From Explicit to Implicit Dynamic Frames in Concurrent
Reasoning for Java (Extended Abstract)*

Wojciech Mostowski

Center for Research on Embedded Systems, Halmstad University, Sweden
wojciech.mostowski@hh.se

1 Introduction

In [9] we presented an approach to permission-based reasoning about concurrent Java programs
in the context of the interactive program verifier KeY [I] which is based on Dynamic Logic and
explicit dynamic frames [0, [13]. We argued for the explicit approach advocating the modular use
(w.r.t. sequential vs. concurrent) and overall preciseness. It was noted, however, that changing
our specification and verification approach to an established one of implicit dynamic frames
(IDF) [11] should be also possible. In consequence, this would allow us to translate Separation
Logic (SL) specifications [12] 2] into our framework to provide a powerful interactive theorem
prover support for SL-like formalisms. In this context, we present some of the challenges
associated with transition to implicit frames in KeY and possible solutions.

2 Permission-based Reasoning with Explicit Frames

As originally proposed in [6], the essence of specify- public class ArrayList {

ing and reasoning about programs using explicit dy- Objectl] cnt; int s;

namic frames is the introduction of locations sets into ~ //@ model \locset fp = s, cnt, cnt[*];
the specification language as first class citizens and
allowing them to be embedded within abstract predi-
cates. In the KeY verification system which uses spe-
cially crafted Dynamic Logic for Java, this gives rise to
JML* specification language that introduces locations //@ ensures size()==\old(size()) + 1:
sets to the classic JML syntax [7] and the Dynamic /@ assignable fp;

Logic is equipped with means to reason about them. yoid add(Object 0) { cntls++] = o; } }
A classical, albeit minimalistic example of a Java pro-

gram annotated with JML* specification is shown in Figure 1: A simple array list specified
Fig. The essential parts of this specification are (incompletely) with explicit frames.
frames, here expressed using abstraction through the

JML model field fp. A read frame is specified with the accessible clause, and a write frame
is specified with the assignable clause. As all other specifications, both clauses are effectively
lemmas. Consequently, one is obliged to show that the lemma holds by showing that the corre-
sponding method adheres to the limits of the frame, and then the lemma can be used to support
proofs that involve the use of the method. For mutator methods the assignable clause is used
to anonymise/havoc the corresponding locations of the program when the method is modularly
applied in the proof to discharge a method call, while the accessible clause is used to establish
the equivalence of two expressions under two different states when the expression is known,

//@ ensures \result == s;
//®@ accessible fp;
/*@ pure @*/ int size() { return s; }

*This work is supported by the Swedish Knowledge Foundation grant for the AUTO-CAAS project.

From Explicit to Implicit Dynamic Frames W. Mostowski

according to the read frame, not to depend on the locations changed between the two states.
In our example, size() is guaranteed to always evaluate to the same value in all states in which
s is not changed. In the Dynamic Logic for Java used by the KeY verifier suitable mechanisms

are devised to both show the framing lemmas to hold and to use them in the proofs [I3].

To verify concurrent behaviour, a convenient ap-
proach is to annotate programs with permission ex-
pressions, typically based on fractions [4], to guard
every memory location access. A full permission
grants a write access, while a partial permission
grants only a read access. The construction of the
verification method and the permission manipula-
tion system guarantee that verified programs are
data-race free. Typically, an SL-like framework is
used for verification, among them IDF method of
the Chalice verifier [8].

To enable permission-based reasoning in KeY
without going too far away from its existing explicit
frames framework, we add a second heap to track
permissions and extend framing to that heap. In
Fig. [2| a specification extended this way is shown.
Most notably, heaps are now named explicitly in
the specification (heap and perms) and are both
given separate framing specifications. In most cases

public class ArrayList {
Object(] cnt; int s;
//@ model \locset fp = s, cnt, cnt[*];

//@ requires \readPerm(\perm(s));
//@ ensures \result == s;

//®@ accessible<heap> fp;

//®@ accessible<perms> \nothing;
/*@ pure @*/ int size() { return s; }

//@ requires \readPerm(\perm(cnt));
//@ requires \writePerm(\perm(s));
//@ requires \writePerm(\perm(cnt[s]));
//@ ensures size() == \old(size()) + 1;
//@ assignable<heap> fp;

