
Modelling and analysis of normative contracts

John J. Camilleri and Gerardo Schneider

Chalmers University of Technology and University of Gothenburg, Sweden
john.j.camilleri@cse.gu.se, gerardo@cse.gu.se

1 Introduction

Normative contracts are documents written in natural language, such as English or Swedish,
which describe the permissions, obligations, and prohibitions of two or more parties over a set of
actions, including descriptions of the penalties which must be payed when the main norms are
violated. We encounter such texts frequently in the form of privacy policies, software licenses,
and service agreements. These kinds of contracts are often long and difficult to follow for non-
experts, and many people agree to such legally-binding documents without even reading them.
Our goal is to provide front-end tools for analysing real-world contracts using formal methods.
This involves a number of different components, ranging from entity extraction in natural
language, the choice and design of a formalism for modelling contracts, textual and visual
interfaces for working with contract models, query answering based on syntactic traversal and
verification of temporal properties via conversion to timed automata.

2 Front-end

2.1 Extracting partial models

We have built a tool which takes a contract written in English and tries to extract various bits of
information from it, in order to bootstrap the modelling process. It uses the Stanford parser [3]
to produce dependency trees which we then analyse using some custom heuristics. This involves
using the semantic relations between words to determine the subject, object, verb, modality
and other elements from each sentence in the contract. After some manual post-editing, the
tool’s tabular output can be automatically converted to a model in our formalism. Our initial
experiments show that the approach is already quite promising, both in terms of accuracy and
in the reduction of effort involved for building a contract model.

2.2 Working with models

Diagram editor We visualise contract models as tree-like C-O Diagrams [4], an example of
which can be seen in Figure 1. We have a web-based tool for working with these diagrams using
a drag-and-drop interface along with real-time validation, in order to help the user build syntac-
tically correct diagrams. The tool can import from and export to our XML-based interchange
format COML.

CNL A controlled natural language (CNL) is a smaller, unambiguous and formally definable
subset of a natural language. CNLs can be particularly useful for specific domains where the
coverage of full language is not needed, or when it is possible to abstract away from some
irrelevant aspects. We have defined a CNL for our contract models [2], implemented using the
Grammatical Framework [6]. Figure 1b shows an example of what a contract clause looks like

1



Modelling and analysis of normative contracts Camilleri and Schneider

client

t_payRight<30

Obligation
refund

abort chooseCoffeeMilk

choose coffee

with milk

chooseCoffee

choosing

OR OR OR

choose

coffee
press

abort

(a) C-O Diagram

choosing : when clock t_payRight less than 30

↪→ client is required

- abort : to press abort , or

- chooseCoffeeMilk : to choose coffee with

↪→ milk , or

- chooseCoffee : to choose coffee

otherwise see refund

(b) CNL linearisation

Figure 1: Example of visual and textual representations of an obligation clause.

in this language. As with the diagram editor, we also have a web-based CNL editing tool which
comes with syntax checking, inline completion and basic highlighting to aid the user. It too can
import and export to the COML format, enabling the user to switch back and forth between
editing views.

All these tools are accessible at http://remu.grammaticalframework.org/contracts/.

3 Contract formalism

The formalism we use for modelling contracts is based on C-O Diagrams [4]. To this we have
made a number of syntactic extensions, including a distinction between conditions for enactment
and expiry, and the addition of generalised predicates as guards. Our largest contribution has
been the definition of a completely novel trace semantics for C-O Diagrams, which formally
defines what sequences of events can satisfy or violate a given model. We have also worked on
a full back-end implementation in Haskell which, by parsing COML files into abstract contract
models, can perform the kinds of analysis described in the following section.

4 Analysis

Syntactic Some queries can be checked at a syntactic level, such as identifying obligations
without constraints or reparations. We introduce predicates over single clauses, which are
the building blocks for defining syntactic properties. The predicate isObl(C ) for example is
true if the clause C is an obligation. Predicates may also take additional arguments, such as
fromAgent(a,C ), which is true if agent a is responsible for clause C. Full queries can then be
built out of these predicates, and a querying function returns the set of all clauses that satisfy
the predicate. This function is defined inductively on the structure of contract models.

Semantic Syntactic analysis alone cannot be used to answer queries about the reachability
of a given state. This requires taking into account the conditions applied to each clause, as
well as a possible trace of previous events. These kinds of properties are computed using model
checking. To do this, we convert contract models into networks of timed automata (NTA) [1]
— finite state automata extended with guarded transitions, real-time clocks, and channel-based
synchronisation between parallel automata (see example in Figure 2).

Using the Uppaal tool [5], we can then test liveness and safety properties on our translated
model using Uppaal’s requirement specification language, which is a subset of TCTL including
operators for possibly (E♦) potentially always (E�) and eventually (A♦). This language allows

2

http://remu.grammaticalframework.org/contracts/


Modelling and analysis of normative contracts Camilleri and Schneider

Figure 2: One of the automata produced from the translation of C-O Diagram 1a.

us to test for unexpected or undesirable situations which may potentially arise in the execution
of a contract. These properties must be written and tested directly in Uppaal by the user.

Case studies We have applied our methods to a few smaller case studies, including the terms
of service for GitHub, Inc.1 and a service-level agreement from hosting company LeaseWeb Inc.2

5 Future work

The largest piece missing from this work is the connection between high-level user questions
in natural language and the low-level specification languages used for analysis. For this, we
will define a query language (similar to the CNL described above) which can help users build
properties for contract analysis by using a human-friendly interface. This will involve classifying
the different queries we wish to allow, a method for converting these into logical properties using
information from the translation into automata, and using the results of the analysis to produce
properly formulated answers to the original query in natural language.

References

[1] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

[2] John J. Camilleri, Gabriele Paganelli, and Gerardo Schneider. A CNL for Contract-Oriented Dia-
grams. In Controlled Natural Language, volume 8625 of LNCS, pages 135–146. Springer, 2014.

[3] Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D. Manning. Generating typed
dependency parses from phrase structure parses. In LREC 2006, pages 449–454, 2006.

[4] Gregorio Dı́az, Maria Emilia Cambronero, Enrique Mart́ınez, and Gerardo Schneider. Specification
and Verification of Normative Texts using C-O Diagrams. IEEE TSE, 40(8):795–817, 2014.

[5] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. International Journal on
Software Tools for Technology Transfer, 1(1-2):134–152, 2014.

[6] Aarne Ranta. Grammatical Framework: Programming with Multilingual Grammars. CSLI Publi-
cations, Stanford, 2011. ISBN-10: 1-57586-626-9.

1https://github.com/site/terms
2https://www.leaseweb.com/legal

3

https://github.com/site/terms
https://www.leaseweb.com/legal

	Introduction
	Front-end
	Extracting partial models
	Working with models

	Contract formalism
	Analysis
	Future work

