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Abstract

We present work in progress on a method of compiling programs based on SOS specifications. The

idea is to compile programs using SOS rules by translation into labelled blocks with explicit exit points,

which implement a valid computation in the LTS of the program. Under this approach, a correct

compiler can be constructed in a systematic way, based on an SOS specification.

1 Introduction and Background

Small-step SOS is a popular framework for specifying semantics of programming and specification
languages. A collection of SOS rules together define the transitions of a labelled transition
system (LTS). For programming languages, the states of an LTS usually contain a program
term along with auxiliary entities (stores, environments) and labels may contain emitted signals
or output streams. Table 1 contains a small example specification. Under such a specification,
each program is represented by a concrete LTS. We present a compilation method which can be
understood as the translation of the LTS to a corresponding control-flow graph (CFG). The
nodes of the CFG are sequences of instructions with behaviour that should be equivalent to the
states in the LTS.

Atomic Blocks Our method produces a collection of labelled atomic blocks (AB) containing
instructions for a virtual machine. Each AB corresponds to a state in the LTS of the program,
and is essentially a basic block : a sequence of instructions with one entry (at the beginning) and
one exit point (at the end) [1]. However, we relax the second condition and allow multiple exit
points at the end of the block, while requiring that an AB executes atomically as a single unit.

Target Machine Language We are targeting a simple register machine, with an unlimited
supply of temporaries (registers). In this regard it is similar to LLVM [3], which we intend to

ρ ` s1
l−→ s′1

ρ ` let(i, s1, s2)
l−→ let(i, s′1, s2)

(1)
Value v1 ρ[i 7→ v1] ` s2

l−→ s′2

ρ ` let(i, v1, s2)
l−→ let(i, v1, s′2)

(2)

Value v2

ρ ` let(i, v1, v2)
τ−→ v2

(3)
ρ(i) = v

ρ ` bound(i)
τ−→ v

(4)

ρ ` s l−→ s′

ρ ` print(s)
l−→ print(s′)

(5)
Value v

ρ ` print(v)
out v−−−−→ skip

(6)

Table 1: Example language specification. ‘Value s’ asserts that ‘〈ρ, s〉‘ is a value (terminal) state

for any ρ. As usual, ρ ` s l−→ s′ is a shorthand for 〈ρ, s〉 l−→ 〈ρ, s′〉.
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use as the ultimate target. There is no program counter, instead the program is stored as a
set of labelled code blocks β. Each block is (just) a sequence of instructions ‘ι1 · ι2 · . . .’. The
basic control-flow instructions are halt for stopping the machine immediately, and jump for
unconditionally jumping to a labelled AB.

β ` halt · t τ−→ halt

〈l, t2〉 ∈ β
β ` jump l · t1

τ−→ t2

Further instructions will be mentioned in our translation example in the next section.

2 A Small-step Compilation Schema

Let’s take a simple construct like print. If there is a sequence of n transitions starting from term
t, then the computation starting from print(t) will look as follows:

t
L1−−→ t1

L2−−→ · · · Ln−1−−−−→ tn−1
Ln−−→ v

print(t)
L1−−→ print(t1)

L2−−→ · · · Ln−1−−−−→ print(tn−1)
Ln−−→ print(v)

{out=v,...}−−−−−−−−→ skip

The ABs for print(t) should each corresponds to a term (state) in the lower part of the above
sequence. We construct a translator which will generate code blocks that implement the steps
of the construct. A translator for construct f , trf , is a structure of operations next, code, and
label. A translator state is constructed by applying trf to translator states for arguments of f .
We also write [[f(t1, . . . , tn)]] for trf ([[t1]], . . . , [[tn]]), where n is the arity of f . For a translator
tr , next tr is the next translator state, code tr is a code block corresponding to the current state,
and label tr assigns a name to the state. The name can be used as a label for the atomic block
or as the name of a temporary holding the computed value. The value of next tr can be none
if the current state is final. In that case, the instructions in code tr must store a value in the
named temporary label tr . The translator for print, trprint, can be defined as follows:

code[[print(t)]] =

{
code[[t]] if next[[t]] 6= none

code[[t]] · out temp otherwise, temp = label[[t]]
(7)

next[[print(t)]] =

{
trprint(next[[t]]) if next[[t]] 6= none

[[skip]] otherwise
(8)

A translator for a value v just has to put (a representation of) the value to a temporary, for
which we introduce an instruction ldval.

code[[v]] = ldval temp v next[[v]] = none label[[v]] = temp

(where temp is a fresh temporary name)
(9)

The role of a top-level translator trtop is to take the code block for each step and turn it into
an atomic block by appending an explicit exit point (jump or halt):

code[[t]]top =

{
code[[t]] · jump l if next[[t]] 6= none and l = label(next[[t]])

code[[t]] · halt otherwise
(10)

next[[t]]top = next[[t]] label[[t]]top = label[[t]] (11)
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The main compilation function just collects all the atomic blocks for a term, and returns
them together with the initial block label:

C(s) = {〈label[[t]]top, foldtr[[t]]top〉} (12)

where

foldtr tr =

{
{〈label tr , code tr〉} ∪ foldtr(next tr) if tr 6= none

∅ otherwise
(13)

As a further illustration, we look at a definition of code for let. The construct uses an updated
context in the premise of the rule in Eq. (2). The resulting code block also has to provide a
corresponding context for the sub-block. This context has to be explicitly constructed at the
beginning of the premise transition and cleaned up at the end. In this definition we assume
a value translator for sets of mappings ‘{i 7→ v}’ and machine operations for manipulating
environments.

code[[let(i, t1, t2)]] =



code[[t1]] if next[[t1]] 6= none

code triv · push env tmp · code[[t2]] · pop env

if next[[t1]] = none,

next[[t2]] 6= none,

triv = [[{i 7→ t2}]],
tmp = label(triv )

code[[t2]] otherwise

(14)

3 Conclusion

We have illustrated a schema for small-step compilation on a few simple programming constructs.
For lack of space we didn’t illustrate translations for, e.g., conditional, iterative, or non-
deterministic constructs. The approach could be used with a suitable notion of bisimulation: to
prove its correctness, to develop a compiler calculation method (following [2]), and to explore
(semi-) automatic compiler generation based on SOS rules. To this end, we intend to work with
Modular SOS [4], a modular variant of SOS, which places all auxiliary entities into labels of
transitions, and the corresponding notions of bisimulation [5]. To deal with inherent inefficiencies
(e.g., construction and destruction of contexts in atomic blocks), common optimisation methods,
such as peephole optimisation, could be applied to the resulting translations.
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