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We discuss an Agda formalization of the algorithms, due to Klaus Sutner [3], that decide
injectivity and surjectivity of one-dimensional cellular automata by equating these properties
with features of cycles in specific finite labeled graphs.

A cellular automaton (briefly, CA) is a quadruple A = 〈d,Q,N , f〉 where the dimension
d ≥ 1 is an integer, the alphabet Q is finite and contains at least two elements, the neighborhood
N ⊆ Zd has N ≥ 1 elements ν1, . . . , νN , and the local update rule f is a function from Qs to Q.

The global transition function of the CA A on the set C = QZd

of d-dimensional configurations
is defined as the synchronous application of the local update rule to each point of Zd, according
to the formula

FA(c) = λx : Zd. f (c(x+ ν1), . . . , c(x+ νN )) ∀c ∈ C . (1)

For d = 1 one can always take N = {m, . . . ,m + N − 1} for suitable m ∈ Z, and see f as a
function of the word q1 · · · qN corresponding to the concatenation of its arguments q1, . . . , qN .

Deriving properties of a CA’s global transition function exclusively from its finitary formu-
lation is, in general, undecidable. There are, however, important exceptions: in dimension 1,
both injectivity and surjectivity of (1) are decidable. This is due to the Garden of Eden theo-
rem ruling that a CA is surjective if and only if distinct configurations only differing in finitely
many points have distinct images, and the characterization of injective 1D CA as those that
are injective on the set of periodic configurations. (See [1] for an introduction to CA theory.)

Recall that the product of two labeled graphs G1 = (V1, E1,L) and G2 = (V2, E2,L) with
the same set L of labels is the graph G = (V,E,L) where V = V1×V2 and ((x1, x2), (y1, y2)) ∈ E
with label ` ∈ L if and only if (x1, y1) ∈ E1 and (x2, y2) ∈ E2 both witl label `.

For N ≥ 2, the de Bruijn graph of order N on the alphabet Q is the graph G = (V,E) where
V = QN−1 and (u, v) ∈ E if and only if u = xw and y = wy for suitable x, y ∈ Q and w ∈ QN−2.
If A = 〈1, Q,N , f〉 is a 1D CA with alphabet Q and neighborhood N = {m, . . . ,m+N−1}, we
can label xwy ∈ QN with f(xwy) ∈ Q: we call the Sutner graph of the CA the product of the
labeled graph so obtained with itself. By our discussion above, calling diagonal the subgraph
generated by the pairs (w,w) with w ∈ QN−1, the following hold [3]:

1. A one-dimensional cellular automaton is injective if and only if no cycle in its Sutner
graph touches a node outside the diagonal.

2. A one-dimensional cellular automaton is surjective if and only if no cycle in its Sutner
graph joins the diagonal with the outside.
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For the present work, which is still in progress, we use version 2.4.2.3 of the Agda program-
ming language [5] with version 0.9 stable of the standard library. Agda is a dependently-typed
functional programming language based on intuitionistic type theory. The standard library
is rich in algebra and category theory, but only deals with acyclic graphs. As a side project,
we start the development of a small Agda library for graphs, following what is done by [2] in
Haskell: such library would, in our aims, include an efficient implementation of the depth-first
search algorithm. The choice of Agda is motivated by the greater expressiviness of its type
system, which allows not only to implement algorithms, but also to prove their correctness.

Our module 1DCA is parameterized by three values q m s : N. We implement the alphabet
as the initial interval Q of the natural numbers with suc q elements, the neighborhood as an
interval of starting point -m and size N = suc (suc s), and the local update rule f as a function of
type Vec Q N→ Q. We define patterns as vectors on Q.

Configurations are implemented as pairs of streams (defined coinductively) over a given
alphabet, with the convention that the configuration (. . . , q−2, q−1, q0, q1, . . .) is represented by
the ordered pair of streams ((q−1, q−2, ...) →| (q0, q1, ...)) : the constructor of the type Conf of
configurations is →| , rather than the standard comma, to emphasize the role of the point
0 ∈ Z. Equality is defined through bisimilarity in the standard way. Such method allows
to define translations (i.e., the functions σt = λ c : C.

(
λx : Zd. c(x+ t)

)
) straightforwardly. A

pattern p is turned into a periodic configuration by a function periodic = λ p . behind p →| ahead
p, where ahead p is the periodic stream obtained by concatenating ω copies of p, and behind p
the one similarly obtained from the reverse of p.

In order to update entire configurations by the global transition function, we must be able to
update single points by the local update rule: having done this, we can corecursively apply the
procedure to both the ahead and behind component of the configuration. The global transition
function is defined up to translations: as the latter are bijections, this does not alter injectivity
and surjectivity of the CA—which is our present focus.

The de Bruijn graph is implemented via its edge relation. From this, we construct the
Sutner graph: two pairs of vectors (xs , xs’), (ys , ys’) of length suc s are related if and only if (xs,
ys) and (xs’, ys’) are both in the de Bruijn relation, and in addition f takes the same value on the
words of length N corresponding to the two pairs. A path in the Sutner graph will then be the
reflexive and transitive closure of the Sutner relation; a cycle, a nonempty path with the same
endpoints; a loop, a cycle of length 1.

As a cycle of length 2 or more always belongs to a strongly connected component, and
every strongly connected component with two or more nodes always contains a cycle (possibly
a loop), the Sutner conditions for injectivity and surjectivity can be tested by Tarjan’s strongly
connected components algorithm [4] as follows:

1. The CA is injective if and only if the Sutner graph has no loops outside the diagonal,
and no strongly connected components of size 2 or more that contain a point outside the
diagonal.

2. The CA is surjective if and only if the Sutner graph has no strongly connected components
that contain nodes both inside and outside the diagonal.

For condition 1 we can exploit that every loop in the Sutner graph is on a node of the form
(qN−1, pN−1) with q, p ∈ Q.

We can prove in Agda that, if the global transition function is injective, then all cycles in
the Sutner graph are contained in the diagonal. The proofs of the converse of the above, and
of the corresponding statements for surjectivity, are currently being implemented.
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Future work will deal with formalizations of cellular automata theory. In particular, we
conjecture that the aforementioned Garden of Eden theorem can be formalized in Agda: which
would allow to prove the other direction with regard to surjectivity.
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