//@ assignable<perms> \nothing;

void add(Object o) { cntls++] = o; } }

Figure 2: Explicit frames specification
with permissions.

permission frames are actually empty, but not for

methods and programming constructs that transfer permissions, e.g., mutual exclusion or shar-
ing locks used to access another thread’s data. Additionally, in KeY we opted for developing a
symbolic permission frameworkﬂ [5] as an alternative to fractional permissions. The verification
logic of KeY extends naturally to deal with the extra permission heap and methods are provided
to enable fully modular and abstract specifications for the whole framework [9].

3 Transformation to Implicit Dynamic Frames

In [I1] it has been shown that IDF and SL are essentially equivalent w.r.t. expressiveness of
specifications. Hence, here we concentrate on the task of treating IDF-style specifications in
our framework.

The key observation in our explicit methodology is that because of the the use of permission
annotations in specifications, particularly in preconditions, and verifying the code against these
annotations, the assignable and accessible clauses are in essence obsolete. That is, the precondi-
tion provides the complete framing information for a given method — a read permission indicates
that a method might be accessing a heap location (previously indicated in the accessible clause)
and the write permission indicates that a method might be modifying a heap location (previ-
ously indicated in the assignable clause). More importantly, no heap location access (read or
write) in the code would be allowed without a corresponding permission annotation, hence the
permission annotations provide complete and sound framing specification. Dropping the frame
specifications for the regular heap means two things. First, the frames do not have to be shown
to hold in a separate proof obligation, the checking of the program w.r.t. the specified access

1Here the details of this permission system are not really relevant, the important part is that we can specify
a permission to be a read or write permission, and that permissions can be transferred.

From Explicit to Implicit Dynamic Frames W. Mostowski

rights establishes the adherence to frame specification given by permission annotations. Second,
it becomes a bit more difficult to apply modular method dispatch based on framing information,
as the frames are not specified directly. The solution to this is to build the frame dynamically
on demand using almost the same mechanism as we have presented in [9] to show self-framing
of specifications w.r.t. permissions. For the assignable frame, a formula of the following shape
is constructed: pre A Vo.ouject, f:Fieta (writePerm(o.f@perms) — (o, f) € writeFrame), where
writeFrame is a fresh function symbol that collects all the heap locations for which we can show
a write permission assuming that the method’s precondition pre holds. The writeFrame can
then be used in modular method dispatch.
However, the frames to the permission heap
perms cannot be simply dropped in the same way
without consequences for the specification method
and patterns. The main reason is that the presence
of a given permission in the specification does not,
in general, imply that the permission heap perms is
accessed or modified within the body of the method.
In fact, the most common case is that a permission
is present in the specification to allow a correspond-

public class ArrayList {
Object(] cnt; int s;

//@ requires \readPerm(\perm(s));
//@ ensures \result == s;

//@ ensures \samePerm(\perm(s));
/*@ pure @*/ int size() { return s; }

//@ requires \readPerm(\perm(cnt));
//@ requires \writePerm(\perm(s));

ing access on the regular heap, while the permis-
sion heap itself stays unchanged. Yet, assuming a
frame for the perms heap as described above for the
regular heap is the minimal sound approach if the

//@ requires \writePerm(\perm(cnt(s]));
//@ ensures size() == \old(size()) + 1;
//@ ensures \samePerm(\perm(s));

//@ ensures \samePerm(\perm(cnt));

//@ ensures \samePerm(\perm/(cnt[s]));
void add(Object o) { cntl[s++] =o; } }

frame is not to be stated explicitly. The resulting
over-approximation of the permission frame can be
mitigated on the specification level by specifying for
each permission whether it is changed (and how) or
not. In the latter case we propose to use a new keyword \samePerm. Figure [3| shows the
specification of the program in Fig. [2l modified to suit the implicit frame specification approach
following the ideas just described. The need to specify all permissions in postconditions to
enable precise reasoning is not surprising — all SL-like specifications are required to do so.

Figure 3: IDF specification in JML*.

