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1 Introduction

Structural operational semantics (SOS) [14,15] is a widely used formalism for defining the formal
semantics of computer programs and for proving properties of the corresponding programming
languages. In the SOS formalism a transition system specification (TSS) [9], which consists of a
signature together with a set of inference rules, specifies a labelled transition system (LTS) [11]
whose states (i.e., processes) are closed terms over the signature and whose transitions are those
that can be proved using the inference rules.

Rule formats [3,13] are syntactically checkable restrictions on the inference rules of a TSS
that guarantee some useful property of the associated LTS. We focus on the finiteness of the
number of outgoing transition from a given state, which is referred to as bounded nondetermin-
ism in [18]. Broadly, bounded nondeterminism is taken as a synonym of finite branching [7].
Finite branching breaks down into the more elementary properties of initials finiteness and
image finiteness [1].

Nominal structural operational semantics (NoSOS) [5] enriches the SOS formalism by adopt-
ing the nominal techniques from [8,16] to deal with names and variable-binding operations
within the SOS framework. The nominal techniques allow one to extend pleasantly structural
induction and recursion to languages with variable-binding operations, without the need to
redo on a case-by-case basis a large number of routine constructions that deal with renaming
of bound variables [8]. The NoSOS framework develops the nominal techniques in the general
setting of meta-theory of SOS [3,13] and makes them applicable to a wide variety of specific
languages.

The investigations on rule formats for bounded nondeterminism are far from being new.
Vaandrager [17] introduced a rule format for SOS based on the de Simone format [6] that guar-
antees that the associated LTS is finite branching. Following Vaandrager, Bloom [4] introduced
a rule format for his GSOS formalism that also guarantees a finite-branching LTS. Finally,
Fokkink and Vu [7] introduced yet another less restrictive rule format for SOS which adapts
the notion of strict stratification from [10], and showed that a TSS in this format induces an
LTS that is finite branching.

Our work takes this programme further by contributing on three fronts:

(i) We provide syntactic conditions that use global information to filter more junk rules (i.e.,
rules that are never involved in a proof tree) than the conditions of the rule format in [7],
which uses local information.
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(ii) We extend the applicability of the rule formats to the nominal setting by tackling one of
the most prominent challenges there, namely that of allowing variables to occur in the
actions that label a transition [2].

(iii) We consider a family of bounded-nondeterminism properties that are more elementary
than finite branching, and which include image finiteness and initials finiteness [1].

The examples that follow are representative of each of these three contributions. Recall

from [7] that an LTS is finite branching iff for every process p, the set {({,p’) | p L p'}is
finite.

Example 1.1. Let the signature ¥ consist of unary function symbols f and g and constant
symbol c. Let the set L consist of label . Consider the TSS

_ 7gi(x) L> x 1 €N
go) Do fa) S

where g' stands for applying i times the function symbol g to its argument. The TSS induces
an LTS that is finite branching. Notice that for g(p) and f(p), with p any process, the only

provable transitions are respectively g(p) LN p and f(p) LN p since the aziom on the left allows
one to instantiate the rule template on the right only for ¢ = 1.

Previous work on rule formats for finite branching [7] introduces the n-types, which deter-
mine an over-approximation of the set of rules that give rise to transitions. One of the conditions
of the rule format in [7] is to require the 7-types to be finitely inhabited. The n-typing discipline
is local and thus it is not strong enough to discern whether the instances of the rule template
of Example 1.1 would take part in a proof tree or not. For all i € N, the instances of the rule
template above have one and the same 7-type, which is infinitely inhabited. This renders the
TSS of Example 1.1 out of the conditions of the rule format.

Example 1.2. Consider the nominal TSS (NTSS for short) for term-for-atom substitution
(a KN x) on page 6 of [5], which includes the rule (abslys) that we reproduce newt:

x5 g a#tz afty
pe (abslts)
[a]z v [a]z’

Recall from [5] that the nominal term [a]x is an abstraction where the atom a is abstracted in
the nominal term x, and that a#z is a freshness assertion that is provable iff the atom a does
not appear free in the nominal term z. The substitution of term x for atom a in term t is

T
modelled as an LTS with transitions t “=% t{a — xz}. Notice that - 5 s a binary function

symbol and that the labels include arbitrary nominal terms, i.e., the y L 2 that labels the first
premiss of rule (abslrs) contains variables y and z.

The rule format in [7] requires the labels of transitions to be ground. The occurrence
of variables is important in order to determine whether a proof tree can introduce spurious
variables, which could be unified to any term and could possibly break bounded nondeterminism.
Besides, the proof of correctness of the rule format in [7] relies on the TSS having a strict
stratification (see Definition 4 of [7]) that entails an order relation among processes and enforces
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the sources of the premisses in a rule to be less than the source of the rule. This prevents the
associated LTS to implement ungarded recursion. The occurrence of variables in the labels
opens for the possibility of the LTS to break bounded nondeterminism. In order to regain
boundedness, a suitable notion of strict stratification may have to take the labels into account,
which poses a non-trivial challenge.

