
Optimizing Semantically Lifted Programs through

Ontology Modularity

Eduard Kamburjan and Jieying Chen

SIRIUS Centre, Department of Informatics, University of Oslo, Oslo, Norway
{eduard,jieyingc}@ifi.uio.no

We investigate optimization of programs using Semantic Web techniques. A program is
optimized by reducing the number of logical axioms needed to reason about it, based on the
queries to be executed. Irrelevant axioms allow us to safely remove certain parts of the program.

Motivation. Semantic Web technologies [2] are a set of techniques to formally attach semantic
meaning to data. They are used as a crucial step to integrate domain knowledge into many
modern innovation applications such as AI expert systems and digital twins [5,9]. Among their
core elements are description logic-based formalisms to model domain knowledge and store data
using ontologies, as well as retrieve data from ontologies using special query languages.

Despite their numerous applications for static data, Semantic Web technologies are not
suited to model dynamic processes and have no established mechanism for data changes. Fur-
thermore, their implementations give little static guarantees to the programmer. To address
this problem, Kamburjan et al. [3] introduced semantically lifted programs, which attach seman-
tic meaning to a program state and, consequently, can access the program state using semantic
web query languages by mapping a program state to an ontology and enriching it with domain
knowledge. This tight integration allows, for example, to give static type guarantees to query
results [4].

In this work, we investigate the use of ontology modularity1 [6,8] to perform a sound program
transformation on semantically lifted programs to increase their performance.

Semantically Lifted Programs. We in-
1 class Task(...)...end
2 class Server(List<Task> tasks)...end
3 class Platform(List<Server> servers)...end
4 class Scheduler(List<Platform> platforms)

5 Unit reschedule()

6 List<Platform> l:=

7 access("SELECT ?x WHERE {?x a Busy}");

8 this.optimizePlatforms(l);

9 end
10 end

troduce our approach using a running exam-
ple in SMOL, an implementation of semanti-
cally lifted programs in a minimal object-
oriented language. The figure on the right
shows a (partial) example that models a cloud
system scheduler: A scheduler monitors some
set of platforms, each of which runs a set of
servers, which in turn execute some tasks.
The scheduler performs a SPARQL query in
line 7 to retrieve all busy platforms. Note
that the term Busy is not defined in the program itself. Instead, it is part of the domain
knowledge that defines when a platform is considered busy. Thus, semantically lifted programs
separate declarative domain knowledge and imperative computations using queries as interfaces.

To perform the query, we perform semantic state access: the current configuration of the
program is translated into an ontology and enriched with the user-defined domain knowledge
before executing the query. An ontology, in general, consists of a TBox and an ABox. A TBox
is a finite set of general concept inclusions and role inclusions, while an ABox is a finite set of
unary and binary assertions on individuals. The ABox must be consistent with the TBox, i.e.,
the assertion axioms of the ABox must be logically consistent with the inclusion axioms of the
TBox. The following example shows a part of an ontology for our running example. The TBox

1In this work we stick to the terminology common in ontology modulularity and (1) do not distinguish
between ontologies and knowledge graphs/bases, and (b) use the term modules only for ontologies, not programs.



Optimizing Semantically Lifted Programs through Ontology Modularity Kamburjan and Chen

T ? has three axioms that describe (1) that concept Busy is a Platform and a NonEmpty (2)
that a NonEmpty is an object which has a servers that is not empty, and (3) that a Task is a
subclass of Object. The first two axioms represent domain knowledge, while the last is derived
from the class table. The ABox A? defines a task, a platform, a list and connects them.

T ? = {Busy v Platform u NonEmpty,
NonEmpty v ∃servers.NotNull, Task v Object}

A? = {Platform(a), List(b), Task(c), servers(a, b)}.

To generate the ontology, the current program state conf is semantically lifted by a function
µ to an ABox A = µ(conf). The TBox T = TSMOL∪Tuser of the used ontology is static throughout
program execution and contains axioms TSMOL describing the class table and the domain ontology
Tuser. Finally, the query q is evaluated using some answering engine ans to retrieve a list of
elements from the knowledge graph. The answering engine must perform reasoning steps to
derive new data using the TBox axioms and commonly includes a description logic reasoner.
The runtime semantics of access in a configuration conf computes the following:

ans
(
(T ,A), q

)
= ans

(
(TSMOL ∪ Tuser, µ(conf)), q

)
.

Using Modules for Sound Program Transformation. Semantic state access is a main
performance bottleneck, as each such access requires performing reasoning steps in the query
engine. Thus, it is of major importance to optimize programs with respect to semantic state
access. The approach we present here is localization: instead of using the same direct mapping
µ and TBox T everywhere, we apply a program transformation such that each access statement
has a local direct mapping µ′ and TBox T ′. This increases the performance even if a program
contains only one access statement, as it reduces the size of the knowledge graph by adapting
it to a specific query. For localization, we use the theory of ontology modularity.

In general, a module of an ontology wrt. the given vocabulary is a sub-ontology that still
preserves certain logical consequences about the given vocabulary. We call this vocabulary a
signature, denoted as Σ, which is a set of concept and property names. Here, we only extract
the modules on TBoxes. Formally, we say M ⊆ T is a module of T wrt. Σ if the following
statements hold for all queries q, sig(q) ⊆ Σ and any ABoxes A that are consistent with
(the self-consistent) T : ans

(
(T ,A), q

)
= ans

(
(M,A), q

)
, where sig(q) is the signature of q.