The implicit framing brings another small over-approximation issue. A write permission in
the method’s precondition implicates a corresponding location to be in the assignable clause of
the method, while in reality the method might be only reading the location. Methods under-
specified like this cannot be considered pure, despite being so. To check that this situation does
not occur, an additional proof obligation in Java Dynamic Logic could be devised.

4 Conclusion

We presented the preliminary ideas for supporting IDF-style specifications in JML* and the
KeY program verifier for Java. As the explicit frames approach is deeply embedded in the KeY
philosophy, the implementation considerations in KeY for IDF might bring further challenges.
Moreover, we have not covered here interactions with JML* model methods that we use for
very flexible abstract and modular specifications in the context of inheritance [I0]. Finally,
despite the mentioned equivalence of IDF and SL, the ideas that we have discussed here are
not sufficient for full and proper translation of SL specifications to JML* and KeY logic. In
particular, to fully support SL we also have to deal the separating conjunction operator * and
the magic-wand operator -*, the latter being known for requiring non-trivial encodings [3].

From Explicit to Implicit Dynamic Frames W. Mostowski

References

1

(9]

(10]

(11]

(12]

(13]

Wolfgang Ahrendt, Bernhard Beckert, Daniel Bruns, Richard Bubel, Christoph Gladisch, Sarah
Grebing, Reiner Hahnle, Martin Hentschel, Mihai Herda, Vladimir Klebanov, Wojciech Mostowski,
Christoph Scheben, Peter H. Schmitt, and Mattias Ulbrich. The KeY platform for verification and
analysis of Java programs. In Dimitra Giannakopoulou and Daniel Kroening, editors, Verified Soft-
ware: Theories, Tools, and Experiments (VSTTE), volume 8471 of LNCS, pages 1-17. Springer,
2014.

Afshin Amighi, Christian Haack, Marieke Huisman, and Clément Hurlin. Permission-based sepa-
ration logic for multithreaded Java programs. Logical Methods in Computer Science, 11, 2015.

Stefan Blom and Marieke Huisman. Witnessing the elimination of magic wands. International
Journal on Software Tools for Technology Transfer, pages 1-25, 2015.

J. Boyland. Checking interference with fractional permissions. In R. Cousot, editor, Static Analysis
Symposium, volume 2694 of LNCS, pages 55—72. Springer, 2003.

Marieke Huisman and Wojciech Mostowski. A symbolic approach to permission accounting for

concurrent reasoning. In 14th International Symposium on Parallel and Distributed Computing
(ISPDC 2015), pages 165-174. IEEE Computer Society, 2015.

Ioannis T. Kassios. The dynamic frames theory. Formal Aspects of Computing, 23:267-288, 2011.

Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A behavioral
interface specification language for Java. SIGSOFT, 31(3):1-38, March 2006.

K. Rustan M. Leino, Peter Miiller, and Jan Smans. Verification of concurrent programs with Chal-
ice. In Alessandro Aldini, Gilles Barthe, and Roberto Gorrieri, editors, Foundations of Security
Analysis and Design, pages 195-222. Springer, 2009.

Wojciech Mostowski. Dynamic frames based verification method for concurrent Java programs. In
Verified Software: Theories, Tools, and Experiments (VSTTE), LNCS. Springer, 2015. To appear.

Wojciech Mostowski and Mattias Ulbrich. Dynamic dispatch for method contracts through ab-
stract predicates. In 15th International Conference on MODULARITY, pages 109-116. ACM,
2015.

Matthew J. Parkinson and Alexander J. Summers. The relationship between separation logic and
implicit dynamic frames. In Gilles Barthe, editor, Furopean Symposium on Programming, volume
6602 of LNCS, pages 439-458. Springer, 2011.

John C. Reynolds. Separation logic: A logic for shared mutable data structures. In 17th IEEE
Symposium on Logic in Computer Science, pages 55—74. IEEE Computer Society, 2002.

Peter H. Schmitt, Mattias Ulbrich, and Benjamin Weif}. Dynamic frames in Java dynamic logic.
In Bernhard Beckert and Claude Marché, editors, Formal Verification of Object-Oriented Software
Conference, volume 6528 of LNCS, pages 138-152. Springer, 2011.

	Introduction
	Permission-based Reasoning with Explicit Frames
	Transformation to Implicit Dynamic Frames
	Conclusion