Recall from [1] that an LTS is initials finite iff for every process p the set {I | Ip’ s.t. p BN '}

is finite, and it is image finite iff for every process p and every label [, the set {p’ | p SN '}
is finite. An LTS is finite branching iff it is both initials finite and image finite, and thus the
latter properties are more elementary than the property of finite branching.

Example 1.3 (Example 5.3 of [7]). Let r € Rsg. Consider the operator for deadlock in real-
time Basic Process Algebra [12], which can be expressed by the rule

Process 8[r] is infinitely branching and has an uncountable set of initials. However, d[r] has
a finite set of images since for a given time s the only possible transition labelled by d[s] is

§
o[r] ﬂ v'. The associated LTS is image finite, but it is not finite branching nor initials finite.

O<s<r.

The n-types of [7] constrain the cardinality of the actions that label the premisses in a rule. In
conjunction with the conditions that ensure that a proof tree cannot introduce spurious variables
in the targets of transitions, the n-types being finitely inhabited and the strict stratification
are enough to guarantee finite branching. However, finite branching is only one among many
bounded-nondeterminism properties, and it is certainly not the most elementary. For the
property of initials finiteness, the process p is fixed and the rule format constrains the cardinality

of the labels [ in transitions p BN p’ while allowing the targets p’ to be unbounded. For the
property of image finiteness, the process p and the label [ are fixed and the rule format constrains

the cardinality of the targets p’ in transitions p BN p’. In order to guarantee these elementary
properties, more refined syntactic conditions than the ones in [7] are needed.

2 Contributions

Filtering junk rules. We introduce the S-types that, differently from the n-types in [7], rely
on the global information provided by the order relation between processes that is entailed by
the strict stratification. The S-types filter out those rules for which the sources of the premisses
and the sources of the rule are not in the order relation. For instance, the TSS of Example 1.1
has a strict stratification given by

S(f(p)) = 1
S(g(p)) = 0.

An instantiation of the rule template on the right of Example 1.1 has source f(x) and premiss
with source g*(x) for some i € N, which unify respectively with processes f(p) and g*(p) (with
p any process). The strict stratification S is undefined for g%(p) with i # 1, and thus the
source of the rule and the source of the premiss are in the order relation only when i = 1, i.e.,
S(g(p)) < S(f(p)). The other instantiations of the rule template do not have a valid S-type
and can be disregarded because they will never take part in a proof tree. The S-type of the
instantiation where ¢ = 1 is finitely inhabited.
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Variables in labels and elementary properties. We introduce a transformation for tran-

sitions that turns the triadic representation p LN p’ into a dyadic representation o — d (o for
origin and d for destination) that places the label [ either in the origin, i.e., (p,l) — p/, or in
the destination, i.e., p — (I,p'). (As in [2], we assume that nominal terms are closed under
Cartesian product.) The rule format is applied verbatim to the dyadic representation of an
NTSS. The transformation serves two purposes:

(i) The 0-fold Cartesian product (unit) is the new administrative label in all transitions,
while the real labels are arbitrary terms either in the origin or in the destination. This
circumvents duly the concerns about the proof trees introducing spurious variables and
about the strict stratification.

(ii) Different dyadic transformations enforce different bounded-nondeterminism properties,
i.e.,, p — (I,p’) for finite branching and (p,l) — p’ for image finiteness. (More on initials
finiteness below.) For example, the dyadic transformation for image finiteness of rule
(abslts) of Example 1.2 reads:

(x,y N z) — atz afty

([a]e,y 7 x) —> [ala’

The LTS for term-for-atom substitution is initials finite because for a given nominal term
¢ and label a V% (a is the atom to be substituted for and x is the subject of the

T
substitution) there is only one result of the substitution, i.e., t =% t{a — z}.

In order to ensure initials finiteness, we relax certain syntactic conditions of the rule format
for finite branching as to unconstrain the cardinality of targets p’ in the destinations (I,p’). We
refer to this relaxation of the rule format as extrusion.

Other bounded-nondeterminism properties. The dyadic transformation for finite branch-
ing applies to yet another elementary bounded-nondeterminism property. By extruding the
labels instead of the targets the following property is ensured: for every process p, the set
{p/ |3 st.p LN p'} is finite.

Other dyadic transformations in which the label [ is itself the origin or the destination are
possible, which we have dubbed I 1 (p,p’) and (p,p’) | I. Together with extrusion, our rule
format affords for a family of up to eight bounded-nondeterminism properties based on the
dyadic transformations, which include finite branching, initials finiteness and image finiteness.
We are not aware whether any of the five other properties has received any particular name
in the literature. These properties may have relevance in the nominal setting where labels of
transitions have a prominent role.

3 Future work

We have considered NTSSs after stripping away freshness assertions. We conjecture that, for
such NTSSs, the freshness assertions can only restrict the cardinality of provable transitions
from infinite (all) to cofinite (all but finitely many), and hence freshness assertions do not
have an impact in the bounded-nondeterminism properties. Proving this result is still work in
progress.

4
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