Specially, there are different module notions that specify what kind of (logical) queries that
modules should preserve, such as semantic modules [6] and deductive modules [1, 7]. However,
it is usually very difficult to compute such modules. Locality-based modules [8] was proposed
as a practical solution to compute ontology modules. Since they preserve almost all logical
consequences and it takes polynomial time to exact such modules. Considering the example
that we introduced above, we have Σ? = {Busy}. Then the set of first two axioms of T ? is the
module (under any module notion) of T ? wrt. Σ?.

We can intuitively see that no axioms describing the Task and Scheduler classes are needed.
Going beyond the TBox, we can use the module mechanism to also compute precisely which
axioms from the ABox can be removed: After computing M, the module of (T ) wrt. Σ(q)
we can also modify µ and suppress the generation of any ABox axioms that does not include
symbols from Σ(M), e.g., not generating the axiom Task(c).

The soundness of the localization is ensured. That is, computing the original query q on the
computed module and any ABox returns the same results, for every possible ABox A (that is
consistent with T ), even when restricted to the vocabulary of M, (written A�Σ(M)):

ans
(
(T ,A), q

)
= ans

(
(M,A�Σ(M)), q

)
where M is the module of T wrt. Σ(q).

2



Optimizing Semantically Lifted Programs through Ontology Modularity Kamburjan and Chen

Let P ′ be the localized variant of P , a copy of P where each access(q) statement is replaced by a
localized access(q,M,µM) with the obvious runtime semantics. From the definition of modules,
it follows that P ≡ P ′, i.e., that both programs reach the same final states. Localization is
static: neither program nor query is executed. Furthermore, it goes beyond preprocessing of
queries at the query engine, as we perform the optimization (1) before the axioms are generated
instead of deleting them and (2) per query and not per query execution.

Ontology modules can be used to improve per-

1 50 100 150 200 250 300

1

20

40

60

80

n

ti
m

e
in

s

Original
Localizedformance by reducing the number of considered ax-

ioms. As we see in the following, localization al-
lows to use the performance benefits for semanti-
cally lifted programs. We perform a preliminary
evaluation using the 2-3 tree benchmark from [3]
with n elements added to a 2-3 tree, for n ∈ {1, 50, 100, 150, 200, 250, 300}.
Afterwards, a SPARQL query with the Apache Jena framework retrieves all 2-nodes, which are
expressed in an OWL ontology and logical reasoning is required to retrieve them. As the graph
above shows, already a coarse modularization can decrease runtime by 61%.

We remind that the axioms in TSMOL are modeling programs elements. Consider the situation
where the aim of the program is to examine its final state using queries – if certain axioms are
not part of any module, including the module needed for the final queries, then it is safe to not
compute them. For example, if a field does not occur in any modules, then it is possible to not
only adjust the lifting function, but also to remove all read and write accesses to this field that
do not effect the final state (of other fields). On-going work suggest that such optimization can
be performed by integrating ontology modules with adjusted program slicing techniques.

Outlook. This work presents localization, a sound program transformation of semantically
lifted programs, and preliminary empirical results that suggest that it is increasing performance.
Beyond on-going work on program slicing, we plan to investigate which kind of ontology modules
are most suited for performance optimization in the setting of semantically lifted programs.

Acknowledgments. This work is funded by SIRIUS (RCN 237898) and PeTWIN (RCN 294600).
We thank Martin Giese and Einar Broch Johnsen for comments and feedback on this work.

References

[1] J. Chen, M. Ludwig, Y. Ma, and D. Walther. Zooming in on ontologies: Minimal modules and best
excerpts. In ISWC, volume 10587 of LNCS, 2017.

[2] P. Hitzler et al. Foundations of Semantic Web Technologies. Chapman and Hall/CRC Press, 2010.

[3] E. Kamburjan, V. N. Klungre, R. Schlatte, E. B. Johnsen, and M. Giese. Programming and
debugging with semantically lifted states. In ESWC, volume 12731 of LNCS, 2021.

[4] E. Kamburjan and E. V. Kostylev. Type checking semantically lifted programs via query contain-
ment under entailment regimes. In Description Logics, volume 2954 of CEUR, 2021.

[5] E. Kharlamov et al. Towards semantically enhanced digital twins. In IEEE BigData. IEEE, 2018.

[6] B. Konev, C. Lutz, D. Walther, and F. Wolter. Model-theoretic inseparability and modularity of
description logic ontologies. Artificial Intelligence, 203:66–103, 2013.

[7] P. Koopmann and J. Chen. Deductive module extraction for expressive description logics. In IJCAI.
ijcai.org, 2020.

[8] U. Sattler, T. Schneider, and M. Zakharyaschev. Which kind of module should I extract? In
Description Logics, volume 477 of CEUR, 2009.

[9] B. Zhou et al. Predicting quality of automated welding with machine learning and semantics: A
bosch case study. In CIKM. ACM, 2020.

3


