section.

2 A Small-step Compilation Schema

Let’s take a simple construct like print. If there is a sequence of n transitions starting from term
t, then the computation starting from print(¢) will look as follows:
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The ABs for print(t) should each corresponds to a term (state) in the lower part of the above
sequence. We construct a translator which will generate code blocks that implement the steps
of the construct. A translator for construct f, try, is a structure of operations next, code, and
label. A translator state is constructed by applying tr; to translator states for arguments of f.
We also write [f(t1,...,tn)] for tre([t1], ..., [tn]), where n is the arity of f. For a translator
tr, next tr is the next translator state, code ¢r is a code block corresponding to the current state,
and label tr assigns a name to the state. The name can be used as a label for the atomic block
or as the name of a temporary holding the computed value. The value of next tr can be none
if the current state is final. In that case, the instructions in code tr must store a value in the
named temporary label tr. The translator for print, trgnt, can be defined as follows:

code[t] if next[t] # none

code[print(t)] = (7)
code[t] - out temp otherwise, temp = label[t]
trorint (NExt([¢ if nextl[t none

next[[print(t)] = { " w(nextlr]) h# (8)
[skip] otherwise

A translator for a value v just has to put (a representation of) the value to a temporary, for
which we introduce an instruction ldval.

codev] = 1dval temp v next[v] = none label[v] = temp

(9)

(where temp is a fresh temporary name)

The role of a top-level translator tryp is to take the code block for each step and turn it into
an atomic block by appending an explicit exit point (jump or halt):

code[t] - jump ! if next[t] # none and I = label(next[t])
codet],,, = (10)
code[t] - halt otherwise
next[t],,, = next[t] label[t],,,, = label[t] (11)
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The main compilation function just collects all the atomic blocks for a term, and returns
them together with the initial block label:

C(s) = {(label[t] o, folde[t] o) } (12)

where

foldtr tr =

{{(Iabel tr, code try} U foldy, (next tr) if ¢tr # none (13)

otherwise

As a further illustration, we look at a definition of code for let. The construct uses an updated
context in the premise of the rule in The resulting code block also has to provide a
corresponding context for the sub-block. This context has to be explicitly constructed at the
beginning of the premise transition and cleaned up at the end. In this definition we assume
a value translator for sets of mappings ‘{i — v}’ and machine operations for manipulating
environments.

code[t4] if next[t1]] # none

if next[t1] = none,
next[ta] # none,

code[let(i, t1,t2)] = ¢ code try, - push_env tmp - code[ts] - pop_env trey = [{i = ta}],
tmp = label(try,)
code[ts] otherwise

(14)

3 Conclusion

We have illustrated a schema for small-step compilation on a few simple programming constructs.
For lack of space we didn’t illustrate translations for, e.g., conditional, iterative, or non-
deterministic constructs. The approach could be used with a suitable notion of bisimulation: to
prove its correctness, to develop a compiler calculation method (following [2]), and to explore
(semi-) automatic compiler generation based on SOS rules. To this end, we intend to work with
Modular SOS [4], a modular variant of SOS, which places all auxiliary entities into labels of
transitions, and the corresponding notions of bisimulation [5]. To deal with inherent inefficiencies
(e.g., construction and destruction of contexts in atomic blocks), common optimisation methods,
such as peephole optimisation, could be applied to the resulting translations.
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